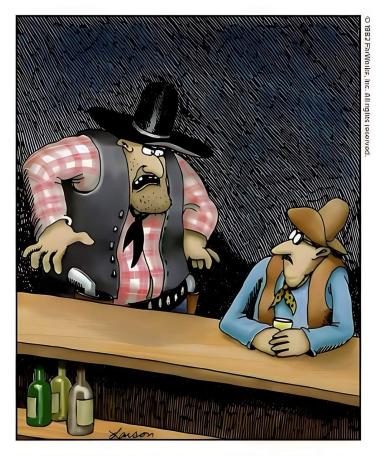
CSE 311: Foundations of Computing

Topic 4: Number Theory



"I *asked* you a question, buddy. ... What's the square root of 5,248?"

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they can be tedious and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead's formal proof that 1+1 = 2 is several hundred pages long we allow ourselves to cite "Arithmetic", "Algebra", etc.
- *Historically*, rarely used for "real mathematics"...

- Vastly more common in CS and math
- High-level language that lets us work more quickly
 - not necessary to spell out every detail
 - <u>reader</u> checks that the writer is not skipping too much the reader is the "compiler" for English proofs they implement a community standard of correctness
- English proofs require understanding formal proofs
 - English proof follows the structure of a formal proof
 - we will learn English proofs by translating from formal eventually, we will write English directly

- Vastly more common in CS and math
- High-level language that lets us work more quickly
 - not necessary to spell out every detail
 - <u>reader</u> checks that the writer is not skipping too much the reader is the "compiler" for English proofs they implement a community standard of correctness
- Examples of what can be skipped (more to come):
 - Intro and Elim \wedge
 - explicitly stating existence claims (Elim ∃ immediately)
 - no rule names, e.g., Direct Proof

Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Let a be an arbitrary integer

1.1.1 Even(a) Assumption **1.1.2** $\exists y (a = 2y)$ Definition of Even: 1.1.1 1.1.3 a = 2bElim ∃ (b): 1.1.2 **1.1.4** $a^2 = 2(2b^2)$ Algebra: 1.1.3 **1.1.5** $\exists y (a^2 = 2y)$ Intro 3: 1.1.4 **1.1.6** Even(a²) Definition of Even: 1.1.5 **1.1** Even(a) \rightarrow Even(a²) Direct proof **1.** $\forall x (Even(x) \rightarrow Even(x^2))$ Intro ∀

English Proof: Even and	Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers					
Prove "The square of every even integer is even."						
Let a be an arbitrary integer.	et <mark>a</mark> be an arb	itrary integer				
Suppose a is even.	1.1.1 Even(a)	Assumption			
Then, by definition, a = 2b for some integer b.	1.1.2 ∃y (a = 1.1.3 a = 2b	: 2y)	Definition Elim ∃			
Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$.	1.1.4 a ² = 2(2	2 b ²)	Algebra			
So a ² is, by definition, even.	1.1.5 ∃y (a ² 1.1.6 Even(a		Intro ∃ Definition			
Shown that the square of every	.1. Even(a)→l ∀x (Even(x)→		Direct Proof tro ∀			

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary integer.

Suppose **a** is even. Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

Predicate Definitions Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Let **x** and **y** be arbitrary integers.

Since x and y were arbitrary, the sum of any odd integers is even.

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ **1.** $\forall x \forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(x+y))$ Intro \forall

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

Let x and y be arbitrary integers 1.1.1 $Odd(x) \land Odd(y)$ Assumption

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

1.1.9 Even(x+y)

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ Direct..

1. $\forall x \forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(x+y))$ Intro \forall

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

Let **x** and **y** be arbitrary integers

1.1.1	$Odd(\mathbf{x}) \land Odd(\mathbf{y})$	Assumption
1.1.2	Odd(x)	Elim ∧
1.1.3	Odd(y)	Elim ∧

1.1.9 Even(x+y)

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ Direct..

1. $\forall x \forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(x+y))$ Intro \forall

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.	Let x and y be arbitrary integers.		
Suppose that both are odd.	1.1.1 Odd(x) ∧ Odd(y) 1.1.2 Odd(x) 1.1.3 Odd(y)	Assumption Elim ∧ Elim ∧	
Then, we have x = 2a+1 for some integer a and y = 2b+1 for	1.1.4 $\exists z (x = 2z+1)$ 1.1.5 $x = 2a+1$	Def of Odd: 1.1.2 Elim ∃	
some integer b.	1.1.6 ∃z (y = 2z+1) 1.1.7 y = 2b+1	Def of Odd: 1.1.3 Elim ∃	
so x+y is, by definition, even.	1.1.9 ∃z (x+y = 2z) 1.1.10 Even(x+y)	Intro∃ Def of Even	
Since x and y were arbitrary, the sum of any odd integers is even.	1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Eve$ 1. $\forall \mathbf{x} \forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow$		

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

Let **x** and **y** be arbitrary integers.

1.1.1 Odd(x) ∧ Odd(y)	Assumption
1.1.2 Odd(x)	Elim ∧
1.1.3 Odd(y)	Elim ∧
1.1.4 $\exists z (x = 2z+1)$	Def of Odd: 1.1.2
1.1.5 $x = 2a+1$	Elim ∃
1.1.6 ∃z (y = 2z+1)	Def of Odd: 1.1.3
1.1.7 y = 2b+1	Elim ∃
1.1.8 x+y = 2(a+b+1)	Algebra
1.1.9 ∃z (x+y = 2z)	Intro∃
1.1.10 Even(x+y)	Def of Even

1.1. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ Direct.. **1.** $\forall \mathbf{x} \forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y}))$ Intro \forall Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Formal-to-English Translation

- Document posted on website
- Use these on HW4
 - no need to match the exact phrasing
 - English proofs are not formal proofs

Number Theory

- Direct relevance to computing
 - everything in a computer is a number
 colors on the screen are encoded as numbers
- Many significant applications
 - Cryptography & Security
 - Data Structures
 - Distributed Systems

For a, b with b > 0, we can divide b into a. Suppose that

$$\frac{a}{b} = q$$

The number q is called the *quotient*.

This equation involve fractions. We want to stick to integers! Multiplying both sides by b, this becomes

$$a = qb$$

When there exists some such q, we write " $b \mid a$ ".

Divisibility

Definition: "b divides a"

For *a*, *b* (usually with $b \neq 0$): $b \mid a \coloneqq \exists q \ (a = qb)$

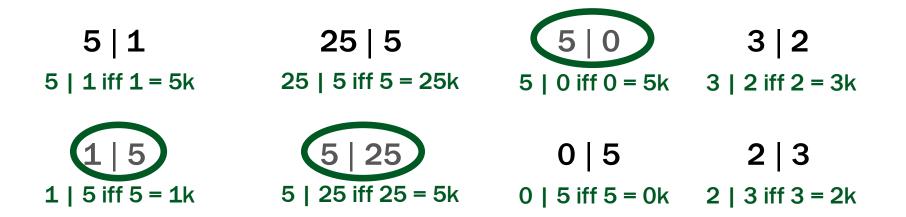
Check Your Understanding. Which of the following are true?

Divisibility

Definition: "b divides a"

For *a*, *b* (usually with $b \neq 0$): $b \mid a := \exists q \ (a = qb)$

Check Your Understanding. Which of the following are true?



For a, b with b > 0, we can divide b into a.

If $b \nmid a$, then we end up with a *remainder* r with 0 < r < b. Now,

instead of
$$\frac{a}{b} = q$$
 we have $\frac{a}{b} = q + \frac{r}{b}$

Multiplying both sides by *b* gives us a = qb + r

For a, b with b > 0, we can divide b into a.

If $b \mid a$, then we have a = qb for some q. If $b \nmid a$, then we have a = qb + r for some q, r with 0 < r < b.

In general, we have a = qb + r for some q, r with $0 \le r < b$, where r = 0 iff $b \mid a$.

Division Theorem

For a, b with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

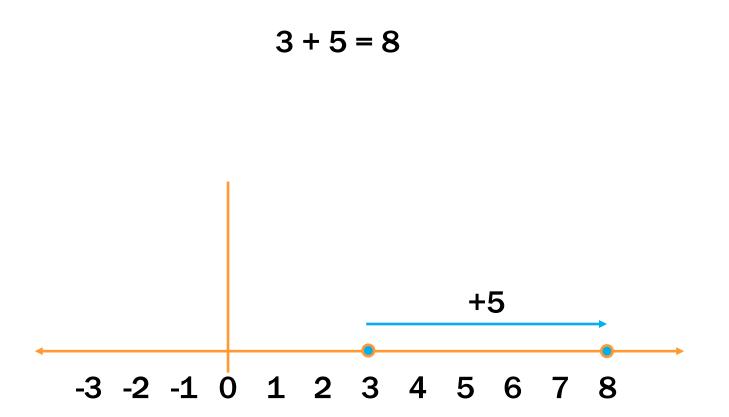
$$\forall a \; \forall b \; \left((b > 0) \rightarrow \left(a = (a \; \operatorname{div} b)b + (a \; \operatorname{mod} b) \right) \right)$$

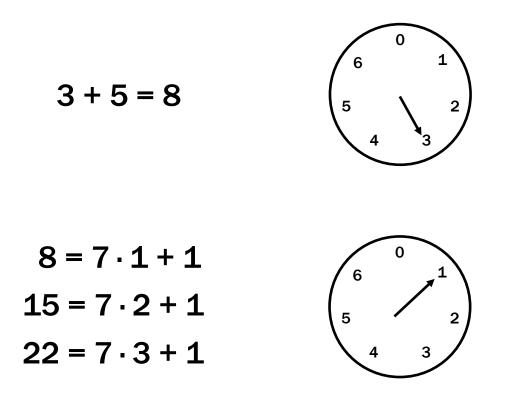
Modular Arithmetic

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

I'm ALIVE!

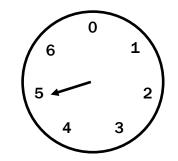
```
public class Test {
   final static int SEC IN YEAR = 365*24*60*60;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC_IN_YEAR * 101 + " seconds."
       );
   }
}
          ----jGRASP exec: java Test
         I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```





If a = 7q + r, then $r \ (= a \mod b)$ is where you stop after taking a steps on the clock

(a + b) mod 7 (a × b) mod 7



+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For a, b, m with m > 0 $a \equiv_m b \coloneqq m \mid (a - b)$

New notion of "sameness" that will help us understand modular arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv_m b \coloneqq m \mid (a - b)$

The standard math notation is

 $a \equiv b \pmod{m}$

A chain of equivalences is written

 $a \equiv b \equiv c \equiv d \pmod{m}$

Many students find this confusing, so we will use \equiv_m instead.

Definition: "a is congruent to b modulo m"

For a, b, m with m > 0

$$a \equiv_m b \coloneqq m \mid (a - b)$$

Check Your Understanding. What do each of these mean? When are they true?

-1 ≡₅ 19

This statement is true. 19 - (-1) = 20 which is divisible by 5

 $x \equiv_2 0$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

y ≡₇ 2

This statement is true for y in $\{ ..., -12, -5, 2, 9, 16, ... \}$. In other words, all y of the form 2+7k for k an integer.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Proof Plan:

1.
$$(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$$
??2. $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$??3. $(a \mod m = b \mod m) \rightarrow (a \equiv_m b) \land$ $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ 4. $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Intro \land : 1, 24. $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Equivalent: 3

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

1. $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$??

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

1.1. $a \mod m = b \mod m$

Assumption

1.? $a \equiv_m b$?? 1. $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ Direct Proof

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

1.1. $a \mod m = b \mod m$

Assumption

1.? $m \mid a - b$ 1.? $a \equiv_m b$ 1. $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$

?? Def of ≡ Direct Proof

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

1.1. $a \mod m = b \mod m$

Assumption

1.? $\exists q \ (a - b = qm)$ 1.? $m \mid a - b$ 1.? $a \equiv_m b$ 1. $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$?? Def of | Def of ≡ Direct Proof

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

1.1. $a \mod m = b \mod m$ **1.2.** $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ **1.3.** $\boldsymbol{b} = (\boldsymbol{b} \operatorname{div} \boldsymbol{m}) \boldsymbol{m} + (\boldsymbol{b} \operatorname{mod} \boldsymbol{m})$ Apply Division

Assumption **Apply Division**

1.?
$$\exists q \ (a - b = qm)$$

1.? $m \mid a - b$
1.? $a \equiv_m b$
1. $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$

?? Def of | Def of ≡ **Direct Proof**

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

1.1. $a \mod m = b \mod m$ Assumption **1.2.** $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ **Apply Division 1.3.** $b = (b \operatorname{div} m) m + (b \operatorname{mod} m)$ **Apply Division 1.4.** $a - b = ((a \operatorname{div} m) - (b \operatorname{div} m))m$ Algebra **1.5.** $\exists q (a - b = qm)$ Intro **∃** 1.6. m | a - bDef of | 1.7. $a \equiv_m b$ Def of ≡ **Direct Proof**

1. $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

Assumption

Apply Division Apply Division

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Therefore, $a \equiv_m b$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the Division Theorem, we can write $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ and $b = (b \operatorname{div} m) m + (b \operatorname{mod} m)$. Assumption

Apply Division Apply Division

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Therefore, $a \equiv_m b$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$. By the Division Theorem, we can write $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ and $b = (b \operatorname{div} m) m + (b \operatorname{mod} m).$ Subtracting these we can see that $a - b = ((a \operatorname{div} m) - (b \operatorname{div} m))m +$ $((a \mod m) - (b \mod m))$ $= ((a \operatorname{div} m) - (b \operatorname{div} m))m$ since $(a \mod m) - (b \mod m) = 0$

Assumption

Apply Division Apply Division

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Therefore, $a \equiv_m b$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$. Suppose that $a \mod m = b \mod m$. Assumption By the Division Theorem, we can write **Apply Division** $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ and **Apply Division** $b = (b \operatorname{div} m) m + (b \operatorname{mod} m).$ Subtracting these we can see that $a - b = ((a \operatorname{div} m) - (b \operatorname{div} m))m +$ Algebra $((a \mod m) - (b \mod m))$ $= ((a \operatorname{div} m) - (b \operatorname{div} m)) m$ since $(a \mod m) - (b \mod m) = 0$. Intro **B** Def of I Therefore, by definition of divides, $m \mid (a - b)$ Def of ≡ and so $a \equiv_m b$, by definition of congruent. **Direct Proof**

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2. $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$??

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1. $a \equiv_m b$

Assumption

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1. $a \equiv_m b$ 2.2. $m \mid a - b$ Assumption Def of |

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1. $a \equiv_m b$ 2.2. $m \mid a - b$ 2.3. $\exists q (a - b = qm)$ Assumption Def of ≡ Def of |

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1.
$$a \equiv_m b$$

2.2. $m \mid a - b$
2.3. $\exists q (a - b = qm)$
2.4. $a - b = km$

Assumption Def of ≡ Def of | Elim ∃

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1.
$$a \equiv_m b$$

2.2. $m \mid a - b$
2.3. $\exists q \ (a - b = qm)$
2.4. $a - b = km$
2.5. $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$

Assumption Def of ≡ Def of | Elim ∃ Apply Division

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1.
$$a \equiv_m b$$
Assumption2.2. $m \mid a - b$ Def of \equiv 2.3. $\exists q \ (a - b = qm)$ Def of \mid 2.4. $a - b = km$ Elim \exists 2.5. $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ Apply Division2.6. $b = (a \operatorname{div} m - k) m + (a \operatorname{mod} m)$ Algebra

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1. $a \equiv_m b$ Assumption2.2. $m \mid a - b$ Def of \equiv 2.3. $\exists q \ (a - b = qm)$ Def of \mid 2.4. a - b = kmElim \exists 2.5. $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ Apply Division2.6. $b = (a \operatorname{div} m - k) m + (a \operatorname{mod} m)$ Algebra2.7. $b \operatorname{div} m = (a \operatorname{div} m - k) \land$ Apply DivUnique $b \operatorname{mod} m = a \operatorname{mod} m$ Apply DivUnique

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

2.1. $a \equiv_m b$ Assumption 2.2. $m \mid a - b$ Def of ≡ **2.3.** $\exists q (a - b = qm)$ Def of | 2.4. a - b = kmElim 3 **2.5.** $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$ **Apply Division 2.6.** $b = (a \operatorname{div} m - k) m + (a \operatorname{mod} m)$ Algebra **2.7.** *b* div $m = (a \operatorname{div} m - k) \wedge$ **Apply DivUnique** $b \mod m = a \mod m$ **2.8.** $a \mod m = b \mod m$ Elim \wedge **2.** $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ **Direct Proof**

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Assumption

Def of ≡ Def of | Elim ∃

Apply Division

Algebra

Apply DivUnique Elim ∃

Therefore, $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by the definition of congruence. So, a - b = km for some integer k by the definition of divides. Equivalently, a = b + km. Assumption

Def of ≡ Def of ∣ Elim ∃

Apply Division

Algebra

Apply DivUnique Elim ∃

Therefore, $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.AssumptionThen, $m \mid (a - b)$ by the definition of congruence.Def of \equiv So, a - b = km for some integer k by the definition ofDef of \equiv divides. Equivalently, a = b + km.Def of \mid By the Division Theorem, we have $a = (a \operatorname{div} m) m + (a \mod m)$, with $0 \leq (a \mod m) < m$.Assumption

Algebra

Apply DivUnique Elim 3

Therefore, $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by the definition of congruence. So, a - b = km for some integer k by the definition of divides. Equivalently, a = b + km.

By the Division Theorem, we have $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$, with $0 \le (a \operatorname{mod} m) < m$.

Combining these, we have $(a \operatorname{div} m)m + (a \mod m) = a = b + km$. Solving for b gives $b = (a \operatorname{div} m)m + (a \mod m) - km = ((a \operatorname{div} m) - k)m + (a \mod m)$.

Assumption

Def of	≡
Def of	
Elim 3	

Apply Division

Algebra

Apply DivUnique Elim 3

Therefore, $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by the definition of congruence. So, a - b = km for some integer k by the definition of divides. Equivalently, a = b + km.

By the Division Theorem, we have $a = (a \operatorname{div} m) m + (a \operatorname{mod} m)$, with $0 \le (a \operatorname{mod} m) < m$.

Combining these, we have $(a \operatorname{div} m)m + (a \mod m) = a = b + km$. Solving for b gives $b = (a \operatorname{div} m)m + (a \mod m) - km = ((a \operatorname{div} m) - k)m + (a \mod m)$.

By the uniqueness property in the Division Theorem, we must have $b \mod m = a \mod m$ (and, although we don't need it, also $b \dim m = a \dim m - k$).

Assumption

Def of	≡
Def of	
Elim ∃	

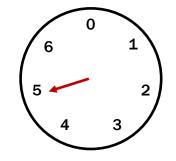
```
Apply Division
```

Algebra

Apply DivUnique Elim ∃

The mod *m* function vs the \equiv_m predicate

- The mod *m* function maps any integer *a* to a remainder *a* mod $m \in \{0,1,..,m-1\}$. Tells you where it lands on the clock.
- Imagine grouping together all integers that have the same value of the mod m function. They must differ by a multiple of $m (q_1m + r \ vs \ q_2m + r)$



- The \equiv_m predicate compares integers a, bto see if if they differ by a multiple of m.

If they differ by a multiple of m, then walking from one to the other leaves you at the same spot on the clock.

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - since c = c is true, we can " $\times c$ " to both sides

These facts allow us to use algebra to solve problems

Algebra
$$X_{\underline{1}} = Y_{\underline{1}} \dots X_{\underline{n}} = Y_{\underline{n}}$$

 $\therefore x = y$

- Algebra rule applies these properties:
 - adding equations
 - multiplying equations by a constant

<u>Note</u>: no division (since domain is integers)

- But also uses knowledge of
 - arithmetic with constants
 - commutativity of multiplication (e.g., yx = xy)
 - distributivity (e.g., a(b+c) = ab + bc)

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - since c = c is true, we can " $\times c$ " to both sides

Same facts apply to "≤" with non-negative numbers

What about " \equiv_m "?

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

1.
$$(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$$
 ??

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

2.1.
$$a \equiv_m b \land b \equiv_m c$$

Assumption

2.?.
$$a \equiv_m c$$

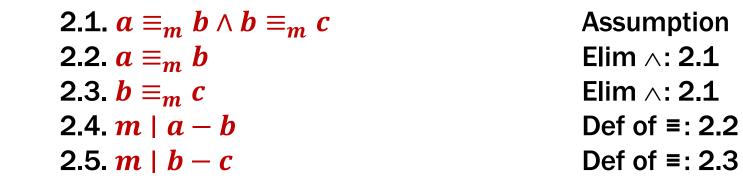
1. $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

2.1. $a \equiv_m b \land b \equiv_m c$ Assumption2.2. $a \equiv_m b$ Elim \land : 2.12.3. $b \equiv_m c$ Elim \land : 2.1

2.?.
$$a \equiv_m c$$

1. $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$



2.?.
$$a \equiv_m c$$

1. $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$

2.1.
$$a \equiv_m b \land b \equiv_m c$$
Assumption2.2. $a \equiv_m b$ Elim \land : 2.12.3. $b \equiv_m c$ Elim \land : 2.12.4. $m \mid a - b$ Def of \equiv : 2.22.5. $m \mid b - c$ Def of \equiv : 2.32.6. $\exists q (a - b = qm)$ Def of \mid : 2.42.7. $\exists q (b - c = qm)$ Def of \mid : 2.5

2.?.
$$a \equiv_m c$$

1. $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$

?? **Direct Proof**

2.1

2.1

2.1.
$$a \equiv_{m} b \land b \equiv_{m} c$$

2.2. $a \equiv_{m} b$
2.3. $b \equiv_{m} c$
2.4. $m \mid a - b$
2.5. $m \mid b - c$
2.6. $\exists q (a - b = qm)$
2.7. $\exists q (b - c = qm)$
2.8. $a - b = km$
2.9. $b - c = jm$

Assumption Elim \land : 2.1 Elim \land : 2.1 Def of \equiv : 2.2 Def of \equiv : 2.3 Def of \mid : 2.3 Def of \mid : 2.4 Def of \mid : 2.5 Elim \exists : 2.6 Elim \exists : 2.7

2.?. $a \equiv_m c$ **1.** $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

2.1. $a \equiv_m b \land b \equiv_m c$	Assumption
•••	
2.8. $a - b = km$	Elim ∃: 2.6
2.9. $b - c = jm$	Elim ∃: 2.7

2.?.
$$a \equiv_m c$$

1. $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

2.1. $a \equiv_m b \land b \equiv_m c$	Assumption
•••	
2.8. $a - b = km$	Elim ∃: 2.6
2.9. $b - c = jm$	Elim ∃: 2.7

2.?.
$$m \mid a - b$$
 ??
2.?. $a \equiv_m c$ Def of \equiv
1. $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ Direct Proof

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

2.1. $a \equiv_m b \land b \equiv_m c$	Assumption
•••	
2.8. $a - b = km$	Elim ∃: 2.6
2.9. $b - c = jm$	Elim ∃: 2.7

2.?.
$$\exists q \ (a - c = qm)$$
??2.?. $m \mid a - c$ Def of |2.?. $a \equiv_m c$ Def of \equiv 1. $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ Direct Proof

2.1. $a \equiv_m b \land b \equiv_m c$ Assumption 2.8. a - b = kmElim ∃: 2.6 2.9. b - c = jmElim ∃: 2.7 2.10. a - c = (k + j)mAlgebra **2.11.** $\exists q (a - c = qm)$ Intro ∃: 2.10 2.12. $m \mid a - c$ Def of |: 2.11 2.13. $a \equiv_m c$ Def of ≡: 2.12 **1.** $(a \equiv_m b \land b \equiv_m c) \rightarrow (a \equiv_m c)$ **Direct Proof**

Modular Arithmetic: Basic Property

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

Assumption

Def of ≡

Def of |

Elim 3

Algebra

Intro ∃ Def of ∣

Def of ≡

Direct Proof

Therefore, $a \equiv_m c$.

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (b - c)$. By the definition of divides, we know that a - b = km and b - c = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of | Elim ∃ Algebra Intro ∃ Def of | Def of ≡ Direct Proof

Therefore, $a \equiv_m c$.

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (b - c)$. By the definition of divides, we know that a - b = km and b - c = jm for some integers k and j.

Adding these, gives a - c = km + jm = (k + j)m.

Algebra Intro ∃ Def of | Def of ≡ Direct Proof

Therefore, $a \equiv_m c$.

Assumption

Elim A

Def of ≡

Def of |

Elim 7

Let a, b, c and m be integers with m > 0. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (b - c)$. By the definition of divides, we know that a - b = km and b - c = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of | Elim ∃ Algebra Intro ∃ Def of | Def of ≡

Direct Proof

Adding these, gives a - c = km + jm = (k + j)m.

Therefore, by the definition of divides, we have shown that $m \mid (a - c)$, and then, $a \equiv_m c$ by the definition of congruence.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$??

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

2.1. $a \equiv_m b \land c \equiv_m d$ Assumption

2.?.
$$a + c \equiv_m b + d$$
 ??
1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

2.1. $a \equiv_m b \land c \equiv_m d$	Assumption
2.2. $a \equiv_m b$	Elim ^: 2.1
2.3. $c \equiv_m d$	Elim ^: 2.1

2.?.
$$a + c \equiv_m b + d$$
 ??
1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

2.1. $a \equiv_m b \land c \equiv_m d$ Assumption2.2. $a \equiv_m b$ Elim \land : 2.12.3. $c \equiv_m d$ Elim \land : 2.12.4. $m \mid a - b$ Def of \equiv : 2.22.5. $m \mid c - d$ Def of \equiv : 2.3

2.?. $a + c \equiv_m b + d$?? 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Assumption
Elim ^: 2.1
Elim ^: 2.1
Def of ≡: 2.2
Def of ≡: 2.3
Def of : 2.4
Def of : 2.5

2.?. $a + c \equiv_m b + d$?? 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

2.1.
$$a \equiv_m b \land c \equiv_m d$$
Assumption2.2. $a \equiv_m b$ Elim \land : 2.12.3. $c \equiv_m d$ Elim \land : 2.12.4. $m \mid a - b$ Def of \equiv : 2.22.5. $m \mid c - d$ Def of \equiv : 2.32.6. $\exists q (a - b = qm)$ Def of \mid : 2.42.7. $\exists q (c - d = qm)$ Def of \mid : 2.52.8. $a - b = km$ Elim \exists : 2.62.9. $c - d = jm$ Elim \exists : 2.7

2.?. $a + c \equiv_m b + d$?? 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

2.1. $a \equiv_m b \land c \equiv_m d$	Assumption
•••	
2.8. $a - b = km$	Elim ∃: 2.6
2.9. $c - d = jm$	Elim ∃: 2.7

2.?.
$$m \mid (a + c) - (b + d)$$
 ??
2.?. $a + c \equiv_m b + d$ Def of \equiv
1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

2.1. $a \equiv_m b \land c \equiv_m d$	Assumption
2.8. $a - b = km$	Elim ∃: 2.6
2.9. $c - d = jm$	Elim ∃: 2.7

2.?.
$$\exists q ((a + c) - (b + d) = qm)$$
 ??
2.?. $m \mid (a + c) - (b + d)$ Def of \mid
2.?. $a + c \equiv_m b + d$ Def of \equiv
1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

2.1.
$$a \equiv_m b \land c \equiv_m d$$
Assumption...2.8. $a - b = km$ Elim $\exists : 2.6$ 2.9. $c - d = jm$ Elim $\exists : 2.7$ 2.10. $(a + c) - (b + d) = (k + j)m$ Algebra2.11. $\exists q ((a + c) - (b + d) = qm))$ Intro $\exists : 2.10$ 2.12. $m \mid (a + c) - (b + d)$ Def of $\mid : 2.11$ 2.13. $a + c \equiv_m b + d$ Def of $\equiv : 2.12$ 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (a + c \equiv_m b + d)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Assumption

Def of ≡

Def of ∣ Elim ∃

Algebra

Intro ∃ Def of | Def of ≡ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Assumption

Def of ≡ Def of |

Elim 3

Algebra

Intro ∃ Def of | Def of ≡

Therefore, $a + c \equiv_m b + d$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that a - b = km and c - d = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of |

Elim 3

Algebra

Intro ∃ Def of |

Def of ≡

Direct Proof

Therefore, $a + c \equiv_m b + d$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that a - b = km and c - d = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of ∣ Elim ∃

Adding these, gives
$$(a + c) - (b + d) =$$
 Algebra
 $(a - b) + (c - d) = km + jm = (k + j)m$.

Intro ∃ Def of | Def of ≡

Direct Proof

Therefore, $a + c \equiv_m b + d$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of divides, we know that a - b = km and c - d = jm for some integers k and j.

Assumption

Elim ∧ Def of ≡ Def of ∣ Elim ∃

Adding these, gives
$$(a + c) - (b + d) =$$
 Algebra
 $(a - b) + (c - d) = km + jm = (k + j)m$.

Therefore, by the definition of divides, we have shown $m \mid (a + c) - (b + d)$, and then, we have $a + c \equiv_m b + d$ by the definition of congruence. Intro ∃ Def of ∣

Def of ≡

1.
$$(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$$
 ??

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

2.1. $a \equiv_m b \land c \equiv_m d$ Assumption

2.?.
$$ac \equiv_m bd$$
 ??
1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

2.1. $a \equiv_m b \land c \equiv_m d$ Assumption2.2. $a \equiv_m b$ Elim \land : 2.12.3. $c \equiv_m d$ Elim \land : 2.1

2.?.
$$ac \equiv_m bd$$
 ??
1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

2.1. $a \equiv_m b \land c \equiv_m d$ 2.2. $a \equiv_m b$ 2.3. $c \equiv_m d$ 2.4. $m \mid a - b$ 2.5. $m \mid c - d$ Assumption Elim \land : 2.1 Elim \land : 2.1 Def of \equiv : 2.2 Def of \equiv : 2.3

2.?. $ac \equiv_m bd$?? 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

2.1. $a \equiv_m b \land c \equiv_m d$ Assumption2.2. $a \equiv_m b$ Elim \land : 2.12.3. $c \equiv_m d$ Elim \land : 2.12.4. $m \mid a - b$ Def of \equiv : 2.22.5. $m \mid c - d$ Def of \equiv : 2.32.6. $\exists q (a - b = qm)$ Def of \mid : 2.42.7. $\exists q (c - d = qm)$ Def of \mid : 2.5

2.?. $ac \equiv_m bd$?? 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

2.1. $a \equiv_{m} b \land c \equiv_{m} d$ 2.2. $a \equiv_{m} b$ 2.3. $c \equiv_{m} d$ 2.4. $m \mid a - b$ 2.5. $m \mid c - d$ 2.6. $\exists q (a - b = qm)$ 2.7. $\exists q (c - d = qm)$ 2.8. a - b = jm2.9. c - d = km Assumption Elim \land : 2.1 Elim \land : 2.1 Def of \equiv : 2.2 Def of \equiv : 2.3 Def of \mid : 2.4 Def of \mid : 2.5 Elim \exists : 2.6 Elim \exists : 2.7

2.?. $ac \equiv_m bd$ **1.** $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$

2.1. $a \equiv_m b \land c \equiv_m d$	Assumption
 2.8. $a - b = jm$	Elim ∃: 2.6
2.9. $c - d = km$	Elim ∃: 2.7

2.?.
$$ac \equiv_m bd$$
 ??
1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ Direct Proof

2.1. $a \equiv_m b \land c \equiv_m d$	Assumption
•••	
2.8. $a - b = jm$	Elim ∃: 2.6
2.9. $c - d = km$	Elim ∃: 2.7

2.?.
$$m \mid ac - bd$$
??2.?. $ac \equiv_m bd$ Def of \equiv 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ Direct Proof

2.1. $a \equiv_m b \land c \equiv_m d$	Assumption
a = b = im	
2.8. $a - b = jm$	Elim ∃: 2.6
2.9. $c - d = km$	Elim ∃: 2.7

2.?.
$$\exists q (ac - bd = qm)$$
??2.?. $m \mid ac - bd$ Def of |2.?. $ac \equiv_m bd$ Def of \equiv 1. $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ Direct Proof

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

2.1. $a \equiv_m b \land c \equiv_m d$ Assumption 2.8. a - b = jmElim 3:2.6 2.9. c - d = kmElim 7:2.7 **2.10.** ac - bd = (bk + dj + jkm)mAlgebra **2.11.** $\exists q (ac - bd = qm)$ Intro 3: 2.10 2.12. $m \mid ac - bd$ Def of |: 2.11 2.13. $ac \equiv_m bd$ Def of ≡: 2.12 **1.** $(a \equiv_m b \land c \equiv_m d) \rightarrow (ac \equiv_m bd)$ **Direct Proof**

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Assumption

Therefore, $ac \equiv_m bd$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Assumption

By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. Def of \equiv

Therefore, $ac \equiv_m bd$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Assumption By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of Def of \equiv

divides, we know that a - b = jm and c - d = kmfor some integers j and k. Def of ≡ Def of | Elim ∃

Therefore, $ac \equiv_m bd$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Assumption By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of Def of ≡ divides, we know that a - b = jm and c - d = kmDef of | Elim 3 for some integers \mathbf{i} and \mathbf{k} . Equivalently, a = b + jm and c = d + km. Algebra Multiplying these gives ac = (b + jm)(d + km) =bd + bkm + djm + jkm = bd + (bk + dj + jk)mIntro 7 so ac - bd = (bk + dj + jk)m. Def of | Def of ≡ ... Therefore, $ac \equiv_m bd$. **Direct Proof**

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Assumption By the definition of congruence, we know that $m \mid (a - b)$ and $m \mid (c - d)$. By the definition of Def of ≡ divides, we know that a - b = jm and c - d = kmDef of | Elim 3 for some integers \mathbf{i} and \mathbf{k} . Equivalently, a = b + jm and c = d + km. Algebra Multiplying these gives ac = (b + jm)(d + km) =bd + bkm + djm + jkm = bd + (bk + dj + jk)m, Intro 7 so ac - bd = (bk + dj + jk)m. Def of | Def of ≡ Therefore, $m \mid ac - bd$ by the definition of divides, so $ac \equiv_m bd$ by the definition of congruence. **Direct Proof**

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$.

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Corollary: If $a \equiv_m b$, then $a + c \equiv_m b + c$.

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $ac \equiv_m bd$.

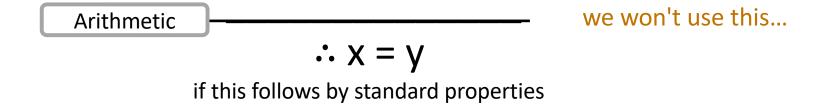
Corollary: If $a \equiv_m b$, then $ac \equiv_m bc$.

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - since c = c is true, we can " $\times c$ " to both sides

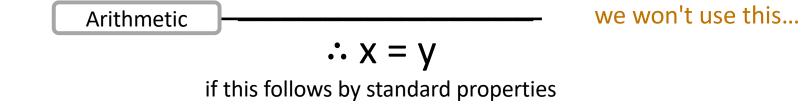
These facts allow us to use algebra to solve problems

The Arithmetic Rule



- Equation must be true with no outside information
- Use only these properties of arithmetic operators:
 - commutativity (x+y = y+x and yx = xy)
 - associativity (x+(y+z) = (x+y)+z and x(yz) = (xy)z)
 - distributivity (a(b+c) = ab + bc)
 - identity $(x+0 = x \text{ and } 1 \cdot x = x)$
 - arithmetic with constants (7 5 = 2)

The Arithmetic Rule



• Examples:

...

1. 7 = 7 **2.** 7 - 4 = 3**3.** 5x - 3x = 2x

Arithmetic Arithmetic Arithmetic

Recall: Properties of "=" Used in Algebra

If $a = b$ and $b = c$, then $a = c$	"Transitivity"
If $a = b$ and $c = d$, then $a + c = b + d$	"Add Equations"
If $a = b$ and $c = d$, then $ac = bd$	"Multiply Equations"

We need these facts to do algebra...

Example: given 5x + 4 = 2x + 25, prove that 3x = 21.

Recall: Properties of "=" Used in Algebra

If $a = b$ and $b = c$, then $a = c$	"Transitivity"
If $a = b$ and $c = d$, then $a + c = b + d$	"Add Equations"
If $a = b$ and $c = d$, then $ac = bd$	"Multiply Equations"

1.
$$5x + 4 = 2x + 25$$
Given2. $-4 = -4$ Arithmetic3. $5x + 4 - 4 = 2x + 25 - 4$ Add Equations: 1, 24. $5x = 5x + 4 - 4$ Arithmetic5. $5x = 2x + 25 - 4$ Transitivity: 4, 36. $2x + 25 - 4 = 2x + 21$ Arithmetic7. $5x = 2x + 21$ Transitivity: 5, 6

Recall: Properties of "=" Used in Algebra

If $a = b$ and $b = c$, then $a = c$	"Transitivity"
If $a = b$ and $c = d$, then $a + c = b + d$	"Add Equations"
If $a = b$ and $c = d$, then $ac = bd$	"Multiply Equations"

7. $5x = 2x + 21$	Transitivity: 5, 6
8. $-2x = -2x$	Arithmetic
9. $5x - 2x = 2x + 21 - 2x$	Add Equations: 7, 8
10. $3x = 5x - 2x$	Arithmetic
11. $3x = 2x + 21 - 2x$	Transitivity: 10, 9
12. $2x + 21 - 2x = 21$	Arithmetic
13. 3x = 21	Transitivity: 11, 12

Algebra
$$X_{\underline{1}} = Y_{\underline{1}} \dots X_{\underline{n}} = Y_{\underline{n}}$$

 $\therefore X = Y$

- Algebra rule accepts equation if it follows by
 - multiplying equations by a constant
 - adding them

ſ

- and then doing some arithmetic
- Example:
 - 1. 5x = 15(Line 1) + -1 (Line 2) gives2. 2x = 65x 2x = 15 63. 3x = 9Algebra: 1, 2

Algebra
$$X_{\underline{1}} = Y_{\underline{1}} \dots X_{\underline{n}} = Y_{\underline{n}}$$

 $\therefore X = Y$

- Algebra rule accepts equation if it follows by
 - multiplying equations by a constant
 - adding them
 - and then doing some arithmetic
- Note: the Algebra rule works on equations

- what about congruences? (" \equiv_m " instead of "=")

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$.

If
$$a \equiv_m b$$
, then $a + c \equiv_m b + c$.

If
$$a \equiv_m b$$
, then $ac \equiv_m bc$.

These properties are sufficient to allow us to do algebra with congruences

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$ "Transitivity"If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$ "Add Congruences"If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Multiply Congruences"

Example: given that
$$5x + 4 \equiv_m 2x + 25$$
,
prove that $3x \equiv_m 21$

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$ "Transitivity"If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$ "Add Congruences"If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Multiply Congruences"

1.
$$5x + 4 \equiv_m 2x + 25$$
 Given

 2. $-4 = -4$
 Algebra

 3. $5x \equiv_m 2x + 21$
 Add Congruences: **2, 1 ??**

Line 2 says "=" not " \equiv_m "

But "=" implies " \equiv_m " ! (equality is a special case)

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$ "Transitivity"If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$ "Add Congruences"If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Multiply Congruences"If $a = b$, then $a \equiv_m b$."To Modular"

1.
$$5x + 4 \equiv_m 2x + 25$$

2. $-4 = -4$
3. $-4 \equiv_m -4$
4. $5x + 4 - 4 \equiv_m 2x + 25 - 4$

Given Algebra

To Modular: 2

Add Congruences: 3, 1

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$ "Transitivity"If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$ "Add Congruences"If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Multiply Congruences"If $a = b$, then $a \equiv_m b$."To Modular"

4.
$$5x + 4 - 4 \equiv_{m} 2x + 25 - 4$$

5. $5x = 5x + 4 - 4$
6. $5x \equiv_{m} 5x + 4 - 4$
7. $5x \equiv_{m} 2x + 25 - 4$

Add Congruences: 3, 1 Arithmetic / Algebra To Modular: 5 Transitivity: 6, 4

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$ "Transitivity"If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$ "Add Congruences"If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Multiply Congruences"If $a = b$, then $a \equiv_m b$."To Modular"

. . .

7.
$$5x \equiv_{m} 2x + 25 - 4$$

8. $2x + 25 - 4 = 2x + 21$
9. $2x + 25 - 4 \equiv_{m} 2x + 21$
10. $5x \equiv_{m} 2x + 21$

Transitivity: 6, 4 Arithmetic / Algebra To Modular: 8 Transitivity: 7, 9

... continue by adding -2x to both sides ...

If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$	"Transitivity"
If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + c$	- d "Add Congruences"
If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$	"Multiply Congruences"

We don't want to do all that!

Example: given that $5x + 4 \equiv_m 2x + 25$, prove that $3x \equiv_m 21$

These properties are sufficient to allow us to do algebra with congruences:

- move terms from one side to the other
- simplify either side

If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$	"Transitivity"
If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + c$	- d "Add Congruences"
If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$	"Multiply Congruences"

We don't want to do all that!

Example: given that $5x + 4 \equiv_m 2x + 25$, prove that $3x \equiv_m 21$

> **<u>Careful</u>: proved** $5x + 4 = 2x + 25 \Rightarrow 3x = 21$ **not** $3x = 21 \Rightarrow 5x + 4 = 2x + 25$ the second is a "backward proof"

Can "plug in" (a.k.a. substitute) the known value of a variable

Example: given 2y + 3x = 25 and x = 7y, follows that 2y + 21y = 25.

The Substitute Rule

Substitute
$$P(x) \quad x = y$$
 $\therefore P(y)$

- If x = y, then anything true of x is true of y
- Note that y can be any expression

- e.g., if x = 7y + 3, then we get P(7y + 3)

- Note that equations are also predicates
 - can think of 2y + 3x = 25 as Equal(2y + 3x, 25) better to use the nicer notation though...

Can "plug in" (a.k.a. substitute) the known value of a variable

Example: given 2y + 3x = 25 and x = 7y, follows that 2y + 21y = 25.

> This is <u>also</u> true of *congruences*! (But we don't have the tools to prove it yet....)

Example: given $2y + 3x \equiv_m 25$ and $x \equiv_m 7y$, follows that $2y + 21y \equiv_m 25$.

Substitution vs Other Properties

If $a = b$ and $b = c$, then $a = c$	"Transitivity"
If $a = b$ and $c = d$, then $a + c = b + d$	"Add Equations"
If $a = b$ and $c = d$, then $ac = bd$	"Multiply Equations"

Can prove "Add Equations" by Substitution...

a + c = a + c	Arithmetic
= b + c	Substitute $a = b$
= b + d	Substitute $c = d$

"Add Equations" follows by Transitivity.

Substitution vs Other Properties

If $a = b$ and $b = c$, then $a = c$	"Transitivity"
If $a = b$ and $c = d$, then $a + c = b + d$	"Add Equations"
If $a = b$ and $c = d$, then $ac = bd$	"Multiply Equations"

Can prove "Multiply Equations" by Substitution...

ac = ac	Arithmetic
= bc	Substitute $a = b$
= bd	Substitute $c = d$

"Multiply Equations" follows by Transitivity.

Substitution vs Other Properties

If $a = b$ and $b = c$, then $a = c$	"Transitivity"
If $a = b$ and $c = d$, then $a + c = b + d$	"Add Equations"
If $a = b$ and $c = d$, then $ac = bd$	"Multiply Equations"

- Substitution is an alternative for solving problems
 - we will try this out on HW4
 - will be heavily used in *future* homework

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

What numbers a and b did we **prove** this for?

We don't know anything about these numbers. I.e., they were **arbitrary**.

That means our proof could be changed...

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

1.1. $a \mod m = b \mod m$ Assumption 1.7. $a \equiv_m b$ Def of ≡ **1.** $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ **Direct Proof** 2.1. $a \equiv_m b$ Assumption **2.8.** $a \mod m = b \mod m$ Elim \land **2.** $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ **Direct Proof 3.** $(a \mod m = b \mod m) \rightarrow (a \equiv_m b) \land$ $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ Intro \land **4.** $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Equivalent

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Let *a* and *b* be arbitrary integers. **1.1.1.** $a \mod m = b \mod m$ Assumption 1.1.7. $a \equiv_m b$ Def of ≡ **1.1.** $(a \mod m = b \mod m) \rightarrow (a \equiv_m b)$ **Direct Proof 1.2.1.** $a \equiv_m b$ Assumption **1.2.8.** $a \mod m = b \mod m$ Elim \land **1.2.** $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ **Direct Proof 1.3.** $(a \mod m = b \mod m) \rightarrow (a \equiv_m b) \land$ $(a \equiv_m b) \rightarrow (a \mod m = b \mod m)$ Intro \land **1.4.** $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ Equivalent **1.** $\forall a \forall b ((a \equiv_m b) \leftrightarrow (a \mod m = b \mod m))$ Intro ∀

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

> This is stated as $(a \equiv_m b) \leftrightarrow (a \mod m = b \mod m)$ but it is **really** $\forall a \forall b ((a \equiv_m b) \leftrightarrow (a \mod m = b \mod m))$

> > This is a fact we can apply to <u>any</u> integers a and b (and m > 0).

<u>Rule</u>: unquantified variables are *implicitly* ∀-quantified (will see one exception later...)

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

But the proof **stays** as is!

<u>Rule</u>: structure of the proof follows the structure of the claim

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$ "Transitivity"If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$ "Add Congruences"If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Multiply Congruences"If $a = b$, then $a \equiv_m b$."To Modular"

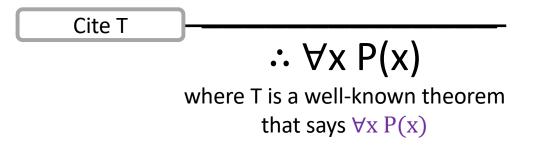
1.
$$5x + 4 \equiv_m 2x + 25$$
Given**2.** $-4 = -4$ Algebra**3.** $-4 \equiv_m -4$ To Modular: 2**4.** $5x + 4 - 4 \equiv_m 2x + 25 - 4$ Add Congruences: 3, 1

Lines 3 & 4 are *applying* the **theorems** above!

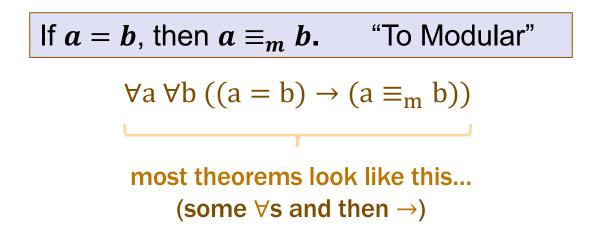
If
$$a = b$$
, then $a \equiv_m b$. "To Modular"

 $\forall a \forall b ((a = b) \rightarrow (a \equiv_m b))$

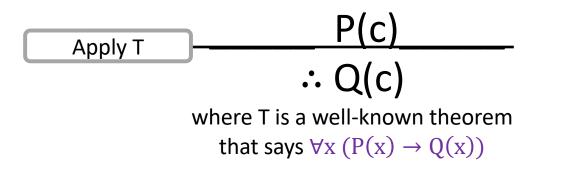
• First way to use theorems in a proof:



"To Modular" If a = b, then $a \equiv_m b$. $\forall a \forall b ((a = b) \rightarrow (a \equiv_m b))$ **1.** $5x + 4 \equiv_{m} 2x + 25$ Given **2**. -4 = -4Algebra **3.** $\forall a \forall b ((a = b) \rightarrow (a \equiv_m b))$ Cite "To Modular" **4.** $\forall b ((-4 = b) \rightarrow (-4 \equiv_m b))$ Elim ∀: 3 5. $(-4 = -4) \rightarrow (-4 \equiv_m -4)$ Elim ∀: 4 **6.** $-4 \equiv_{\rm m} -4$ MP: 2, 5



• Second way to use theorems in a proof...



If a = b, then $a \equiv_m b$. "To Modular" $\forall a \forall b ((a = b) \rightarrow (a \equiv_m b))$

1.
$$5x + 4 \equiv_m 2x + 25$$

2. $-4 = -4$
3. $\forall a \forall b ((a = b) \rightarrow (a \equiv_m b))$
4. $\forall b ((-4 = b) \rightarrow (-4 \equiv_m b))$
5. $(-4 = -4) \rightarrow (-4 \equiv_m -4)$
6. $-4 \equiv_m -4$
3. $-4 \equiv_m -4$

Given Algebra

- Cite "To Modular"
- Elim ∀: 3
- Elim ∀: 4

MP: 2, 5

Apply "To Modular": 2

applying the theorem with a = -4 and b = -4