
CSE 311: Foundations of Computing

Topic 4:  Number Theory



Formal Proofs

• In principle, formal proofs are the standard for 
what it means to be “proven” in mathematics
– almost all math (and theory CS) done in Predicate Logic

• But they can be tedious and impractical
– e.g., applications of commutativity and associativity
– Russell & Whitehead’s formal proof that 1+1 = 2 is 

several hundred pages long
we allow ourselves to cite “Arithmetic”, “Algebra”, etc.

• Historically, rarely used for “real mathematics”...



English Proofs

• Vastly more common in CS and math

•  High-level language that lets us work more quickly
– not necessary to spell out every detail
– reader checks that the writer is not skipping too much

the reader is the "compiler" for English proofs
they implement a community standard of correctness

• English proofs require understanding formal proofs
– English proof follows the structure of a formal proof
– we will learn English proofs by translating from formal

eventually, we will write English directly



English Proofs

• Vastly more common in CS and math

•  High-level language that lets us work more quickly
– not necessary to spell out every detail
– reader checks that the writer is not skipping too much

the reader is the "compiler" for English proofs
they implement a community standard of correctness

• Examples of what can be skipped (more to come):
– Intro and Elim ∧
– explicitly stating existence claims (Elim ∃ immediately)
– no rule names, e.g., Direct Proof



Recall: Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even: 1.1.1
1.1.3 a = 2b              Elim $ (b): 1.1.2
1.1.4   a2 = 2(2b2)       Algebra: 1.1.3
1.1.5 ∃y (a2 = 2y)     Intro $: 1.1.4
1.1.6  Even(a2)            Definition of Even: 1.1.5

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Let a be an arbitrary integer

   1.1.1   Even(a)           Assumption

   1.1.2   ∃y (a = 2y)    Definition
   1.1.3   a = 2b     Elim ∃
   

   1.1.4   a2 = 2(2b2)    Algebra

   1.1.5	 ∃y (a2 = 2y)      Intro ∃
   1.1.6  Even(a2)       Definition

   1.1.   Even(a)®Even(a2)     Direct Proof
1.   "x (Even(x)®Even(x2))     Intro "

Let a be an arbitrary integer. 

Suppose a is even.

Then, by definition, a = 2b for 
some integer b.

Squaring both sides, we get 
a2 = 4b2 = 2(2b2). 

So a2 is, by definition, even.

Since a was arbitrary, we have 
shown that the square of every 
even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some 
integer b. Squaring both sides, we get a2 = 4b2 = 2(2b2). 
So a2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

Let x and y be arbitrary integers.

Since x and y were arbitrary, the 
sum of any odd integers is even.

Let x and y be arbitrary integers.

  

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y) 
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y))  Intro "



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

Let x and y be arbitrary integers

      1.1.1   Odd(x) ∧	Odd(y)        Assumption

      1.1.9  Even(x+y)  

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y))  Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

Let x and y be arbitrary integers

      1.1.1   Odd(x) ∧	Odd(y)  Assumption
      1.1.2   Odd(x)    Elim ∧
      1.1.3   Odd(y)    Elim ∧

      1.1.9  Even(x+y)  

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y) Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y))  Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Let x and y be arbitrary integers.

      1.1.1   Odd(x) ∧	Odd(y)    Assumption
      1.1.2   Odd(x)           Elim ∧
      1.1.3   Odd(y)      Elim ∧

      1.1.4   ∃z (x = 2z+1)         Def of Odd: 1.1.2
      1.1.5   x = 2a+1          Elim ∃

      1.1.6   ∃z (y = 2z+1)        Def of Odd: 1.1.3
      1.1.7   y = 2b+1       Elim ∃

   

      1.1.9	 ∃z (x+y = 2z)      Intro ∃
      1.1.10 Even(x+y)      Def of Even

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for 
some integer b.

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Let x and y be arbitrary integers.

      1.1.1   Odd(x) ∧	Odd(y)    Assumption
      1.1.2   Odd(x)           Elim ∧
      1.1.3   Odd(y)      Elim ∧

      1.1.4   ∃z (x = 2z+1)         Def of Odd: 1.1.2
      1.1.5   x = 2a+1          Elim ∃

      1.1.6   ∃z (y = 2z+1)        Def of Odd: 1.1.3
      1.1.7   y = 2b+1       Elim ∃

      1.1.8   x+y = 2(a+b+1)        Algebra

      1.1.9	 ∃z (x+y = 2z)      Intro ∃
      1.1.10 Even(x+y)      Def of Even

   1.1.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  Direct..
1.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for 
some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof:   Let x and y be arbitrary integers.
Suppose that both are odd. Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for some integer b. Their 
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so 
x+y is, by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



Formal-to-English Translation

• Document posted on website

• Use these on HW4
– no need to match the exact phrasing
– English proofs are not formal proofs



Number Theory

• Direct relevance to computing
– everything in a computer is a number

colors on the screen are encoded as numbers

• Many significant applications
– Cryptography & Security
– Data Structures
– Distributed Systems



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎. Suppose that

𝑎
𝑏 = 𝑞

The number 𝑞 is called the quotient.

This equation involve fractions. We want to stick to integers!
Multiplying both sides by 𝑏, this becomes

𝑎 = 𝑞𝑏

When there exists some such 𝑞, we write "𝑏	|	𝑎".

Recall: Elementary School Division



Divisibility

Check Your Understanding.  Which of the following are true?

5 |	1    25 | 5    5 | 0   3 |	2

1 | 5    5 | 25        0 | 5   2 | 3

  For 𝑎, 𝑏 (usually with 𝑏 ≠ 0):
𝑏	|	𝑎	 ≔	∃𝑞	(𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



Check Your Understanding.  Which of the following are true?

5 |	1    25 | 5    5 | 0   3 |	2

1 | 5    5 | 25        0 | 5   2 | 3

Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

  For 𝑎, 𝑏 (usually with 𝑏 ≠ 0):
𝑏	|	𝑎	 ≔	∃𝑞	(𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 ∤ 𝑎, then we end up with a remainder 𝑟 with 0 < 𝑟 < 𝑏.
Now,

 instead of      we have 

Multiplying both sides by 𝑏 gives us   𝑎 = 𝑞𝑏 + 𝑟

Recall: Elementary School Division

𝑎
𝑏 = 𝑞

𝑎
𝑏 = 𝑞 +

𝑟
𝑏



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏	|	𝑎, then we have 𝑎 = 𝑞𝑏 for some 𝑞.
If 𝑏 ∤ 𝑎, then we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 < r < b.

In general, we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑏,
where 𝑟 = 0 iff 𝑏	|	𝑎.

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

 For 𝑎, 𝑏 with 𝑏 > 0
      there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏     

such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse

a = (a div b) b + (a mod b)

∀𝑎	∀𝑏 𝑏 > 0 → 𝑎 = 𝑎	div	𝑏 𝑏 + 𝑎	mod	𝑏



Modular Arithmetic



Modular Arithmetic

• Arithmetic over a finite domain

• Almost all computation is over a finite domain



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}

Prints : “I will be alive for at least -186619904 seconds.”



Ordinary arithmetic

-3 -2 -1 0 1 2 3 4 5 6 7 8

+5

3 + 5 = 8



Arithmetic on a Clock

0
1

2

34

5

6

3 + 5 = 8

15 = 7 · 2 + 1

0
1

2

34

5

6

If 𝑎 = 7𝑞 + 𝑟, then 𝑟	 (= 𝑎	mod	𝑏) is
where you stop after taking 𝑎 steps on the clock

22 = 7 · 3 + 1

8 = 7 · 1 + 1



Arithmetic, mod 7

(a + b) mod 7
(a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

0
1

2

34

5

6



Modular Arithmetic

New notion of “sameness” that will help us 
understand modular arithmetic

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

The standard math notation is

𝑎 ≡ 𝑏 mod	𝑚

A chain of equivalences is written

𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 𝑑 mod	𝑚

Many students find this confusing,
so we will use ≡$ instead.

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

-1 ≡5 19

x ≡2 0

 y ≡7 2

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ≔ 	 𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 

Integers
Domain of Discourse



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Proof Plan:

 1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)	 ??
 2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎) ??
 3. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) ∧
      (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	 Intro Ù: 1, 2
 4. (𝒂 ≡𝒎 𝒃) ↔ (𝒂	mod	𝒎 = 𝒃	mod	𝒎) Equivalent: 3



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  ??



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.?  𝒂 ≡𝒎 𝒃         ??
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.? 𝒎 ∣ 𝒂 − 𝒃	        ??
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption

 1.? ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      ??
 1.? 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption
 1.2. 𝒂 = 𝒂	div	𝒎 	𝒎+ (𝒂	mod	𝒎)  Apply Division
 1.3. 𝒃 = 𝒃	div	𝒎 	𝒎+ (𝒃	mod	𝒎)  Apply Division

 1.? ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      ??
 1.? 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.?  𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Assumption
 1.2. 𝒂 = 𝒂	div	𝒎 	𝒎+ (𝒂	mod	𝒎)  Apply Division
 1.3. 𝒃 = 𝒃	div	𝒎 	𝒎+ (𝒃	mod	𝒎)  Apply Division
 1.4. 𝒂 − 𝒃 = 𝒂	div	𝒎 − 𝒃	div	𝒎 	𝒎 Algebra
 1.5. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Intro ∃
 1.6. 𝒎 ∣ 𝒂 − 𝒃	        Def of ∣
 1.7. 𝒂 ≡𝒎 𝒃         Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)  Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Therefore, 𝑎 ≡$ 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division

  Algebra

   Intro ∃
   Def of ∣
   Def of ≡
Direct Proof



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
𝑎 = 𝑎	div	𝑚 	𝑚 + (𝑎	mod	𝑚) and
𝑏 = 𝑏	div	𝑚 	𝑚 + (𝑏	mod	𝑚).

Therefore, 𝑎 ≡$ 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

   Apply Division
   Apply Division
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Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

By the Division Theorem, we can write
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…
Therefore, 𝑎 ≡$ 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.
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Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.
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Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
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Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

By the Division Theorem, we have 𝑎 = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
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Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

By the Division Theorem, we have 𝑎 = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.

Combining these, we have 𝑎	div	𝑚 𝑚 + 𝑎	mod	𝑚 =
𝑎 = 𝑏 + 𝑘𝑚. Solving for b gives b = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 − 𝑘𝑚 = 𝑎	div	𝑚 − 𝑘 𝑚 + 𝑎	mod	𝑚 .

Therefore, 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.
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Modular Arithmetic: A Property

Suppose that 𝑎 ≡! 𝑏.

Then, 𝑚	|	(𝑎	– 𝑏) by the definition of congruence.
So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by the definition of 
divides. Equivalently, 𝑎 = 𝑏 + 𝑘𝑚.

By the Division Theorem, we have 𝑎 = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 , with 0 ≤ (𝑎	mod	𝑚) < 𝑚.

Combining these, we have 𝑎	div	𝑚 𝑚 + 𝑎	mod	𝑚 =
𝑎 = 𝑏 + 𝑘𝑚. Solving for b gives b = 𝑎	div	𝑚 	𝑚 +
𝑎	mod	𝑚 − 𝑘𝑚 = 𝑎	div	𝑚 − 𝑘 𝑚 + 𝑎	mod	𝑚 .

By the uniqueness property in the Division Theorem, we 
must have 𝑏	mod	𝑚 = 𝑎	mod	𝑚 (and, although we 
don't need it, also 𝑏	div	𝑚 = 𝑎	div	𝑚	 − 𝑘).

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Assumption

 Def of ≡
 Def of ∣
 Elim ∃

   Apply Division

 Algebra

 Apply DivUnique
 Elim ∃

Direct Proof



The mod	𝑚 function vs the	≡! predicate

– The mod	𝑚 function maps any integer 𝑎 to a 
remainder 𝑎	mod	𝑚 ∈ {0,1, . . , 𝑚 − 1}.

Tells you where it lands on the clock.
    

– Imagine grouping together all integers that 
have the same value of the mod	𝑚 function. 

They must differ by a multiple of 𝑚 (𝑞1𝑚+ 𝑟  vs 𝑞2𝑚+ 𝑟)
 

– The ≡! predicate compares integers 𝑎, 𝑏 
to see if if they differ by a multiple of 𝑚.

If they differ by a multiple of 𝑚, then walking from one to 
the other leaves you at the same spot on the clock.

0
1

2
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• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

These facts allow us to use
algebra to solve problems



The Algebra Rule

• Algebra rule applies these properties:
– adding equations
– multiplying equations by a constant

• But also uses knowledge of
– arithmetic with constants
– commutativity of multiplication (e.g., yx	=	xy)
– distributivity (e.g., a(b+c)	=	ab	+	bc)

  x1 = y1 …  xn = yn
∴ x = y

Algebra

Note: no division
(since domain is integers)



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

Same facts apply to “≤”
with non-negative numbers What about “≡𝒎”?



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.
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If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	   ??
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 2.5. 𝒎 ∣ 𝒃 − 𝒄	        Def of ≡ : 2.3

 2.?. 𝒂 ≡𝒎 𝒄        ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 2.2. 𝒂 ≡𝒎 𝒃        Elim Ù : 2.1 
 2.3. 𝒃 ≡𝒎 𝒄        Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	        Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒃 − 𝒄	        Def of ≡ : 2.3
 2.6. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Def of ∣ : 2.4
 2.7. ∃𝒒	(𝒃 − 𝒄 = 𝒒𝒎)	      Def of ∣ : 2.5

 2.?. 𝒂 ≡𝒎 𝒄        ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 2.2. 𝒂 ≡𝒎 𝒃        Elim Ù : 2.1 
 2.3. 𝒃 ≡𝒎 𝒄        Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	        Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒃 − 𝒄	        Def of ≡ : 2.3
 2.6. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	      Def of ∣ : 2.4
 2.7. ∃𝒒	(𝒃 − 𝒄 = 𝒒𝒎)	      Def of ∣ : 2.5
 2.8. 𝒂 − 𝒃 = 𝒌𝒎       Elim ∃ : 2.6
 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7

 2.?. 𝒂 ≡𝒎 𝒄        ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎       Elim ∃ : 2.6
 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7

 2.?. 𝒂 ≡𝒎 𝒄        ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎       Elim ∃ : 2.6
 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7

 2.?. 𝒎 ∣ 𝒂 − 𝒃	        ??
 2.?. 𝒂 ≡𝒎 𝒄        Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎       Elim ∃ : 2.6
 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7

 2.?. ∃𝒒	(𝒂 − 𝒄 = 𝒒𝒎)	      ??
 2.?. 𝒎 ∣ 𝒂 − 𝒄	        Def of ∣
 2.?. 𝒂 ≡𝒎 𝒄        Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄      Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎       Elim ∃ : 2.6
 2.9. 𝒃 − 𝒄 = 𝒋𝒎       Elim ∃ : 2.7
 2.10. 𝒂 − 𝒄 = (𝒌 + 𝒋)𝒎     Algebra
 2.11. ∃𝒒	(𝒂 − 𝒄 = 𝒒𝒎)	     Intro ∃ : 2.10
 2.12. 𝒎 ∣ 𝒂 − 𝒄	       Def of ∣ : 2.11
 2.13. 𝒂 ≡𝒎 𝒄        Def of ≡ : 2.12
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒃 ≡𝒎 𝒄) → (𝒂 ≡𝒎 𝒄)	  Direct Proof



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑏 ≡$ 𝑐.

Therefore, 𝑎 ≡$ 𝑐. 



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑏 ≡$ 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, 𝑎 ≡$ 𝑐. 



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑏 ≡$ 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎	– 𝑐 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, 𝑎 ≡$ 𝑐. 



Modular Arithmetic: Basic Property

Let 𝒂, 𝒃, 𝒄 and 𝒎	be integers with 𝒎 > 𝟎.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡
Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑏 ≡$ 𝑐.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑏	– 𝑐). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑏	– 𝑐 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎	– 𝑐 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, by the definition of divides, we have 
shown that 𝑚	|	(𝑎	– 𝑐), and then, 𝑎 ≡$ 𝑐 by the 
definition of congruence.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 ??



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption

 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1

 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	         Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒄 − 𝒅	         Def of ≡ : 2.3

 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	         Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒄 − 𝒅	         Def of ≡ : 2.3
 2.6. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	       Def of ∣ : 2.4
 2.7. ∃𝒒	(𝒄 − 𝒅 = 𝒒𝒎)	       Def of ∣ : 2.5

 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	         Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒄 − 𝒅	         Def of ≡ : 2.3
 2.6. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	       Def of ∣ : 2.4
 2.7. ∃𝒒	(𝒄 − 𝒅 = 𝒒𝒎)	       Def of ∣ : 2.5
 2.8. 𝒂 − 𝒃 = 𝒌𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒋𝒎        Elim ∃ : 2.7

 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒋𝒎        Elim ∃ : 2.7

 2.?. 𝒎 ∣ 𝒂 + 𝒄 − (𝒃 + 𝒅)      ??
 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒋𝒎        Elim ∃ : 2.7

 2.?. ∃𝒒	( 𝒂 + 𝒄 − (𝒃 + 𝒅) = 𝒒𝒎)	   ??
 2.?. 𝒎 ∣ 𝒂 + 𝒄 − (𝒃 + 𝒅)      Def of ∣
 2.?. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒌𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒋𝒎        Elim ∃ : 2.7
 2.10. (𝒂 + 𝒄) − (𝒃 + 𝒅) = (𝒌 + 𝒋)𝒎   Algebra
 2.11. ∃𝒒	( 𝒂 + 𝒄 − (𝒃 + 𝒅) = 𝒒𝒎)	   Intro ∃ : 2.10
 2.12. 𝒎 ∣ 𝒂 + 𝒄 − (𝒃 + 𝒅)     Def of ∣ : 2.11
 2.13. 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅       Def of ≡ : 2.12
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅)	 Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

Therefore, 𝑎 + 𝑐 ≡$ 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.

Therefore, 𝑎 + 𝑐 ≡$ 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎 + 𝑐 − 𝑏 + 𝑑 =
𝑎 − 𝑏 + 𝑐 − 𝑑 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, 𝑎 + 𝑐 ≡$ 𝑏 + 𝑑.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

Assumption

 Elim Ù
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚 
for some integers 𝑘 and 𝑗.
Adding these, gives 𝑎 + 𝑐 − 𝑏 + 𝑑 =
𝑎 − 𝑏 + 𝑐 − 𝑑 = 𝑘𝑚 + 𝑗𝑚 = 𝑘 + 𝑗 𝑚.

Therefore, by the definition of divides, we have 
shown 𝑚	| 𝑎 + 𝑐 − (𝑏 + 𝑑), and then, we have 
𝑎 + 𝑐 ≡$ 𝑏 + 𝑑 by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   ??

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption

 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1

 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	         Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒄 − 𝒅	         Def of ≡ : 2.3

 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	         Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒄 − 𝒅	         Def of ≡ : 2.3
 2.6. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	       Def of ∣ : 2.4
 2.7. ∃𝒒	(𝒄 − 𝒅 = 𝒒𝒎)	       Def of ∣ : 2.5

 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 2.2. 𝒂 ≡𝒎 𝒃         Elim Ù : 2.1 
 2.3. 𝒄 ≡𝒎 𝒅         Elim Ù : 2.1
 2.4. 𝒎 ∣ 𝒂 − 𝒃	         Def of ≡ : 2.2
 2.5. 𝒎 ∣ 𝒄 − 𝒅	         Def of ≡ : 2.3
 2.6. ∃𝒒	(𝒂 − 𝒃 = 𝒒𝒎)	       Def of ∣ : 2.4
 2.7. ∃𝒒	(𝒄 − 𝒅 = 𝒒𝒎)	       Def of ∣ : 2.5
 2.8. 𝒂 − 𝒃 = 𝒋𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒌𝒎        Elim ∃ : 2.7

 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Addition Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒋𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒌𝒎        Elim ∃ : 2.7

 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         ??
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Addition Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒋𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒌𝒎        Elim ∃ : 2.7

 2.?. 𝒎 ∣ 𝒂𝒄 − 𝒃𝒅        ??
 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Addition Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒋𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒌𝒎        Elim ∃ : 2.7

 2.?. ∃𝒒	(𝒂𝒄 − 𝒃𝒅 = 𝒒𝒎)	      ??
 2.?. 𝒎 ∣ 𝒂𝒄 − 𝒃𝒅        Def of ∣
 2.?. 𝒂𝒄 ≡𝒎 𝒃𝒅         Def of ≡
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Addition Property

2.1. 𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅       Assumption
 …
 2.8. 𝒂 − 𝒃 = 𝒋𝒎        Elim ∃ : 2.6
 2.9. 𝒄 − 𝒅 = 𝒌𝒎        Elim ∃ : 2.7
 2.10. 𝒂𝒄 − 𝒃𝒅 = (𝒃𝒌 + 𝒅𝒋 + 𝒋𝒌𝒎)𝒎   Algebra
 2.11. ∃𝒒	(𝒂𝒄 − 𝒃𝒅 = 𝒒𝒎)	      Intro ∃ : 2.10
 2.12. 𝒎 ∣ 𝒂𝒄 − 𝒃𝒅        Def of ∣ : 2.11
 2.13. 𝒂𝒄 ≡𝒎 𝒃𝒅        Def of ≡ : 2.12
1. (𝒂 ≡𝒎 𝒃 ∧ 𝒄 ≡𝒎 𝒅) → (𝒂𝒄 ≡𝒎 𝒃𝒅)   Direct Proof

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 
 
 

 

 
 
 ??

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

Therefore, 𝑎𝑐 ≡$ 𝑏𝑑.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 
 

 

 ??

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). 

Therefore, 𝑎𝑐 ≡$ 𝑏𝑑.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 Def of ∣
 Elim ∃

 

 ??

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.

Therefore, 𝑎𝑐 ≡$ 𝑏𝑑.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.
Equivalently, 𝑎 = 𝑏 + 𝑗𝑚 and 𝑐 = 𝑑 + 𝑘𝑚. 
Multiplying these gives 𝑎𝑐 = 𝑏 + 𝑗𝑚 𝑑 + 𝑘𝑚 =
𝑏𝑑 + 𝑏𝑘𝑚 + 𝑑𝑗𝑚 + 𝑗𝑘𝑚 = 𝑏𝑑 + 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚, 
so 𝑎𝑐 − 𝑏𝑑 = 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚.
… Therefore, 𝑎𝑐 ≡$ 𝑏𝑑.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.

Assumption

 
 Def of ≡
 Def of ∣
 Elim ∃

 Algebra

 Intro ∃
 Def of ∣
 Def of ≡

Direct Proof

Suppose that 𝑎 ≡$ 𝑏 and 𝑐 ≡$ 𝑑.

By the definition of congruence, we know that 
𝑚	|	(𝑎	– 𝑏) and 𝑚	|	(𝑐	– 𝑑). By the definition of 
divides, we know that 𝑎	– 𝑏 = 𝑗𝑚 and 𝑐	– 𝑑 = 𝑘𝑚 
for some integers 𝑗 and 𝑘.
Equivalently, 𝑎 = 𝑏 + 𝑗𝑚 and 𝑐 = 𝑑 + 𝑘𝑚. 
Multiplying these gives 𝑎𝑐 = 𝑏 + 𝑗𝑚 𝑑 + 𝑘𝑚 =
𝑏𝑑 + 𝑏𝑘𝑚 + 𝑑𝑗𝑚 + 𝑗𝑘𝑚 = 𝑏𝑑 + 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚, 
so 𝑎𝑐 − 𝑏𝑑 = 𝑏𝑘 + 𝑑𝑗 + 𝑗𝑘 𝑚.
Therefore, 𝑚	|	𝑎𝑐 − 𝑏𝑑 by the definition of divides,
so 𝑎𝑐 ≡$ 𝑏𝑑 by the definition of congruence.



Modular Arithmetic: Properties

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

These facts allow us to use
algebra to solve problems



The Arithmetic Rule

• Equation must be true with no outside information

• Use only these properties of arithmetic operators:
– commutativity (x+y	=	y+x and yx	=	xy)
– associativity (x+(y+z)	=	(x+y)+z and x(yz)	=	(xy)z)
– distributivity (a(b+c)	=	ab	+	bc)
– identity (x+0	=	x and 1⋅x	=	x)
– arithmetic with constants (7	–	5	=	2)
– …

  ______________ 
∴ x = y

if this follows by standard properties

Arithmetic we won't use this…



The Arithmetic Rule

• Examples:

1. 7 = 7        Arithmetic
2.  7 − 4 = 3       Arithmetic
3.  5𝒙 − 3𝒙 = 2𝒙      Arithmetic
…

  ______________ 
∴ x = y

if this follows by standard properties

Arithmetic we won't use this…



Recall: Properties of “=” Used in Algebra

Example: given 5𝑥 + 4 = 2𝑥 + 25,
    prove that 3𝑥 = 21.

We need these facts to do algebra…

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄   “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	  “Multiply Equations”



Recall: Properties of “=” Used in Algebra

1. 5𝑥 + 4 = 2𝑥 + 25    Given
2. −4 = −4       Arithmetic
3. 5𝑥 + 4 − 4 = 2𝑥 + 25 − 4 Add Equations: 1, 2
4. 5x = 5𝑥 + 4 − 4    Arithmetic
5. 5𝑥 = 2𝑥 + 25 − 4    Transitivity: 4, 3
6. 2𝑥 + 25 − 4 = 2𝑥 + 21  Arithmetic
7. 5𝑥 = 2𝑥 + 21     Transitivity: 5, 6

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄   “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	  “Multiply Equations”



Recall: Properties of “=” Used in Algebra

…
7. 5𝑥 = 2𝑥 + 21     Transitivity: 5, 6
8. −2𝑥 = −2𝑥      Arithmetic
9. 5𝑥 − 2𝑥 = 2𝑥 + 21 − 2𝑥  Add Equations: 7, 8
10. 3x = 5𝑥 − 2𝑥     Arithmetic
11. 3x = 2𝑥 + 21 − 2𝑥   Transitivity: 10, 9
12. 2𝑥 + 21 − 2𝑥 = 21   Arithmetic
13. 3x = 21       Transitivity: 11, 12

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄   “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	  “Multiply Equations”



Recall: The Algebra Rule

• Algebra rule accepts equation if it follows by
– multiplying equations by a constant
– adding them
– and then doing some arithmetic

• Example:

1.  5𝒙	 = 15
2.  2𝒙	 = 6
3.  3𝒙	 = 9        Algebra: 1, 2

  x1 = y1 …  xn = yn
∴ x = y

Algebra

(Line 1) + –1 (Line 2) gives
5𝒙	 − 2𝒙	 = 15 − 6



Recall: The Algebra Rule

• Algebra rule accepts equation if it follows by
– multiplying equations by a constant
– adding them
– and then doing some arithmetic

• Note: the Algebra rule works on equations
– what about congruences?  (“≡𝒎” instead of "=")

  x1 = y1 …  xn = yn
∴ x = y

Algebra



Modular Arithmetic: Properties

These properties are sufficient to allow 
us to do algebra with congruences

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.



Properties of “≡𝒎” Used in Algebra

Example: given that 5𝑥 + 4	 ≡F 2𝑥 + 25,
    prove that 3𝑥 ≡F 21

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”



Properties of “≡𝒎” Used in Algebra

1. 5𝑥 + 4 ≡" 2𝑥 + 25    Given
2. −4 = −4	       Algebra
3. 5𝑥 ≡" 2𝑥 + 21     Add Congruences: 2, 1 ??

Line 2 says “=” not “≡+”

But “=” implies “≡+” !
(equality is a special case)

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”



Properties of “≡𝒎” Used in Algebra

1. 5𝑥 + 4 ≡" 2𝑥 + 25     Given
2. −4 = −4	        Algebra
3. −4 ≡" −4       To Modular: 2
4. 5𝑥 + 4 − 4 ≡" 2𝑥 + 25 − 4  Add Congruences: 3, 1

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.         “To Modular”



Properties of “≡𝒎” Used in Algebra

…
4. 5𝑥 + 4 − 4 ≡" 2𝑥 + 25 − 4  Add Congruences: 3, 1
5. 5𝑥 = 5𝑥 + 4 − 4	     Arithmetic / Algebra
6. 5𝑥 ≡" 5𝑥 + 4 − 4     To Modular: 5
7. 5𝑥 ≡" 2𝑥 + 25 − 4	     Transitivity: 6, 4

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.         “To Modular”



Properties of “≡𝒎” Used in Algebra

…
7. 5𝑥 ≡" 2𝑥 + 25 − 4     Transitivity: 6, 4
8. 2𝑥 + 25 − 4 = 2𝑥 + 21	   Arithmetic / Algebra
9. 2𝑥 + 25 − 4 ≡" 2𝑥 + 21   To Modular: 8
10. 5𝑥 ≡" 2𝑥 + 21      Transitivity: 7, 9

… continue by adding −2𝑥 to both sides …

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.         “To Modular”



Properties of “≡𝒎” Used in Algebra

Example: given that 5𝑥 + 4	 ≡F 2𝑥 + 25,
    prove that 3𝑥 ≡F 21

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”

These properties are sufficient to allow 
us to do algebra with congruences:

– move terms from one side to the other
– simplify either side

We don't want to do all that!



Properties of “≡𝒎” Used in Algebra

Example: given that 5𝑥 + 4	 ≡F 2𝑥 + 25,
    prove that 3𝑥 ≡F 21

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”

We don't want to do all that!

Careful: proved 5𝑥 + 4 = 2𝑥 + 25	 ⇒ 	3𝑥 = 21
                      not  3𝑥 = 21	 ⇒ 	5𝑥 + 4 = 2𝑥 + 25

the second is a “backward proof”



Another Property of “=” Used in Algebra

Example: given 2𝑦 + 3𝑥 = 25 and 𝑥 = 7𝑦,
    follows that 2𝑦 + 21𝑦 = 25.

Can “plug in” (a.k.a. substitute)
the known value of a variable



The Substitute Rule

• If x = y, then anything true of x is true of y

• Note that y can be any expression
– e.g., if x = 7y + 3, then we get P(7y + 3)

• Note that equations are also predicates
– can think of 2𝑦 + 3𝑥 = 25 as Equal(2𝑦 + 3𝑥, 25) 

better to use the nicer notation though…

P(x)    x = y      
∴ P(y)

Substitute



Another Property of “=” Used in Algebra

Example: given 2𝑦 + 3𝑥 = 25 and 𝑥 = 7𝑦,
    follows that 2𝑦 + 21𝑦 = 25.

Can “plug in” (a.k.a. substitute)
the known value of a variable

This is also true of congruences!

Example: given 2𝑦 + 3𝑥 ≡F 25 and 𝑥 ≡F 7𝑦,
    follows that 2𝑦 + 21𝑦 ≡F 25.

(But we don't have the tools to prove it yet….)



Substitution vs Other Properties

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄   “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	  “Multiply Equations”

Can prove "Add Equations" by Substitution…

𝑎 + 𝑐  = 𝑎 + 𝑐      Arithmetic
   = 𝑏 + 𝑐      Substitute 𝑎 = 𝑏
   = 𝑏 + 𝑑      Substitute 𝑐 = 𝑑

"Add Equations" follows by Transitivity.



Substitution vs Other Properties

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄   “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	  “Multiply Equations”

Can prove "Multiply Equations" by Substitution…

𝑎𝑐  = 𝑎𝑐      Arithmetic
  = 𝑏𝑐      Substitute 𝑎 = 𝑏
  = 𝑏𝑑      Substitute 𝑐 = 𝑑

"Multiply Equations" follows by Transitivity.



Substitution vs Other Properties

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄   “Transitivity”
If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂 + 𝒄 = 𝒃 + 𝒅 “Add Equations”

If 𝒂 = 𝒃 and 𝒄 = 𝒅, then 𝒂𝒄 = 𝒃𝒅	  “Multiply Equations”

• Substitution is an alternative for solving problems
– we will try this out on HW4
– will be heavily used in future homework



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

What numbers a and b did we prove this for?

We don't know anything about these numbers.
I.e., they were arbitrary.

That means our proof could be changed…



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎     Assumption
 …
 1.7. 𝒂 ≡𝒎 𝒃        Def of ≡
1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)	   Direct Proof
 2.1. 𝒂 ≡𝒎 𝒃	        Assumption
 …
 2.8. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	     Elim Ù
2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)    Direct Proof
3. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) ∧
    (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	    Intro Ù
4. (𝒂 ≡𝒎 𝒃) ↔ (𝒂	mod	𝒎 = 𝒃	mod	𝒎)    Equivalent



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Let 𝒂 and 𝒃 be arbitrary integers.
 1.1.1. 𝒂	mod	𝒎 = 𝒃	mod	𝒎      Assumption
 …
 1.1.7. 𝒂 ≡𝒎 𝒃          Def of ≡
   1.1. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃)	     Direct Proof
 1.2.1. 𝒂 ≡𝒎 𝒃	          Assumption
 …
 1.2.8. 𝒂	mod	𝒎 = 𝒃	mod	𝒎	      Elim Ù
   1.2. (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)     Direct Proof
   1.3. (𝒂	mod	𝒎 = 𝒃	mod	𝒎) → (𝒂 ≡𝒎 𝒃) ∧
       (𝒂 ≡𝒎 𝒃) → (𝒂	mod	𝒎 = 𝒃	mod	𝒎)	      Intro Ù
   1.4. (𝒂 ≡𝒎 𝒃) ↔ (𝒂	mod	𝒎 = 𝒃	mod	𝒎)     Equivalent
1. ∀𝒂	∀𝒃	( 𝒂 ≡𝒎 𝒃 ↔ 𝒂	mod	𝒎 = 𝒃	mod	𝒎 ) Intro ∀



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

This is stated as

(a ≡+ b) ↔ (a	mod	m	 = 	b	mod	m)

but it is really

∀a	∀b	 ((a ≡$ b) ↔ (a	mod	m	 = 	b	mod	m))

Rule: unquantified variables are implicitly ∀-quantified
(will see one exception later…)

This is a fact we can apply to any
integers 𝒂 and 𝒃 (and 𝒎 > 𝟎).



Recall: Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

But the proof stays as is!

Rule: structure of the proof follows
the structure of the claim



Recall: Properties of “≡𝒎” Used in Algebra

1. 5𝑥 + 4 ≡" 2𝑥 + 25     Given
2. −4 = −4	        Algebra
3. −4 ≡" −4       To Modular: 2
4. 5𝑥 + 4 − 4 ≡" 2𝑥 + 25 − 4  Add Congruences: 3, 1

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄      “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅  “Add Congruences”

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	  “Multiply Congruences”

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.         “To Modular”

Lines 3 & 4 are applying the theorems above!



Using Theorems

∀a	∀b	((a = b) → (a ≡$ b))

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.  “To Modular”

  ______________ 
∴ ∀x P(x)

where T is a well-known theorem
that says ∀x	P(x)

Cite T

• First way to use theorems in a proof:



Using Theorems

1. 5𝑥 + 4 ≡" 2𝑥 + 25     Given
2. −4 = −4	        Algebra
3. ∀𝑎	∀𝑏	( 𝑎 = 𝑏 → (𝑎 ≡! 𝑏)  Cite "To Modular"
4. ∀𝑏	( −4 = 𝑏 → (−4 ≡! 𝑏)  Elim ∀ : 3
5. −4 = −4 → (−4 ≡! −4)  Elim ∀ : 4
6. −4 ≡" −4       MP: 2, 5

∀a	∀b	((a = b) → (a ≡$ b))

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.  “To Modular”



Using Theorems

∀a	∀b	((a = b) → (a ≡$ b))

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.  “To Modular”

  _____  P(c)_____ 
∴ Q(c)

where T is a well-known theorem
that says ∀x	(P x → Q x )

Apply T

• Second way to use theorems in a proof…

most theorems look like this…
(some ∀s and then →)



Using Theorems

1. 5𝑥 + 4 ≡" 2𝑥 + 25     Given
2. −4 = −4	        Algebra
3. ∀𝑎	∀𝑏	( 𝑎 = 𝑏 → (𝑎 ≡! 𝑏)  Cite "To Modular"
4. ∀𝑏	( −4 = 𝑏 → (−4 ≡! 𝑏)  Elim ∀ : 3
5. −4 = −4 → (−4 ≡! −4)  Elim ∀ : 4
6. −4 ≡" −4       MP: 2, 5
3. −4 ≡" −4       Apply "To Modular": 2

∀a	∀b	((a = b) → (a ≡$ b))

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.  “To Modular”

applying the theorem with
a = −4 and b = −4


