CSE 311: Foundations of Computing

Topic 4: Number Theory

"l asked you a gquestion, buddy. ... What's the square root of
5,2487”



Formal Proofs

* In principle, formal proofs are the standard for
what it means to be “proven” in mathematics

— almost all math (and theory CS) done in Predicate Logic

* But they can be tedious and impractical
— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 =2 is
several hundred pages long
we allow ourselves to cite “Arithmetic”, “Algebra”, etc.

* Historically, rarely used for “real mathematics’...



English Proofs

e Vastly more common in CS and math

* High-level language that lets us work more quickly

— not necessary to spell out every detail

— reader checks that the writer is not skipping too much
the reader is the "compiler" for English proofs
they implement a community standard of correctness

* English proofs require understanding formal proofs
— English proof follows the structure of a formal proof

— we will learn English proofs by translating from formal
eventually, we will write English directly



English Proofs

e Vastly more common in CS and math

* High-level language that lets us work more quickly

— not necessary to spell out every detail

— reader checks that the writer is not skipping too much
the reader is the "compiler" for English proofs
they implement a community standard of correctness

 Examples of what can be skipped (more to come):

— Intro and Elim A
— explicitly stating existence claims (Elim 3 immediately)

— no rule names, e.g., Direct Proof



Even(x) :=3dy (x=2y)
Recall: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

Let a be an arbitrary integer

1.1.1 Even(a) Assumption

1.1.2 3Fy(a=2y) Definition of Even: 1.1.1

1.1.3 a=2b Elim3 (b): 1.1.2

1.1.4 a’=2(2b?) Algebra: 1.1.3

1.1.5 HFy(a?=2y) Intro3d:1.1.4

1.1.6 Even(a?) Definition of Even: 1.1.5
1.1 Even(a)—Even(a?) Direct proof

1. Vx (Even(x)—Even(x?)) Intro V



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Let a be an arbitrary integer. Let a be an arbitrary integer
Suppose a is even. 1.1.1 Even(a) Assumption
Then, by definition, a = 2b for 1.4.2 3y (a=2y) Definition
some integer b. 1.1.3 a=2b Elim 3
Squaring both sides, we get 1.1.4 a2=2(2b?) Algebra
aZ=4b? = 2(2b?).
2 _

So a’ is, by definition, even. 115 Jy(a R 2y) Intr,o 3

1.1.6 Even(a?) Definition

Since a was arbitrary, we have

2
shown that the square of every 1.1. Even(a)—Even(a“)
even number is even. 1. Vx (Even(x)—>Even(x?))

Direct Proof
Intro V



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some
integer b. Squaring both sides, we get a?2= 4b? = 2(2b?).
So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))




Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. Let x and y be arbitrary integers.

Since x and y were arbitrary, the 1.1. (Odd(x) A Odd(y)) — Even(x+y)
sum of any odd integers is even. 1. VxVy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers.

Suppose that both are odd.

SO X+Y is even.

Since x and y were arbitrary, the
sum of any odd integers is even.

Let x and y be arbitrary integers

1.1.1 Odd(x) A Odd(y) Assumption

1.1.9 Even(x+y)

1.1. (Odd(x) A Odd(y)) — Even(x+y) Direct..
1. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd S s (G = 2 T

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—>Even(x+y))

Let x and y be arbitrary integers. Let x and y be arbitrary integers
1.1.1 Odd(x) A Odd(y) Assumption
Suppose that both are odd. 1.1.2 Odd(x) Elim A
1.1.3 0Odd(y) Elim A
SO X+Yy is even. 1.1.9 Even(x+y)

1.1. (Odd(x) A Odd(y)) — Even(x+y) Direct..

Since x and y were arbitrary, the
1. VxVy ((0dd(x) A Odd(y)) = Even(x+y)) Intro V

sum of any odd integers is even.



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers. Let x and y be arbitrary integers.
1.1.1 Odd(x) A Odd(y) Assumption
Suppose that both are odd. 1.1.2 0Odd(x) Elim A
1.1.3 0Odd(y) Elim A
Then, we have x = 2a+1 for 1.1.4 3z (x=2z+1) Def of Odd: 1.1.2
some integer a and y = 2b+1 for 1.1.5 x=2a+l Elim 3
some integer b. 1.1.6 3z (y=2z+1) Def of Odd: 1.1.3
1.1.7 y=2b+l Elim 3

1.1.9 3z (x+y=22) Intro 3

so x+y is, by definition, even.
1.1.10 Even(x+y) Def of Even

Since x and y were arbitrary, the 1.1, (0dd(x) A Odd(y)) — Even(x+y) Direct..
sum of any odd integers is even. 1. Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



Even(x) =3y (x=2y)
English Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers. Let x and y be arbitrary integers.
1.1.1 Odd(x) A Odd(y) Assumption
Suppose that both are odd. 1.1.2 0Odd(x) Elim A
1.1.3 0Odd(y) Elim A
Then, we have x = 2a+1 for 1.1.4 3z (x=2z+1) Def of Odd: 1.1.2
some integer a and y = 2b+1 for 1.1.5 x=2a+l Elim 3
some integer b. 1.1.6 3z (y=2z+1) Def of Odd: 1.1.3
1.1.7 y=2b+l Elim 3
Their sumis x+y = ... = 2(a+b+1) 1.1.8 x+y = 2(a+b+1) Algebra
so x+y is, by definition, even. 1.19 3zix+y=27) Intro 3
1.1.10 Even(x+y) Def of Even

Since x and y were arbitrary, the 1.1, (0dd(x) A Odd(y)) — Even(x+y) Direct..
sum of any odd integers is even. 1. Vx Vy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Domain of Discourse

Even and Odd  |Even(x)=3y (x = 2y)

Odd(x) =dJy (X — Zy + 1) Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x andy be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for
some integer a and y = 2b+1 for some integer b. Their
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so
x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
Integers is even. B




Formal-to-English Translation

* Document posted on website

e Use these on HW4

— no need to match the exact phrasing
— English proofs are not formal proofs



Number Theory

* Direct relevance to computing

— everything in a computer is a number
colors on the screen are encoded as numbers

* Many significant applications
— Cryptography & Security
— Data Structures
— Distributed Systems



Recall: Elementary School Division

For a, b with b > 0, we can divide b into a. Suppose that
a —
b _ q

The number ¢ is called the quotient.

This equation involve fractions. We want to stick to integers!
Multiplying both sides by b, this becomes

a=qgb

When there exists some such g, we write "b | a".



Domain of Discourse

Divisibility  Integers

Definition: “b divides a”

For a, b (usually with b # 0):

b|a = 3q (a = qb)
N y

Check Your Understanding. Which of the following are true?

51 25 | 5 5|0 3|2

1|5 5| 25 0|5 2|3




Domain of Discourse

Divisibility  Integers

Definition: “b divides a”

For a, b (usually with b # 0):

b|a = 3q (a = gb)
_ Y,

Check Your Understanding. Which of the following are true?

51 25| 5 3|2

5] 1iff 1 =5k 25 | 5iff 5 =25k 5|]0iff0=5k 3]2iff2=3k

@D T o5 2

1]|5iff5=1k 5| 25iff 25 = 5k O]5iff5=0k 2| 3iff3=2k




Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If b } a, then we end up with a remainder r with 0 < r < b.
Now,

a
instead of 5 =q we have

Multiplying both sides by b gives us a=gqgb+r



Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If b | a, then we have a = gb for some q.
If b t a, then we have a = gb + r for some g, with 0 <r <b.

In general, we have a = gb + r for some g, with 0 < r < b,
where r = 0 iff b | a.



Division Theorem

Domain of Discourse

Integers

Division Theorem

Fora,b withb > 0

9 such thata = gb + r.

there exist unique integers g, rwith0 <r <b»b

To put it another way, if we divide b into a, we get a

unique quotient | g = a div b
and non-negative remainder [r=amod b

a=(adivb) b+ (amodb)

vavb ((b>0) - (a = (adivb)b + (amod b)))




Modular Arithmetic



Modular Arithmetic

 Arithmetic over a finite domain

 Almost all computation is over a finite domain



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5



I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)s

----JjGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JGRASP: operation complete.



Ordinary arithmetic

3+5=8

+5

3-2-101 2 3 456 7 8




Arithmetic on a Clock

3+5=8

8=7-1+1
15=7-2+1
22=7-3+1

Ifa =7q+r,thenr (=amodb)is
where you stop after taking a steps on the clock



Arithmetic, mod 7

(@a+ b)mod 7
(@ x b) mod 7

0 |0 (O

0

O J0 [0 |O




Domain of Discourse

Modular Arithmetic __Integers

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0
a=,b = m|(a —Db)

New notion of “sameness” that will help us
understand modular arithmetic




Domain of Discourse

Modular Arithmetic __Integers

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0

a=,b = m|(a —Db)
- J

The standard math notation is

a = b (mod m)

A chain of equivalences is written

a=b=c=d(modm)

Many students find this confusing,
so we will use =,,, instead.




Domain of Discourse

Modular Arithmetic ___Integers

\

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0

a=,b = m|(a —Db)
- J

Check Your Understanding. What do each of these mean?
When are they true?

1219
This statement is true. 19 - (-1) = 20 which is divisible by 5

This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

y =72
This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Proof Plan:

1. (amodm=bmodm) - (a=,,b) ??
2.(a=,, b)> (amodm=bmodm) ??
3.(amodm = bmodm) - (a =,, b) A

(a=,,b) > (amodm=bmodm) Introa:1,2
4. (a =,, b) © (amod m = bmodm) Equivalent: 3



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

1. (amod m = b mod m) - (a =,,, b) ??



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

1.1.amodm = bmod m Assumption

1?2a=,b ??
1. (amod m = b mod m) - (a =,,, b) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

1.1.amodm = bmod m Assumption
1?2mlia—>b ”
1.2a=,Db Def of =

1. (amod m = b mod m) - (a =,,, b) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

1.1.amodm = bmod m Assumption
1.?73q (a—b =qm) ??
1?72mlia—>b Def of |
1.2a=,Db Def of =

1. (amod m = b mod m) - (a =,,, b) Direct Proof




Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if a mod m = b mod m.

1.1. amodm = bmodm
1.2. a = (adivm) m + (a mod m)
1.3. b = (b divm) m + (b mod m)

1.?73q (a—b =qm)
1?2mla—>b
1?2a=,,b

1. (amod m = b mod m) - (a =,,, b)

Assumption
Apply Division
Apply Division

»

Def of |

Def of =
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if a mod m = b mod m.

1.1. amod m = bmodm
1.2. a = (adivm) m + (a mod m)
1.3. b = (b divm) m + (b mod m)
1.4.a—b = ((adivm) — (bdivm)) m
1.5.3q9g (a— b = qm)
1.6.m|a—>b
1.7.a=,b
1. (amod m = bmod m) - (a =, b)

Assumption
Apply Division
Apply Division
Algebra

Intro 3

Def of |

Def of =
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

Therefore, a =,,, b.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the Division Theorem, we can write
a = (a divm) m + (a mod m) and
b = (b divm) m + (b mod m).

Therefore, a =,,, b.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the Division Theorem, we can write

a = (a divm) m + (a mod m) and

b = (b divm) m + (b mod m).

Subtracting these we can see that

a—b = ((a divm) — (b div m))m +
((a mod m) — (b mod m))

= ((a divm) — (b div m)) m

since (a mod m) — (b mod m) = 0.

Therefore, a =,,, b.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the Division Theorem, we can write
a = (a divm) m + (a mod m) and
b = (b divm) m + (b mod m).

Subtracting these we can see that
a—b = ((a divm) — (b div m))m +
((a mod m) — (b mod m))
= ((a divm) — (b div m)) m
since (a mod m) — (b mod m) = 0.

Therefore, by definition of divides, m | (a — b)
and so a =,,, b, by definition of congruent.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

2. (a=,,, b) > (amod m = b mod m) ??



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

21.a=,, b Assumption

2.2amod m = bmodm ”
2.(a=,,b) > (amod m = b mod m) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

21.a=,, b Assumption
22.m|la—>b Def of |
2.?2amod m = bmodm 27?

2.(a=,,b) > (amod m = b mod m) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

21.a=,, b Assumption
22.m|a—>b Def of =
2.3.3q (a— b = gqm) Def of |
2.?2amod m = b mod m ??

2.(a=,,b) > (amod m = b mod m) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

21.a=,, b Assumption
22.m|la—>b Def of =
2.3.3q (a— b = gqm) Def of |
24.a— b =km Elim 3
2.?2amod m = b mod m 27?

2.(a=,,b) > (amod m = b mod m) Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if a mod m = b mod m.

21.a=,,b

22.m|la—>b

2.3.3dq (a—b =qm)
24.a—b=km

2.5.a = (adivm) m + (a mod m)

2.?2amod m = bmod m
2. (a=,,, b) > (amod m = b mod m)

Assumption
Def of =
Def of |
Elim 3

Apply Division

7?
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if a mod m = b mod m.

21.a=,,b

22.m|la—>b

2.3.3dq (a—b =qm)

24.a—b=km

2.5.a = (adivm) m + (a mod m)
26.b = (adivm — k) m+ (amod m)

2.?2amod m = bmod m
2. (a=,,, b) > (amod m = b mod m)

Assumption
Def of =

Def of |

Elim 3

Apply Division
Algebra

7?
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if a mod m = b mod m.

21.a=,,b
22.m|la—>b
2.3.3dq (a—b =qm)
24.a—b=km
2.5.a = (adivm) m + (a mod m)
26.b = (adivm — k) m+ (amod m)
2.7.bdivm = (adivm — k) A
b mod m = amod m

2.?2amod m = bmod m
2. (a=,,, b) > (amod m = b mod m)

Assumption

Def of =

Def of |

Elim 3

Apply Division
Algebra

Apply DivUnique

7?
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.

Then, a =, b if and only if a mod m = b mod m.

21.a=,,b
22.m|la—>b
2.3.3dq (a—b =qm)
24.a—b=km
2.5.a = (adivm) m + (a mod m)
26.b = (adivm — k) m+ (amod m)
2.7.bdivm = (adivm — k) A
b mod m = amod m
2.8.amod m = b mod m
2. (a=,,, b) > (amod m = b mod m)

Assumption

Def of =

Def of |

Elim 3

Apply Division
Algebra

Apply DivUnique

Elim A
Direct Proof



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of

divides. Equivalently, a = b + km.

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of
divides. Equivalently, a = b + km.

By the Division Theorem, we have a = (a divm) m +
(a mod m), with 0 < (a mod m) < m.

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of
divides. Equivalently, a = b + km.

By the Division Theorem, we have a = (a divm) m +
(a mod m), with 0 < (a mod m) < m.

Combining these, we have (a divm)m + (a mod m) =
a = b + km. Solving for b gives b = (a divm) m +
(amodm) — km = ((a divm) — k)m + (a mod m).

Therefore, a mod m = b mod m.



Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by the definition of congruence.
So, a - b = km for some integer k by the definition of
divides. Equivalently, a = b + km.

By the Division Theorem, we have a = (a divm) m +
(a mod m), with 0 < (a mod m) < m.

Combining these, we have (a divm)m + (a mod m) =
a = b + km. Solving for b gives b = (a divm) m +
(amodm) — km = ((a divm) — k)m + (a mod m).

By the uniqueness property in the Division Theorem, we
must have b mod m = a mod m (and, although we
don't need it, also b divm = a divim — k).



The mod m function vs the =.,, predicate

— The mod m function maps any integer a to a
remainder a mod m € {0,1,..,m — 1}.

Tells you where it lands on the clock.

— Imagine grouping together all integers that

have the same value of the mod m function.
They must differ by a multiple of m (gym +7r vs g;m + 1)

— The =,,, predicate compares integers a, b
to see if if they differ by a multiple of m.

If they differ by a multiple of m, then walking from one to
the other leaves you at the same spot on the clock.



Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.
- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=bandc =d,then ac = bd.

— since ¢ = c is true, we can “X ¢” to both sides

These facts allow us to use
algebra to solve problems




The Algebra Rule

Algebra Xl — Vl Xﬂ =V
o X = y

* Algebra rule applies these properties:
— adding equations
— multiplying equations by a constant Note: no division

(since domain is integers)

* But also uses knowledge of
— arithmetic with constants
— commutativity of multiplication (e.g., yx = xy)
— distributivity (e.g., a(b+c) = ab + bc)



Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.

- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=bandc =d,then ac = bd.

— since ¢ = c is true, we can “X ¢” to both sides

Same facts apply to “<”

with non-negative numbers

What about “=,,,”?



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.




Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

1. (a=,,bAb=,c) - (a=, ) ??



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption

22.a=,C ??
1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
22.a=,, b ElimA: 2.1
23.b =, c ElimA: 2.1
22.a=,C ??

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
22.a=,, b ElimA: 2.1
23.b =, c ElimA: 2.1
24.m|a—>b Def of =: 2.2
25.m|b—c Def of =: 2.3
22.a=,C ??

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
22.a=,, b ElimA: 2.1
23.b =, c ElimA: 2.1
24.m|a—-b>b Def of =: 2.2
25.m|b—c Def of =: 2.3
2.6.3q (a— b =qgm) Def of |: 2.4
2.7.3q (b —c = qm) Def of |: 2.5
22.a=,C ??

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
22.a=,, b ElimA: 2.1
23.b =, c ElimA: 2.1
24.m|a—-b>b Def of =: 2.2
25.m|b—c Def of =: 2.3
2.6.3q (a— b =qgm) Def of |: 2.4
2.7.3q (b —c = qm) Def of |: 2.5
28.a—b=km Elim 3: 2.6
29.b—c=jjm Elim3: 2.7
22.a=,C ??

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
28.a—b=km Elim 3: 2.6
29.b—c=jjm Elim3: 2.7
22.a=,C ??

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
28.a—b=km Elim 3: 2.6
29.b—c=jjm Elim3: 2.7
2?2.m|a—->b ??
22.a=,C Def of =

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
28.a—b=km Elim 3: 2.6
29.b—c=jjm Elim3: 2.7
2?.3qg(a—c=qm) ??
2?2.mla—-c Def of |
22.a=,C Def of =

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

21.a=,,bAb=, C Assumption
28.a—b=km Elim 3: 2.6
29.b—c=jjm Elim3: 2.7
210.a—c=(k+jm Algebra
2.11.3q (a — c = qm) Intro 3: 2.10
212.m|la—c Def of |: 2.11
213.a =, c Def of =: 2.12

1. (a=,,bAb=,c) - (a=, C) Direct Proof



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

Suppose thata =,,, band b =, c.

Therefore, a =, c.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

Suppose thata =,,, band b =, c.

By the definition of congruence, we know that

m | (a-b)andm | (b -c). By the definition of
divides, we know thata-b = kmand b -¢c = jm
for some integers k and J.

Therefore, a =, c.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

Suppose thata =,,, band b =, c.

By the definition of congruence, we know that

m | (a-b)andm | (b -c). By the definition of
divides, we know thata-b = kmand b -¢c = jm
for some integers k and J.

Adding these, givesa -c = km + jm = (k + j)m.

Therefore, a =, c.



Modular Arithmetic: Basic Property

Let a, b, c and m be integers withm > 0.
Ifa=,, band b =, c, then a =,, c.

Suppose thata =,,, band b =, c.

By the definition of congruence, we know that

m | (a-b)andm | (b -c). By the definition of
divides, we know thata-b = kmand b -¢c = jm
for some integers k and J.

Adding these, givesa -c = km + jm = (k + j)m.

Therefore, by the definition of divides, we have
shown that m | (a - ¢), and then, a =,,, ¢ by the
definition of congruence.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.




Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

1. (a=, bAc=,d)-»>(a+c=,b+d) ??



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption

2?2.a+c=, b+d ??
1. (a=,bArc=,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c=,,d ElimA: 2.1
2?2.a+c=, b+d ??

1. (a=,bArc=,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c=,,d ElimA: 2.1
24.m|a—>b Def of =: 2.2
25.m|c—d Def of =: 2.3
2?2.a+c=, b+d ??

1. (a=,bArc=,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c=,,d ElimA: 2.1
24.m|a—-b>b Def of =: 2.2
25.m|c—d Def of =: 2.3
2.6.3q (a— b =qgm) Def of |: 2.4
2.7.3q (c —d = gqm) Def of |: 2.5
2?2.a+c=, b+d ??

1. (a=,bArc=,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c=,,d ElimA: 2.1
24.m|a—-b>b Def of =: 2.2
25.m|c—d Def of =: 2.3
2.6.3q (a— b =qgm) Def of |: 2.4
2.7.3q (c —d = gqm) Def of |: 2.5
28.a—b=km Elim3: 2.6
29.c—d=jm Elim3:2.7
2?2.a+c=, b+d ??

1. (a=,bArc=,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption
28.a—b=km Elim3: 2.6
29.c—d=jm Elim3:2.7
22.m|(a+c)—(b+d) ?2?
2?2.a+c=, b+d Def of =

1. (a=,bArc=,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption
28.a—b=km Elim3: 2.6
29.c—d=jm Elim3:2.7
2?2.3q ((a+c)—(b+d) =qm) ??
22.m|(a+c)—(b+d) Def of |
2?2.a+c=, b+d Def of =

1. (a=,bArc=,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

21.a=,bANc=,d Assumption
28.a—b=km Elim3: 2.6
29.c—d=jm Elim3:2.7
210.(a+c)—(b+d)=(k+jm Algebra
211.3q ((a+c) — (b+d) = gm) Intro 3: 2.10
212.m|(a+c)—(b+d) Def of |: 2.11
213.a+c=,b+d Def of =:2.12

1. (a=,bArc=,,d) - (a+c=, b+d) DirectProof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.




Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose thata =,,, band c =,,, d.

Therefore, a + ¢ =,,, b + d.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose thata =,,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = kmandc-d = jm
for some integers k and J.

Therefore,a +c¢c =,,, b + d.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose thata =,,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = kmandc-d = jm
for some integers k and J.

Adding these, gives (a +¢) — (b + d) =
(a—b)+(c—d)=km+jm=(k+j)m.

Therefore,a +c¢c =,,, b + d.



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose thata =,,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = kmandc-d = jm
for some integers k and J.

Adding these, gives (a +¢c) — (b + d) =
(a—b)+(c—d)=km+jm=(k+j)m.
Therefore, by the definition of divides, we have

shownm | (a + ¢) — (b + d), and then, we have
a + ¢ =,, b + d by the definition of congruence.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.




Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

1. (a=,bAc=,,d) - (ac =, bd) ??



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption

2.?.ac =, bd ??
1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c =, d ElimA: 2.1
2.?.ac =, bd ??

1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c =, d ElimA: 2.1
24.m|a—>b Def of =: 2.2
25.m|c—d Def of =: 2.3
2.?.ac =, bd ??

1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c=,,d ElimA: 2.1
24.m|a—-b>b Def of =: 2.2
25.m|c—d Def of =: 2.3
2.6.3q (a— b =qgm) Def of |: 2.4
2.7.3q (c —d = gqm) Def of |: 2.5
2.?.ac =, bd ??

1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption
22.a=,, b ElimA: 2.1
23.c=,,d ElimA: 2.1
24.m|a—-b>b Def of =: 2.2
25.m|c—d Def of =: 2.3
2.6.3q (a— b =qgm) Def of |: 2.4
2.7.3q (c —d = gqm) Def of |: 2.5
28.a—b=jm Elim3: 2.6
29.c—d=km Elim3:2.7
2.?.ac =, bd ??

1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Addition Property

then ac =,,, bd.

Let m be a positive integer. Ifa=,, band c =,, d,

21.a=,bANc=,d

28.a—b=jm
29.c—d=km

2.?.ac =, bd

1. (a=,,brc=,d) - (ac =

Assumption

Elim 3: 2.6
Elim3: 2.7

29

n bd) Direct Proof




Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption
28.a—b=jm Elim3: 2.6
29.c—d=km Elim3:2.7
2?2.m| ac— bd ??

2.?.ac =, bd Def of =

1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption
28.a—b=jm Elim3: 2.6
29.c—d=km Elim3:2.7
2.?.3q (ac — bd = qm) ??

2?2.m| ac—bd Def of |
2.?.ac =, bd Def of =

1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

21.a=,bANc=,d Assumption
28.a—b=jm Elim3: 2.6
29.c—d=km Elim3:2.7
2.10.ac — bd = (bk + dj + jkm)m Algebra
2.11.3q (ac — bd = gqm) Intro 3: 2.10
2.12.m | ac — bd Def of |: 2.11
2.13.ac =, bd Def of =:2.12

1. (a=,,bAc=,,,d) - (ac =, bd) Direct Proof



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose thata =,,, band c =,,, d.

Therefore, ac =,,, bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose thata =,,, band c =,,, d.

By the definition of congruence, we know that
m|(a-b)andm | (c-d).

Therefore, ac =,,, bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose thata =,,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = jmandc-d = km
for some integers j and k.

Therefore, ac =,,, bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose thata =,,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = jmandc-d = km
for some integers j and k.

Equivalently, a = b + jmand ¢ = d + km.
Multiplying these gives ac = (b + jm)(d + km) =
bd + bkm + djm + jkm = bd + (bk + dj + jk)m,
so ac — bd = (bk + dj + jk)m.

... Therefore, ac =,,, bd.



Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose thata =,,, band c =,,, d.

By the definition of congruence, we know that

m | (a-b)andm| (c -d). By the definition of
divides, we know thata-b = jmandc-d = km
for some integers j and k.

Equivalently, a = b + jmand ¢ = d + km.
Multiplying these gives ac = (b + jm)(d + km) =
bd + bkm + djm + jkm = bd + (bk + dj + jk)m,
so ac — bd = (bk + dj + jk)m.

Therefore, m | ac — bd by the definition of divides,
SO ac =,, bd by the definition of congruence.



Modular Arithmetic: Properties

Corollary:

Corollary:

Ifa=,, band b =, c, then a =,, c.

fa=,bandc=,,d,thena+c=,, b +d.

Ifa=,,b,thena+c=,, b+c.

Ifa=,, bandc =, d, then ac =,,, bd.

If a =,,, b, then ac =,,, bc.




Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.
- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=bandc =d,then ac = bd.

— since ¢ = c is true, we can “X ¢” to both sides

These facts allow us to use
algebra to solve problems




The Arithmetic Rule

Arithmetic we won't use this...
e X = y

if this follows by standard properties

* Equation must be true with no outside information

* Use only these properties of arithmetic operators:
— commutativity (x+y = y+x and yx = xy)
— associativity (x+(y+z) = (x+y)+z and x(yz) = (xy)z)
— distributivity (a(b+c) = ab + bc)
— identity (x4+0 =x and 1-x = x)
— arithmetic with constants (7 - 5 = 2)



The Arithmetic Rule

Arithmetic we won't use this...
e X = y

if this follows by standard properties

 Examples:

1. 7=7 Arithmetic
2. 7—4 =3 Arithmetic
3. 5x—3x =2x Arithmetic



Recall: Properties of “=" Used in Algebra

Ifa=band b =c,thena =c “Transitivity”

fa=bandc=d,thena+c=b+d “Add Equations”

If a =b and c = d, then ac = bd “Multiply Equations”

We need these facts to do algebra...

Example: given 5x +4 = 2x + 25,
prove that 3x = 21.



Recall: Properties of “=" Used in Algebra

Ifa=band b =c,thena =c “Transitivity”

fa=bandc=d,thena+c=b+d “Add Equations”

If a =b and ¢ = d, then ac = bd “Multiply Equations”
1.5x+4 =2x+ 25 Given
2. —4 = —4 Arithmetic
3.5x+4—-4=2x+25—-4 Add Equations: 1, 2
4.5x=5x+4—-4 Arithmetic
5.5x =2x+25—-4 Transitivity: 4, 3
6.2x+25—-—4=2x+21 Arithmetic

7.5x = 2x + 21 Transitivity: 5, 6



Recall: Properties of “=" Used in Algebra

Ifa=band b =c,thena =c “Transitivity”

fa=bandc=d,thena+c=b+d “Add Equations”

If a =b and ¢ = d, then ac = bd “Multiply Equations”
7.5x = 2x + 21 Transitivity: 5, 6
8. —2x = —2x Arithmetic
O.5x —2x =2x+ 21— 2x Add Equations: 7, 8
10. 3x = 5x — 2x Arithmetic
11.3x =2x + 21 — 2x Transitivity: 10, 9
12. 2x + 21 —2x = 21 Arithmetic

13.3x =21 Transitivity: 11, 12



Recall: The Algebra Rule

Algebra Xl - Vl Xﬂ - Vﬂ—
o X = y

e Algebra rule accepts equation if it follows by
— multiplying equations by a constant
— adding them
— and then doing some arithmetic

 Example:
1. 5x = 15 (Line 1) + -1 (Line 2) gives
2. 2x =6 5x —2x =15-6

3. 3x =9 Algebra: 1, 2



Recall: The Algebra Rule

Algebra Xl - Vl Xﬂ - Vﬂ—
o X = y

e Algebra rule accepts equation if it follows by
— multiplying equations by a constant
— adding them
— and then doing some arithmetic

* Note: the Algebra rule works on equations
— what about congruences? (“=,,,” instead of "=")



Modular Arithmetic: Properties

Ifa=,, band b =, c, then a =,, c.

Ifa=,,b,thena+c=,, b+c.

If a =,,, b, then ac =,,, bc.

These properties are sufficient to allow
us to do algebra with congruences



Properties of “=,,” Used in Algebra

fa=,,band b =,, c,thena =, c “Transitivity

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

Example: giventhat 5x +4 =, 2x + 25,
prove that 3x =, 21




Properties of “=,,” Used in Algebra

Ifa=,,band b =, c,thena =, c “Transitivity”

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

1.5x+4=, 2x+ 25 Given
2. —4 = —4 Algebra
3.5x =, 2x + 21 Add Congruences: 2, 1 ??

o__»n ((— ’”

Line 2 says “=" not "=,

((— ” l

But “=” implies “=," !
(equality is a special case)



Properties of “=,,” Used in Algebra

Ifa=,,band b =, c,thena =, c “Transitivity”

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

If a = b, then a =,,, b. “To Modular”
1.5x +4 =, 2x + 25 Given

2. —4 =—4 Algebra

3.4 =, —4 To Modular: 2
4.5x+4—-4=,2x+25—-4 Add Congruences: 3, 1



Properties of “=,,” Used in Algebra

fa=,,band b =,, c,thena =, c “Transitivity

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

If a = b, then a =,,, b. “To Modular”

4.5x+4—-4=,2x+25—-4 Add Congruences: 3, 1
5.5x =5x+4—-4 Arithmetic / Algebra
6.5x =,5x+4—-4 To Modular: 5

7.5x =, 2x + 25 -4 Transitivity: 6, 4



Properties of “=,,” Used in Algebra

Ifa=,,band b =, c,thena =, c “Transitivity”

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

If a = b, then a =,,, b. “To Modular”
7.5x =, 2x + 25 -4 Transitivity: 6, 4
8.2x+25—-4=2x+21 Arithmetic / Algebra
9.2x+25—-4 =, 2x + 21 To Modular: 8

10.5x =, 2x + 21 Transitivity: 7, 9

... continue by adding —2x to both sides ...




Properties of “=,,” Used in Algebra

Ifa=,,band b =, c,thena =, c “Transitivity”

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

We don't want to do all that!

Example: giventhat5x +4 =, 2x + 25,
prove that 3x =, 21

These properties are sufficient to allow
us to do algebra with congruences:

— move terms from one side to the other
— simplify either side




Properties of “=,,” Used in Algebra

Ifa=,,band b =, c,thena =, c “Transitivity”

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

We don't want to do all that!

Example: giventhat5x +4 =, 2x + 25,
prove that 3x =, 21

Careful: proved 5x +4 =2x + 25 = 3x =21
not 3x =21 = 5x+4=2x+25
the second is a “backward proof”




Another Property of “=" Used in Algebra

Can “plug in” (a.k.a. substitute)
the known value of a variable

Example: given 2y + 3x =25 and x = 7y,
follows that 2y + 21y = 25.



The Substitute Rule

P(x) x=v
s P(y)

Substitute

* If x =y, then anything true of x is true of y

* Note that y can be any expression
— e.g., if x=7y + 3, then we get P(7y + 3)

* Note that equations are also predicates
— can think of 2y + 3x = 25 as Equal(2y + 3x, 25)

better to use the nicer notation though...



Another Property of “=" Used in Algebra

Can “plug in” (a.k.a. substitute)
the known value of a variable

Example: given 2y + 3x =25 and x = 7y,
follows that 2y + 21y = 25.

This is also true of congruences!
(But we don't have the tools to prove it yet....)

Example: given 2y + 3x =, 25and x =, 7y,
follows that 2y + 21y =, 25.



Substitution vs Other Properties

Ifa=band b =c,thena =c “Transitivity”

fa=bandc=d,thena+c=b+d “Add Equations”

If a =b and c = d, then ac = bd “Multiply Equations”

Can prove "Add Equations" by Substitution...

a+c =a+c Arithmetic
=b+c Substitute a = b
=b+d Substitute c = d

"Add Equations" follows by Transitivity.



Substitution vs Other Properties

Ifa=band b =c,thena=c “Transitivity”

fa=bandc=d,thena+c=b+d “Add Equations”

If a =b and c = d, then ac = bd “Multiply Equations”

Can prove "Multiply Equations" by Substitution...

ac = ac Arithmetic
= bc Substitute a = b
= bd Substitute c = d

"Multiply Equations" follows by Transitivity.



Substitution vs Other Properties

Ifa=band b =c,thena =c “Transitivity”

fa=bandc=d,thena+c=b+d “Add Equations”

If a =b and c = d, then ac = bd “Multiply Equations”

e Substitution is an alternative for solving problems
— we will try this out on HW4
— will be heavily used in future homework



Recall: Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, bifand only if amod m = b mod m.

What numbers a and b did we prove this for?

We don't know anything about these numbers.
l.e., they were arbitrary.

That means our proof could be changed...



Recall: Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

1.1.amodm =bmodm Assumption
1.7.a=,b Def of =
1. (amodm=bmodm) - (a =, b) Direct Proof
21.a=,b Assumption
2.8.amod m = bmod m Elim A
2. (a =, b) > (amod m = b mod m) Direct Proof
3.(amodm = bmodm) - (a =, b) A
(a =,, b) > (amod m = b mod m) Intro A

4. (a =,, b) © (amod m = b mod m) Equivalent



Recall: Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Let a and b be arbitrary integers.

1.1.1.amod m = bmod m Assumption
11.7.a=,Db Def of =
1.1. (amod m = bmod m) - (a =, b) Direct Proof
121.a=,b Assumption
1.2.8. amod m = b mod m Elim A
1.2. (a=,, b) > (amod m = bmod m) Direct Proof
1.3. (amodm = bmodm) - (a =,,, b) A
(a =,, b) > (amod m = b mod m) Intro A
1.4. (a =,, b) © (amod m = b mod m) Equivalent

1.VaVvb ((a=,, b) © (amodm = bmodm)) IntroV



Recall: Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, bifand only if amod m = b mod m.

This is stated as
(a=p b) @ (amodm = bmodm)

but it is really
VaVvb ((a=, b) © (amodm = bmodm))

This is a fact we can apply to any
integers a and b (and m > 0).

Rule: unquantified variables are implicitly V-quantified

(will see one exception later...)




Recall: Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, bifand only if amod m = b mod m.

But the proof stays as is!

Rule: structure of the proof follows
the structure of the claim




Recall: Properties of “=,,,” Used in Algebra

Ifa=,,band b =, c,thena =, c “Transitivity”

fa=,,bandc=,,,d, thena+c=,, b+d “Add Congruences”

Ifa=, band c=,,d,thenac =, bd “Multiply Congruences”

If a = b, then a =,,, b. “To Modular”
1.5x +4 =, 2x + 25 Given

2. —4 =—4 Algebra

3.4 =, —4 To Modular: 2
4.5x+4—-4=,2x+25—-4 Add Congruences: 3, 1

Lines 3 & 4 are applying the theorems above!




Using Theorems

Ifa=b,thena=,b. “To Modular”

VaVvb ((a=Db) - (a=, b))

* First way to use theorems in a proof:

Cite T

 Vx P(x)

where T is a well-known theorem
that says Vx P(x)



Using Theorems

Ifa=b,thena=,b. “To Modular”

VaVvb ((a=Db) - (a=, b))

Sx+4=,2x+ 25 Given

—4 = —4 Algebra

VYaVvb ((a=b) - (a =, b) Cite "To Modular"
Vb ((—4=b) » (-4 =,, b) ElimVv:3
(—4=—-4) > (4=, —4) ElimVv: 4

=4 =, —4 MP: 2,5

o0k wbdbPR



Using Theorems

Ifa=b,thena=,b. “To Modular”

VaVvb ((a=Db) - (a=, b))

most theorems look like this...
(some Vs and then —)

e Second way to use theorems in a proof...

P(c)
~ Q(c)

where T is a well-known theorem
that says Vx (P(x) = Q(x))

Apply T



Using Theorems

Ifa=b,thena=,b. “To Modular”

VaVvb ((a=Db) - (a=, b))

1.5x+4 =, 2x+ 25 Given
2. —4 =—4 Algebra
3.4 =, —4 Apply "To Modular": 2

applying the theorem with
a=—-4andb=—4



