CSE 311: Foundations of Computing

Topic 3: Proofs

- So far, we've considered:
 - how to understand and express things using propositional and predicate logic
 - how to compute using Propositional logic (circuits)
 - how to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - equivalence is a small part of this

р	q	A(<i>p</i> , <i>q</i>)	B(<i>p</i> ,q)
Т	Т	Т	
Т	F	Т	
F	Т	F	
F	F	F	

р	q	A(<i>p</i> , <i>q</i>)	B(<i>p,q</i>)
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	
F	F	F	

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

р	q	A(<i>p</i> , <i>q</i>)	B(<i>p,q</i>)
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	?
F	F	F	?

When we zoom out, what have we proven?

р	q	A(p,q)	B(<i>p,q</i>)	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathbf{T}$$

Equivalences

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference

 $A \Rightarrow B$ and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where **A** is true

– that is, we <u>assume</u> that A is true

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $A : A \to B$ $\therefore B$
- Given:
 - If it is Friday, then you have a 311 lecture today.
 - It is Friday.
- Therefore, by Modus Ponens:
 - You have a 311 lecture today.

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.		
5.		

Modus Ponens $A : A \to B$ $\therefore B$ Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.	q	MP: 1, 2
5.	r	MP: 4, 3

Modus Ponens
$$A ; A \rightarrow B$$

 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

Modus Ponens
$$A : A \to B$$

 $\therefore B$

Inference Rules

Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

Example (Excluded Middle):

$\therefore A \lor \neg A$

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

 $\frac{A \land B}{\therefore A, B}$

 $\frac{A;B}{\therefore A \land B}$

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	$p \land q \rightarrow r$	Given
4.	q	MP: 1, 2
5.	$oldsymbol{p}\wedgeoldsymbol{q}$	Intro \: 1, 4
6.	r	MP: 5, 3

$$\begin{array}{c} p \ ; \ p \rightarrow q \\ p \ ; \ q \\ \hline p \land q \ ; \ p \land q \rightarrow r \\ \hline p \land q \ ; \ p \land q \rightarrow r \\ \hline r \end{array} MP$$

Two visuals of the same proof. We will use the right one, but if the bottom one helps you think about it, that's great!

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	<i>q</i>	MP: 1, 2
4.	$\boldsymbol{p} \wedge \boldsymbol{q}$	Intro <a>: 1, 3
5.	$p \land q \rightarrow r$	Given
6.	r	MP: 4, 5

$$\begin{array}{c} p \; ; \; p \rightarrow q \\ p \; ; \; q \\ \hline p \; ; \; q \\ \hline p \wedge q \; ; \; p \wedge q \rightarrow r \\ \hline r \end{array} MP$$

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

Idea: Work backwards!

20. $\neg r$

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

¬¬*s* doesn't show up in the givens but *s* does and we can use equivalences

- 19. *q* V Elim: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$\boldsymbol{p} \wedge \boldsymbol{s}$	Given
2.	$oldsymbol{q} ightarrow eg r$	Given
3.	$\neg s \lor q$	Given
. —		
17	S	2

18. ¬¬sOuble Negation: 17

- **19.** *q* Elim ∨: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given	No holes left! We just
2.	q ightarrow eg r	Given	need to clean up a bit.
3.	$\neg s \lor q$	Given	
17.	<i>S</i>	Elim ∧: 1	
18.	רר <i>s</i>	Double Negation	: 17
19.	q	Elim ∨: 3, 18	
20.	$\neg r$	MP: 2, 19	

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$\boldsymbol{p} \wedge \boldsymbol{s}$	Given
2.	$oldsymbol{q} ightarrow eg r$	Given
3.	$\neg s \lor q$	Given
4.	<i>S</i>	Elim ∧: 1
5.	<i>S</i>	Double Negation: 4
6.	q	Elim ∨: 3, 5
7.	$\neg r$	MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

• Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \Rightarrow r$ intro \lor from 1.
Does not follow! e.g. p=F, q=T, r=F

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathbf{T}$$

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

 $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Assuming A, we can prove B."
- The direct proof rule:

If you have such a proof, then you can conclude that $A \rightarrow B$ is true

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.	<i>q</i>	Given
2.	$(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{r}$	Given
	3.1. <i>p</i>	Assumption
	3.2. <i>p</i> ∧ <i>q</i>	Intro \: 1, 3.1
	3.3. <i>r</i>	MP: 2, 3.2
3.	$p \rightarrow r$	Direct Proof
Example

Where do we start? We have no givens...

Example

Prove: $(p \land q) \rightarrow (p \lor q)$

1.9.
$$p \lor q$$
??1. $(p \land q) \rightarrow (p \lor q)$ Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \land q$ 1.2. p1.3. $p \lor q$ 1. $(p \land q) \rightarrow (p \lor q)$ Assumption Elim A: 1.1 Intro A: 1.2 Direct Proof

Applications of Logical Inference

• Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

- Use introduction rules to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use elimination rules to break down the given formulas to get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

?. $(p \lor r) \land q$?

...

1. $p \rightarrow q$	Given	
2. <i>p</i>	Given	Use elimination rules
3. <i>q</i>	MP: 2, 1	to move down
		*

$$(p \lor r) \land q$$
?

Use **introduction** rules to move **up**

1. $p \rightarrow q$	Given	
2. <i>p</i>	Given	Use elimination rules
3. <i>q</i>	MP: 2, 1	to move <mark>down</mark>
		+

?. $p \lor r$?. q?. $(p \lor r) \land q$ Intro \land

...

Use **introduction** rules to move **up**

1. <i>p</i> ∧ <i>q</i>	Given
2. <i>p</i>	Elim ∧: 1
3. <i>q</i>	Elim ∧ : 1

$$(p \lor r) \land q$$
 ?

...

Could wait on Elim Λ (but there is no reason to)

Use **elimination** rules to move **down**

Use **introduction** rules to move **up**

Exception: Intro V (must wait until you know which one is true)

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \land (\boldsymbol{q} \rightarrow \boldsymbol{r})$	Assumption
1.2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Elim ^: 1.1
1.3.	$m{q} ightarrow m{r}$	Elim ∧: 1.1

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1.	$(\boldsymbol{p} ightarrow \boldsymbol{q}) \wedge (\boldsymbol{q} ightarrow \boldsymbol{q})$	→ r) Assumption
1.2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Elim ∧: 1.1
1.3.	$oldsymbol{q} ightarrow oldsymbol{r}$	Elim ∧: 1.1
	1.4.1. <i>p</i>	Assumption

1.4.? r1.4. $p \rightarrow r$ Direct Proof 1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:	$((p \rightarrow q) \land (q))$	$q \rightarrow r)) \rightarrow (p \rightarrow r)$
1.1	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge (\boldsymbol{q})$	$q \rightarrow r$) Assumption
1.2	$p \rightarrow q$	Elim ∧: 1.1
1.3	$a \to r$	Elim ∧: 1.1
	1.4.1. <i>p</i>	Assumption
	1.4.2. <i>q</i>	MP: 1.2, 1.4.1
	1.4.3. <i>r</i>	MP: 1.3, 1.4.2
1.4	. $p ightarrow r$	Direct Proof
1. ((<i>p</i>	$(\rightarrow q) \land (q \rightarrow r)$	$)) \rightarrow (p \rightarrow r)$ Direct Proof

Minimal Rules for Propositional Logic

Can get away with just these:

Rules for Propositional Logic with Tautology

More rules makes proofs easier

More Rules for Propositional Logic

More rules makes proofs easier

useful for proving things without the Tautology rule

Other Rules for Propositional Logic

Some rules can be written in different ways

– e.g., two different elimination rules for " \vee "

these rules are equally capable

Rules for Propositional Logic w/o Tautology

- Posted a video on our rules for Propositional Logic
 - motivation and walkthrough for the new rules
 - two example proofs using them
 - mentions some applications outside of 311
- Please watch that by Wednesday
 - less than 20 minutes
 - link is on the Topics page under the Topic 3 lecture

Inference Rules for Quantifiers: First look

Elim 🗄

Intro ∀

My First Predicate Logic Proof

Prove $(\forall x P(x)) \rightarrow (\exists x P(x))$

Domain of Discourse

Integers

The main connective is implication so Direct Proof seems good

?

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5. $\exists x P(x)$ Intro $\exists : \bigcirc$ That requires P(c) for some c. **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)**1.5.** $\exists x P(x)$ **1.** $\forall x P(x) \rightarrow \exists x P(x)$ **?** Intro ∃: 1.4

Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)**1.5.** $\exists x P(x)$ **1.** $\forall x P(x) \rightarrow \exists x P(x)$

Elim ∀: 1.1 Intro ∃: 1.4

Direct Proof

- **1.1.** $\forall x P(x)$ **1.2.** P(5)**1.2.** $\exists x P(x)$
- **1.3.** $\exists x P(x)$

Assumption Elim ∀: 1.1 Intro ∃: 1.2

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

This follows our usual strategy — eliminate forward, introduce backward — but it is weird...

How did we know to use 5? We didn't! We just guessed it.

Randomly guessing numbers is not good proof strategy!

Use **elimination** rules to move **down**

Use **introduction** rules to move **up**

Exception: Intro V / ∃ (must wait until you know which one is true)

1. ∀ <i>x P</i> (<i>x</i>)	Given	Exception: Elim ∀ (must wait until you know which one you need)
2. $P(100) \rightarrow Q(100)$	Given	Use elimination rules
3. <i>P</i> (1)	Elim ∀: 1	to move down
4. <i>P</i> (2)	Elim ∀: 1	
5. <i>P</i>(3)	Elim ∀: 1	
•••		Use introduction rules
?. $\exists x Q(x)$?	to move <mark>up</mark>

Our General Proof Strategy

- Intro ∃ and Elim ∀ are creative steps
 - need to know the right object to use make the wrong choice and the proof won't work
 - the other rules are *mechanical*

you can apply them blindly without thinking too hard

• Requires your understanding (and intuition) of the objects in question

– i.e., your "domain knowledge"

Predicate Logic Proofs with more content

- Want to be able to use domain knowledge so that proofs are about things we understand
- Example:

Domain of Discourse Integers

Given the basic properties of arithmetic on integers, define:

Predicate Definitions
Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	6 = 2·3	Algebra
2.	∃y (6 = 2 ·y)	Intro ∃: 1
3.	Even (6)	Definition of Even
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Domain of Discourse Integers Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "..."

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "..."

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Def of Even: 3
4.	Prime(2)*	Property of integers
5.	Even(2) <pre>^ Prime(2)</pre>	Intro ∧: 3, 4
6.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

Let a be an arbitrary integer

Even and Odd	Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers	
$\underbrace{Intro \forall}^{\texttt{`Let a be arbitrary}^{\texttt{``P(a)}}}_{\text{\therefore}} \underbrace{Elim \exists}_{\text{\therefore}} \\ \forall x P(x) \\ \vdots P$	∃x P(x) P(c) for some <i>special</i> ** c	
Prove: "The square of any even number is even."		
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$		
Let a be an arbitrary integer		
1.1.1 Even(a)	Assumption	
1.1.2 ∃y (a = 2y)	Definition of Even	
1.1.3 a = 2 b	Elim E	
1.1.4 $a^2 = 2(2b^2)$	Algebra	
1.1.5 ∃y (a ² = 2y)	Intro \exists Used $a^2 = 2c$ for $c=2b^2$	
1.1.6 Even(a ²)	Definition of Even	
1.1 Even(a)→Even(a ²)	Direct proof	
1. $\forall x (Even(x) \rightarrow Even(x^2))$	Intro \forall	

Even and Odd	Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers	
$\begin{array}{c c} \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \\$	∃x P(x) (c) for some special ** c	
Prove: "The square of any even number is even."		
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$		
Let a be an arbitrary integer		
1.1.1 Even(a)	Assumption	
1.1.2 ∃y (a = 2y)	Definition of Even: 1.1.1	
1.1.3 a = 2b	Elim ∃: 1.1.2	
1.1.4 $a^2 = 2(2b^2)$	Algebra: 1.1.3	
1.1.5 ∃y (a ² = 2y)	Intro 3: 1.1.4	
1.1.6 Even(a ²)	Definition of Even: 1.1.5	
1.1 Even(a)→Even(a ²)	Direct proof	
1. $\forall x (Even(x) \rightarrow Even(x^2))$	Intro ∀	

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's) even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences even on subformulas

Rules for Propositional Logic w/o Tautology

Recall: Important Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $\ p \wedge q \equiv q \wedge p$

Associative

$$-(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$- (p \land q) \land r \equiv p \land (q \land r)$$

Distributive

$$- \ p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$- p \lor (p \land q) \equiv p$$

$$- p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv T$$

 $- p \land \neg p \equiv F$

Recall: Proof by Cases

Some rules can be written in different ways

– e.g., two different elimination rules for " \vee "

these rules are equally capable

Show that **P** follows from $P \lor (P \land Q)$...

Show that **P** follows from $P \lor (P \land Q)$...

1.
$$P \lor (P \land Q)$$
 Given

2. $\boldsymbol{P} \rightarrow \boldsymbol{P}$

 3. $(P \land Q) \rightarrow P$?

 4. P Cases: 1, 2, 3

?

Show that **P** follows from $P \lor (P \land Q)$...

1. $P \lor (P \land Q)$ Given

2. $P \rightarrow P$ Direct Proof 3.1. $P \wedge Q$ Assumption 3.2. P ? 3. $(P \wedge Q) \rightarrow P$ Direct Proof

Show that **P** follows from $P \lor (P \land Q)$...

1. $P \lor (P \land Q)$ Given

2. $P \rightarrow P$ 3.1. $P \wedge Q$ 3.2. P3. $(P \wedge Q) \rightarrow P$ 4. P Direct Proof Assumption Elim ∧: 3.1 Direct Proof Cases: 1, 2, 3

Show that **P** follows from $P \lor (P \land Q)$...

1. $\boldsymbol{P} \lor (\boldsymbol{P} \land \boldsymbol{Q})$	Given
2.1. <i>P</i>	Assumption
2.?. <i>P</i>	?
2. $\boldsymbol{P} \rightarrow \boldsymbol{P}$	Direct Proof
3.1. <i>P</i> ∧ <i>Q</i>	Assumption
3.2. P	Elim ∧: 3.1
3. $(\boldsymbol{P} \wedge \boldsymbol{Q}) \rightarrow \boldsymbol{P}$	Direct Proof

Show that **P** follows from $P \lor (P \land Q)$...

1. $P \lor (P \land Q)$ Given2.1. PAssumption2. $P \rightarrow P$ Direct Proof3.1. $P \land Q$ Assumption3.2. PElim \land : 3.13. $(P \land Q) \rightarrow P$ Direct Proof4. PCases: 1, 2, 3

Show $(P \land Q) \lor (P \land R)$ follows from $P \land (Q \lor R)$...

1. $P \land (Q \lor R)$ Given

6. $(P \land Q) \lor (P \land R)$

Show $(P \land Q) \lor (P \land R)$ follows from $P \land (Q \lor R)$...

1.	$\boldsymbol{P} \wedge (\boldsymbol{Q} \vee \boldsymbol{R})$	Given
2.	P	Elim ∧: 1
3.	$\boldsymbol{Q} \vee \boldsymbol{R}$	Elim ∧: 1

Show $(P \land Q) \lor (P \land R)$ follows from $P \land (Q \lor R)$...

1.	$\boldsymbol{P} \wedge (\boldsymbol{Q} \vee \boldsymbol{R})$	Given
2.	P	Elim ∧: 1
3.	$\boldsymbol{Q} \vee \boldsymbol{R}$	Elim ∧: 1

4. $\boldsymbol{Q} \rightarrow (\boldsymbol{P} \land \boldsymbol{Q}) \lor (\boldsymbol{P} \land \boldsymbol{R})$?

5. $R \rightarrow (P \land Q) \lor (P \land R)$? 6. $(P \land Q) \lor (P \land R)$ Cases: 3, 4, 5

Show $(P \land Q) \lor (P \land R)$ follows from $P \land (Q \lor R)$...

1. $P \land (Q \lor R)$	Given
2. <i>P</i>	Elim ∧: 1
$3. Q \lor R$	Elim ∧: 1
4.1. <i>Q</i>	Assumption

4.?. $(P \land Q) \lor (P \land R)$ 4. $Q \rightarrow (P \land Q) \lor (P \land R)$? Direct Proof

5. $R \to (P \land Q) \lor (P \land R)$?6. $(P \land Q) \lor (P \land R)$ Cases: 3, 4, 5

Show $(P \land Q) \lor (P \land R)$ follows from $P \land (Q \lor R)$...

1. $P \land (Q \lor R)$	Given
2. P	Elim ∧: 1
3. $Q \vee R$	Elim ∧: 1
4.1. Q	Assumption
4.2. $P \wedge Q$	Intro ∧: 2, 4.1
4.3. $(P \land Q) \lor (P \land R)$	Intro ∨: 4.2
4. $\boldsymbol{Q} \to (\boldsymbol{P} \land \boldsymbol{Q}) \lor (\boldsymbol{P} \land \boldsymbol{R})$	Direct Proof

5. $R \rightarrow (P \land Q) \lor (P \land R)$? 6. $(P \land Q) \lor (P \land R)$ Cas

Cases: 3, 4, 5

Show $(P \land Q) \lor (P \land R)$ follows from $P \land (Q \lor R)$...

1. $P \land (Q \lor R)$	Given
2. <i>P</i>	Elim ∧: 1
3. $Q \vee R$	Elim ∧: 1
4.1. <i>Q</i>	Assumption
4.2. $P \land Q$	Intro ∧: 2, 4.1
4.3. $(P \land Q) \lor (P \land R)$	Intro ∨: 4.2
4. $\boldsymbol{Q} \rightarrow (\boldsymbol{P} \land \boldsymbol{Q}) \lor (\boldsymbol{P} \land \boldsymbol{R})$	Direct Proof
5.1. <i>R</i>	Assumption

5.3. $(P \land Q) \lor (P \land R)$ 5. $R \rightarrow (P \land Q) \lor (P \land R)$ 6. $(P \land Q) \lor (P \land R)$? Direct Proof Cases: 3, 4, 5

Show $(P \land Q) \lor (P \land R)$ follows from $P \land (Q \lor R)$...

1. $P \land (Q \lor R)$	Given
2. P	Elim ∧: 1
3. $Q \vee R$	Elim ∧: 1
4.1. <i>Q</i>	Assumption
4.2. $P \wedge Q$	Intro ∧: 2, 4.1
4.3. $(P \land Q) \lor (P \land R)$	Intro ∨: 4.2
4. $\boldsymbol{Q} \rightarrow (\boldsymbol{P} \wedge \boldsymbol{Q}) \lor (\boldsymbol{P} \wedge \boldsymbol{R})$	Direct Proof
5.1. <i>R</i>	Assumption
5.2. $P \wedge R$	Intro ∧: 2, 5.1
5.3. $(P \land Q) \lor (P \land R)$	Intro ∨: 5.2
5. $\boldsymbol{R} \rightarrow (\boldsymbol{P} \land \boldsymbol{Q}) \lor (\boldsymbol{P} \land \boldsymbol{R})$	Direct Proof
6. $(P \land Q) \lor (P \land R)$	Cases: 3, 4, 5

Recall: the Latin Rules

More rules makes proofs easier

useful for proving things without the Tautology rule

Example: De Morgan's Law via Latin Rules

Show that $\neg (A \lor B)$ follows from $\neg A \land \neg B$...

1. $\neg A \land \neg B$ Given

1. $\neg A \land \neg B$	Given
2. ¬ <i>A</i>	Elim ∧: 1
3. ¬ <i>B</i>	Elim ∧: 1

Show that $\neg (A \lor B)$ follows from $\neg A \land \neg B$...

1. $\neg A \land \neg B$	Given
2. ¬ <i>A</i>	Elim ∧: 1
3. ¬ <i>B</i>	Elim ∧: 1
4.1. <i>A</i> ∨ <i>B</i>	Assumption

4.4. F 4. $\neg (A \lor B)$

Show that $\neg (A \lor B)$ follows from $\neg A \land \neg B$...

1. $\neg A \land \neg B$	Given
2. ¬ <i>A</i>	Elim ∧: 1
3. ¬ <i>B</i>	Elim ∧: 1
4.1. <i>A</i> ∨ <i>B</i>	Assumption

4.2. $A \rightarrow F$

?

4.3. $B \to F$? 4.4. F Cases: 4.1, 4.2, 4.3 4. $\neg (A \lor B)$ Absurdum

1. $\neg A \land \neg B$	Given	
2. ¬ <i>A</i>	Elim ∧: 1	
3. ¬ <i>B</i>	Elim ∧: 1	
4.1. <i>A</i> ∨ <i>B</i>	Assumption	
4.2.1. <mark>A</mark>	Assumption	
4.2.2. F	Principium $-A; A$ Contradictionis $\therefore F$	
4.2. $A \rightarrow F$	Direct Proof	
4.3. $B \rightarrow F$?	
4.4. F	Cases: 4.1, 4.2, 4.3	
4. $\neg (A \lor B)$	Absurdum	

1. $\neg A \land \neg B$	Given
2. ¬ <i>A</i>	Elim ∧: 1
3. ¬ <i>B</i>	Elim ∧: 1
4.1. <i>A</i> ∨ <i>B</i>	Assumption
4.2.1. <u>A</u>	Assumption
4.2.2. F	Contradiction: 4.2.1, 2
4.2. $A \rightarrow F$	Direct Proof
4.3. $\boldsymbol{B} \rightarrow \boldsymbol{F}$?
4.4. F	Cases: 4.1, 4.2, 4.3
4. $\neg (A \lor B)$	Absurdum

1. $\neg A \land \neg B$	Given	
2. ¬ <i>A</i>	Elim ∧: 1	
3. ¬ <i>B</i>	Elim ∧: 1	
$4.1. A \lor B$	Assumption	
4.2.1. <i>A</i>	Assumption	
4.2.2. F	Contradiction: 4.2.1, 2	
4.2. $A \rightarrow \mathbf{F}$	Direct Proof	
4.3.1. B	Assumption	
4.3.2. F	?	
4.3. $B \rightarrow F$	Direct Proof	
4.4. F	Cases: 4.1, 4.2, 4.3	
4. $\neg (A \lor B)$	Absurdum	

1. $\neg A \land \neg B$	Given
2. ¬ <i>A</i>	Elim ∧: 1
3. ¬ <i>B</i>	Elim ∧: 1
4.1. <i>A</i> ∨ <i>B</i>	Assumption
4.2.1. <i>A</i>	Assumption
4.2.2. F	Contradiction: 4.2.1, 2
4.2. $A \rightarrow \mathbf{F}$	Direct Proof
4.3.1. <i>B</i>	Assumption
4.3.2. F	Contradiction: 4.3.1, 3
4.3. $\boldsymbol{B} \rightarrow \boldsymbol{F}$	Direct Proof
4.4. F	Cases: 4.1, 4.2, 4.3
4. $\neg (A \lor B)$	Absurdum

Recall: Important Equivalences

- Identity
 - $p \wedge T \equiv p$
 - $p \lor F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $-\ p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $\ p \wedge q \equiv q \wedge p$

Associative

$$-(p \lor q) \lor r \equiv p \lor (q \lor r)$$

$$- (p \land q) \land r \equiv p \land (q \land r)$$

Distributive

$$- p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$- p \lor (p \land q) \equiv p$$
$$- p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv T$$
$$- p \land \neg p \equiv F$$

Does not follow from Latin rules

Recall: Inference Rules for Quantifiers

Recall; Proofs with Domain Knowledge

- Want to be able to use domain knowledge so that proofs are about things we understand
- Example:

Domain of Discourse Integers

 Given the basic properties of arithmetic on integers, define:

Predicate Definitions Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Formal proof of: $\forall x \forall y (Odd(x) \land Odd(y) \rightarrow Even(x+y))$

1. $\forall x \forall y (Odd(x) \land Odd(y) \rightarrow Even(x+y))$?

Let a and b be an arbitrary integer

1.1 $Odd(a) \land Odd(b) \rightarrow Even(a+b)$?1. $\forall x \forall y (Odd(x) \land Odd(y) \rightarrow Even(x+y))$ Intro \forall

1.1.? Even(a + b)?1.1 Odd(a) \land Odd(b) \rightarrow Even(a+b)Direct proof1. $\forall x \forall y (Odd(x) \land Odd(y) \rightarrow Even(x+y))$ Intro \forall

1.1.? Even(a + b)?1.1 Odd(a) \land Odd(b) \rightarrow Even(a+b)Direct proof1. $\forall x \forall y (Odd(x) \land Odd(y) \rightarrow Even(x+y))$ Intro \forall

1. $\forall x \forall y (Odd(x) \land Odd(y) \rightarrow Even(x+y))$ Intro \forall

Even and Odd		Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers	
Intro ∀ ["] Let a be arbitrary*"…P(a) ∴ ∀x P(x)	Elim∃ ∃x P(x) ∴ P(c) for some spec	cial** c	
Let a and b be an arbitrary integer			
1.1.1 Odd(a) ∧ Odd	(b) A	Assumption	
1.1.2 Odd(a)	E	lim ∧: 1.1.1	
1.1.3 Odd(b)	E	lim ∧: 1.1.1	
1.1.4 ∃y (a = 2y+1)	C	Def of Odd: 1.1.2	
1.1.5 ∃y (b = 2y+1)	C	Def of Odd: 1.1.3	
1.1.6 a = 2c + 1	E	lim 3: 1.1.4	
1.1.7 b = 2 d + 1	E	lim ∃: 1.1.5	
1.1.? ∃y (a + b = 2y)) ?		
1.1.? Even(a + b)	C	Def of Even	
1.1 Odd(a) \land Odd(b) \rightarrow	Even(a+b) Direc	ct proof	
1. $\forall \mathbf{x} \forall \mathbf{y} (\text{Odd}(\mathbf{x}) \land \text{Odd}(\mathbf{y}) \land$	→ Even(x+y)) Intro ∀	4	

Even and Odd	Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers		
	Elim∃ $\exists x P(x)$ ∴ P(c) for some special ** c		
Let a and b be an arbitrary integer			
1.1.1 Odd(a) ∧ Odd	d(b) Assumption		
1.1.2 Odd(a)	Elim ∧: 1.1.1		
1.1.3 Odd(b)	Elim ∧: 1.1.1		
1.1.4 ∃y (a = 2y+1)	Def of Odd: 1.1.2		
1.1.5 ∃y (b = 2y+1)	Def of Odd: 1.1.3		
1.1.6 a = 2 c + 1	Elim ∃: 1.1.4		
1.1.7 b = $2d + 1$	Elim ∃: 1.1.5		
1.1.8 $a + b = 2(c + c)$	d +1) Algebra: 1.1.6–7		
1.1.9 ∃y (a + b = 2y	/) Intro ∃: 1.1.8		
1.1.10 Even(a + b)	Def of Even: 1.1.9		
1.1 Odd(a) ∧ Odd(b) →	Even(a+b) Direct proof		
1. $\forall x \forall y (Odd(x) \land Odd(y))$	\rightarrow Even(x + y)) Intro \forall		

- Formal proofs follow <u>simple</u> well-defined rules
 - "assembly language" (like byte code) for proofs
 - easy for a machine to check
- Important to understand
 - mental "foundations" of Computer Science
 - has useful applications, e.g., Programming Languages

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they can be tedious and impractical...

Domain of Discourse Real Numbers

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1. Rational(\mathbf{x}) \wedge Rational(\mathbf{y}) \rightarrow Rational(\mathbf{xy}) ?

Domain of Discourse Real Numbers

Predicate Definitions

Rational(x) := $\exists a \exists b$ (Integer(a) \land Integer(b) \land (x = a/b) \land ($b \neq 0$))

Prove: "If x and y are rational, then xy is rational."

1.1. Rational(\mathbf{x}) \wedge Rational(\mathbf{y})

Assumption

1.?. Rational(**x** + **y**)

Def of Rational 1. Rational(x) \land Rational(y) \rightarrow Rational(xy) Direct Proof

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.1. Rational(\mathbf{x}) \wedge Rational(\mathbf{y})

Assumption

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$. Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

1.?. Rational(x + y)Def of Rational1. Rational(x) \land Rational(y) \rightarrow Rational(xy)Direct Proof

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose x and y are rational.

1.1 Rational(x) \land Rational(y) **Assumption**

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$.

...

1.4 $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.2 1.5** $(x = a/b) \land \operatorname{Integer}(a) \land \operatorname{Integer}(b) \land (b \neq 0)$ **Elim** \exists : **1.4 1.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.3 1.7** $(y = c/d) \land \operatorname{Integer}(c) \land \operatorname{Integer}(d) \land (d \neq 0)$ **Elim** \exists : **1.4**

Domain of Discourse Real Numbers

Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose x and y are rational.

1.1 Rational(x) \land Rational(y) **Assumption**

??

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$.

...

1.4 $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.2 1.5** $(x = a/b) \land \operatorname{Integer}(a) \land \operatorname{Integer}(b) \land (b \neq 0)$ **Elim** \exists : **1.4 1.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.3 1.7** $(y = c/d) \land \operatorname{Integer}(c) \land \operatorname{Integer}(d) \land (d \neq 0)$ **Elim** \exists : **1.4**

Domain of Discourse Real Numbers

Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose x and y are rational.

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$.

...

1.1 Rational(x) \land Rational(y) Assumption**1.2** Rational(x)Elim \land : **1.11.3** Rational(y)Elim \land : **1.11.4** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$
Def Rational: **1.21.5** $(x = a/b) \land$ Integer(a) \land Integer(b) $\land (b \neq 0)$
Elim \exists : **1.41.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$
Def Rational: **1.31.7** $(y = c/d) \land$ Integer(c) \land Integer(d) $\land (d \neq 0)$
Elim \exists : **1.4**

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$... **1.7** $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$

Multiplying, we get xy = (ac)/(bd).

1.10
$$xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$$

Algebra

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$... **1.7** $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$

??

Multiplying, we get xy = (ac)/(bd).

1.10
$$xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$$

Algebra

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ **1.7** $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$ **1.8** x = a/b **1.9** y = c/d **1.10** xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)Algebra

Multiplying, we get xy = (ac)/(bd).

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

 $1.5 (x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ $1.7 (y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$ $1.11 \ b \neq 0 \qquad \qquad \text{Elim } \land: 1.5^*$ $1.12 \ d \neq 0 \qquad \qquad \text{Elim } \land: 1.7$ Since b and d are non-zero, so is bd. $1.13 \ bd \neq 0 \qquad \qquad \text{Prop of Integer Mult}$

* Oops, I skipped steps here...

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land (\text{Integer}(a) \land (\text{Integer}(b) \land (b \neq 0)))$ **1.7** $(y = c/d) \land (\text{Integer}(c) \land (\text{Integer}(d) \land (d \neq 0)))$ **1.11** $\text{Integer}(a) \land (\text{Integer}(b) \land (b \neq 0))$ **1.12** $\text{Integer}(b) \land (b \neq 0)$ **1.13** $b \neq 0$ **Elim** \land : **1.11 Elim** \land : **1.12**

We left out the parentheses...

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

 $1.5 (x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ $1.7 (y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$ $1.13 \ b \neq 0$ Elim $\land: 1.5$ $1.16 \ d \neq 0$ Elim $\land: 1.7$ Since b and d are non-zero, so is bd. $1.17 \ bd \neq 0$ Prop of Integer Mult

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$...1.7 $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$...1.19 Integer(a)Elim \land : 1.5*...1.22 Integer(b)Elim \land : 1.5*...1.24 Integer(c)Elim \land : 1.7*1.27 Integer(d)Elim \land : 1.7*1.28 Integer(ac)Prop of Integer Mult1.29 Integer(bd)

Furthermore, ac and bd are integers.

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)**1.17** $bd \neq 0$ **Prop of Integer Mult 1.28** Integer(*ac*) **Prop of Integer Mult 1.29** Integer(*bd*) **Prop of Integer Mult 1.30** Integer(*bd*) \land (*bd* \neq 0) Intro \land : **1.29**, **1.17 1.31** Integer(*ac*) \land Integer(*bd*) \land (*bd* \neq 0) Intro ∧: 1.28, 1.30 **1.32** $(xy = (a/b)/(c/d)) \land \operatorname{Integer}(ac) \land$ Integer(bd) \land ($bd \neq 0$) Intro \land : **1.10**, **1.31 1.33** $\exists p \exists q ((xy = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$ Intro ∃: 1.32 **1.34** Rational(xy)Def of Rational: 1.3

By definition, then, xy is rational.

Predicate Definitions			
Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$			
Prove: "If x and y are rational, then xy is rational."			
Suppose x and y are rational.	1.1 Rational(x) \land Rational(y) Assumption		
	1.10 $xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$		
	1.17 $bd \neq 0$	Prop of Integer Mult	
Furthermore, ac and bd are integers.	1.28 Integer(<i>ac</i>) 1.29 Integer(<i>bd</i>)	Prop of Integer Mult Prop of Integer Mult	
By definition, then, xy is rational.		Def of Rational: 1.32	

And finally...

Predicate Definitions		
Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$		
Prove: "If x and y are rational, then xy is rational."		
Suppose x and y are rational.	1.1 Rational(x) \land Rational(y) Assumption	
	1.10 $xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$	
	1.17 $bd \neq 0$	Prop of Integer Mult
Furthermore, ac and bd are integers.	1.28 Integer(<i>ac</i>) 1.29 Integer(<i>bd</i>)	Prop of Integer Mult Prop of Integer Mult
By definition, then, xy is rational.	 1.34 Rational(<i>xy</i>)	Def of Rational: 1.32

1. Rational(x) \land Rational(y) \rightarrow Rational(xy) **Direct Proof**
Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Proof: Suppose x and y are rational.

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational. ■

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they can be tedious and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead's formal proof that 1+1 = 2 is several hundred pages long we allow ourselves to cite "Arithmetic", "Algebra", etc.
- *Historically*, rarely used for "real mathematics"...

- Vastly more common in CS and math
- High-level language that lets us work more quickly
 - not necessary to spell out every detail
 - <u>reader</u> checks that the writer is not skipping too much the reader is the "compiler" for English proofs they implement a community standard of correctness
- English proofs require understanding formal proofs
 - English proof follows the structure of a formal proof
 - we will learn English proofs by translating from formal eventually, we will write English directly

- Vastly more common in CS and math
- High-level language that lets us work more quickly
 - not necessary to spell out every detail
 - <u>reader</u> checks that the writer is not skipping too much the reader is the "compiler" for English proofs they implement a community standard of correctness
- Examples of what can be skipped (more to come):
 - Intro and Elim \wedge
 - explicitly stating existence claims (Elim ∃ immediately)
 - explicitly invoking Direct Proof (clear from context)