
CSE 311: Foundations of Computing
Topic 3: Proofs



Logical Inference

• So far, we’ve considered:
– how to understand and express things using 

propositional and predicate logic
– how to compute using Propositional logic (circuits)
– how to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– equivalence is a small part of this



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p q A(p,q) B(p,q) 
T T T

T F T

F T F

F F F



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A(p,q) B(p,q) 
T T T T

T F T T

F T F

F F F

A ⇒ B



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

When we zoom out, what have we proven?

p q A(p,q) B(p,q) 
T T T T

T F T T

F T F ?

F F F ?



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

When we zoom out, what have we proven?

p q A(p,q) B(p,q) A ® B
T T T T T

T F T T T

F T F T T

F F F F T

(A ® B) º T



New Perspective

Equivalences
 A º B and (A « B) º T are the same

Inference
 A ⇒ B and (A ® B) º T are the same

Can do the inference by  zooming in 
to the rows where A is true
– that is, we assume that A is true



Proofs

• Start with given facts (hypotheses)
• Use rules of inference to extend set of facts
• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If A and A ® B are both true, then B must be true

• Write this rule as

• Given: 
– If it is Friday, then you have a 311 lecture today. 
– It is Friday.

• Therefore, by Modus Ponens:  
– You have a 311 lecture today.

A ; A ® B
∴  B



My First Proof!

Show that r follows from p, p ® q, and q ® r

 
1.  𝒑	 Given
2.  𝒑 → 𝒒     Given
3.  𝒒	®	𝒓 Given
4.  
5.  

Modus Ponens



My First Proof!

Show that r follows from p, p ® q, and q ® r

 
1.  𝒑            Given
2.  𝒑 → 𝒒     Given
3.  𝒒	®	𝒓 Given
4.  𝒒  MP: 1, 2
5.  𝒓 MP: 4, 3

Modus Ponens



1.  𝒑 → 𝒒              Given
2.  ¬𝒒                 Given
3.  ¬𝒒	®	¬𝒑     Contrapositive: 1
4.  ¬𝒑                 MP: 2, 3

Proofs can use equivalences too

Show that ¬p follows from p ® q and ¬q

Modus Ponens



Inference Rules

A  ;  B 
∴ C  ,  D

A  ;  A ® B   
∴        B   

Requirements:
Conclusions:

If A is true and B is true ….

Then, C must 
be true

Then D must 
be true

Example (Modus Ponens):

If I have A and A ® B both true,
Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴  A Ú¬A 

Requirements:
Conclusions:

If I have nothing…

Example (Excluded Middle):

A Ú¬A must be true.

Then D must 
be true

Then, C must 
be true



Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

A ; A ® B
∴  B

How To Start:
 We have givens, find the ones that go 
 together and use them.  Now, treat new
 things as givens, and repeat.

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒑 ∧ 𝒒 → 𝒓 Given

A ; A ® B
∴  B

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒑 ∧ 𝒒 → 𝒓 Given
4. 𝒒 MP: 1, 2
5. 𝒑 ∧ 𝒒 Intro Ù: 1, 4
6. 𝒓 MP: 5, 3



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 

𝒒𝒑   ;
𝒑 ∧ 𝒒	 ; 𝒑 ∧ 𝒒 → 𝒓

𝒓

MP
Intro Ù

MP

𝒑	 ; 	 𝒑 → 𝒒



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 
1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒 MP: 1, 2
4. 𝒑 ∧ 𝒒 Intro Ù: 1, 3
5. 𝒑 ∧ 𝒒 → 𝒓 Given
6. 𝒓 MP: 4, 5

𝒒𝒑   ;
𝒑 ∧ 𝒒	 ; 𝒑 ∧ 𝒒 → 𝒓

𝒓

MP
Intro Ù

MP

Two visuals of the same proof.
We will use the right one, but if 
the bottom one helps you 
think about it, that’s great!

𝒑	 ; 	 𝒑 → 𝒒



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 Idea: Work 
backwards!

First: Write down givens 
and goal



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 MP: 2, 

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• We can use 𝒒 → ¬𝒓 to get there.
• The justification between 2 and 20 

looks like “elim →” which is MP.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• Now, we have a new “hole”
• We need to prove 𝒒…

• Notice that at this point, if we 
prove 𝒒, we’ve proven ¬𝒓…



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

This looks like or-elimination.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

18. ¬¬𝒔
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19

¬¬𝒔 doesn’t show up in the givens but
𝒔	does and we can use equivalences



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔
18. ¬¬𝒔 Double Negation: 17
19. 𝒒 Elim ∨: 3, 18
20. ¬𝒓 MP: 2, 19 



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given

2. 𝒒 → ¬𝒓 Given

3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔 Elim ∧: 1

18. ¬¬𝒔 Double Negation: 17

19. 𝒒 Elim ∨: 3, 18

20. ¬𝒓 MP: 2, 19 

No holes left!  We just 
need to clean up a bit.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given
4. 𝒔 Elim ∧: 1
5. ¬¬𝒔 Double Negation: 4
6. 𝒒 Elim ∨: 3, 5
7. ¬𝒓 MP: 2, 6 



• You can use equivalences to make substitutions
    of any sub-formula.
     e.g.  𝒑®	𝒓 	Ú	𝒒 ≡ ¬𝒑	Ú	𝒓 	Ú	𝒒

• Inference rules only can be applied to whole 
formulas (not correct otherwise).

     e.g. 1.  𝒑 → 𝒓                 given
             2.  (𝒑	Ú	𝒒)	®	𝒓	 intro Ú from 1.

 

Important: Applications of Inference Rules

Does not follow!  e.g . p=F, q=T, r=F



Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 
it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Recall: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A B 
T T T T

T F T T

F T F

F F F

A ⇒ B



Recall: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where B is true:

When we zoom out, what have we proven?

p q A B A ® B
T T T T T

T F T T T

F T F T T

F F F F T

(A ® B) º T



Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 
it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Not like other rules

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Assuming A, we can prove B.”
• The direct proof rule:

  If you have such a proof, then you can conclude        
  that A ® B is true

A Þ B  
∴ A ® B



Proofs using the direct proof rule

Show that p ® r follows from q and (p Ù q) ® r

1.   𝒒                      Given
2.  (𝒑	Ù	𝒒)	®	𝒓    Given
         3.1.   𝒑 Assumption
        3.2.   
        3.3.   𝒓            ??
3.    𝒑 → 𝒓             Direct Proof

This is a 
proof

of 𝒑 → 𝒓

If we know 𝒑 is true…
Then, we’ve shown     
           r is true



Proofs using the direct proof rule

Show that p ® r follows from q and (p Ù q) ® r

1.   𝒒                      Given
2.  (𝒑	Ù	𝒒)	®	𝒓    Given
         3.1.   𝒑 Assumption
        3.2.   𝒑	Ù	𝒒     Intro Ù: 1, 3.1
        3.3.   𝒓            MP: 2, 3.2
3.    𝒑 → 𝒓             Direct Proof



Prove:  (p Ù q) ® (p Ú q)

Example

There MUST be an application of the
Direct Proof Rule (or an equivalence)

to prove this implication.

Where do we start?  We have no givens…



Example

Prove:  (p Ù q) ® (p Ú q)

1.1.   𝒑	Ù	𝒒                      Assumption

    
    1.9.   𝒑	Ú	𝒒      ??
1.   (𝒑 ∧ 𝒒)	®	(𝒑	Ú	𝒒)     Direct Proof



Example

Prove:  (p Ù q) ® (p Ú q)

1.1.   𝒑	Ù	𝒒                      Assumption
    1.2.   𝒑           Elim Ù: 1.1
    1.3.   𝒑	Ú	𝒒      Intro Ú: 1.2
1.   (𝒑 ∧ 𝒒)	®	(𝒑	Ú	𝒒)     Direct Proof



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution



Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 
it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Our General Proof Strategy

1. Use introduction rules to see how you would 
build up the formula you want to prove from 
pieces of what is given

2. Use elimination rules to break down the given 
formulas to get the pieces you need to do 1.

3. Write the proof beginning with what you figured 
out for 2 followed by 1.



Our General Proof Strategy

1.  𝒑 → 𝒒          Given
2. 𝒑	     Given

…

?.  (𝒑 ∨ 𝒓) ∧ 𝒒  ?

Use elimination rules
to move down



Our General Proof Strategy

1.  𝒑 → 𝒒          Given
2. 𝒑	     Given
3. 𝒒	     MP: 2, 1

…

?.(𝒑 ∨ 𝒓) ∧ 𝒒  ?

Use elimination rules
to move down

Use introduction rules
to move up



Our General Proof Strategy

1.  𝒑 → 𝒒          Given
2. 𝒑	     Given
3. 𝒒	     MP: 2, 1

…

?.  𝒑 ∨ 𝒓
?.  𝒒
?.  (𝒑 ∨ 𝒓) ∧ 𝒒  Intro ∧

Use elimination rules
to move down

Use introduction rules
to move up



Our General Proof Strategy

1.  𝒑 → 𝒒         Given
2. 𝒑	    Given

…

?.  𝒑 ∨ 𝒓            Intro ∨ ??

Use elimination rules
to move down

Use introduction rules
to move up

Exception: Intro ∨
(must wait until you know 

which one is true)



Our General Proof Strategy

1.  𝒑 → 𝒒         Given
2. 𝒑	    Given

…

?.  𝒓    ?
?.  𝒑 ∨ 𝒓            Intro ∨

Use elimination rules
to move down

Use introduction rules
to move up

Exception: Intro ∨
(must wait until you know 

which one is true)



Our General Proof Strategy

1.  𝒑 ∧ 𝒒         Given
2. 𝒑	    Elim ∧: 1
3.  𝒒    Elim ∧ : 1

…

?.(𝒑 ∨ 𝒓) ∧ 𝒒 ?

Use elimination rules
to move down

Use introduction rules
to move up

Exception: Intro ∨
(must wait until you know 

which one is true)

Could wait on Elim ∧
(but there is no reason to)



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof
1.? 𝒑 → 𝒓



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 Elim ∧: 1.1
1.3. 𝒒 → 𝒓 Elim ∧: 1.1

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof
1.? 𝒑 → 𝒓



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 Elim ∧: 1.1
1.3. 𝒒 → 𝒓 Elim ∧: 1.1

1.4.1. 𝒑 Assumption

1.4.? 𝒓
1.4. 𝒑 → 𝒓 Direct Proof

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 Elim ∧: 1.1
1.3. 𝒒 → 𝒓 Elim ∧: 1.1

1.4.1. 𝒑 Assumption
1.4.2. 𝒒 MP: 1.2, 1.4.1
1.4.3. 𝒓 MP: 1.3, 1.4.2

1.4. 𝒑 → 𝒓 Direct Proof
1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof



Minimal Rules for Propositional Logic

Can get away with just these:

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof

∴ A Ú ¬A
Excluded
Middle Note: not non-contradiction



Rules for Propositional Logic with Tautology

More rules makes proofs easier

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof

  A ≡ T
∴ A

Tautology   A ≡ B ; B
∴ A

Equivalent



More Rules for Propositional Logic

More rules makes proofs easier

¬A ; A 
∴ F

A Þ F  
∴ ¬A 

x   
∴ T

Principium
Contradictionis

Reductio Ad 
Absurdum

F    
∴ A

Ex Falso
Quodlibet

Ad Litteram
Verum

useful for proving things
without the Tautology rule



Other Rules for Propositional Logic

Some rules can be written in different ways
– e.g., two different elimination rules for “∨”

A Ú B ; A ® C ; B ® C
∴ C

Cases

A Ú B ; ¬A
∴ B

Elim ∨

these rules are equally capable



Rules for Propositional Logic w/o Tautology

Elim ∧ Intro  ∧

Intro  ∨

Modus Ponens Direct Proof

∧

∨

®

Principium
Contradictionis

Reductio Ad 
Absurdum

Ex Falso
Quodlibet

Ad Litteram
Verum

¬

F / T

Elimination Introduction

Cases



Administrivia

• Posted a video on our rules for Propositional Logic
– motivation and walkthrough for the new rules
– two example proofs using them
– mentions some applications outside of 311

• Please watch that by Wednesday
– less than 20 minutes
– link is on the Topics page under the Topic 3 lecture



Inference Rules for Quantifiers: First look

"x P(x)        
∴          P(a)  (for any a)

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

Elim $ Intro "



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

5.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙 	
The main connective is implication
so Direct Proof seems good 

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙  Direct Proof

1.1. "𝒙	𝑷 𝒙   Assumption

1.5.	 $𝒙	𝑷 𝒙   

We need an $ we don’t have 
so “intro	$” rule makes sense 

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙  Direct Proof

1.1. "𝒙	𝑷 𝒙   Assumption

1.5.	 $𝒙	𝑷 𝒙   Intro $:	

We need an $ we don’t have 
so “intro	$” rule makes sense 

That requires P(c) 
for some c.  

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption
      

1.4 . 𝑷(𝟓)
1.5.	 $𝒙	𝑷 𝒙     Intro $: 1.4

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption

      

1.4 . 𝑷(𝟓)     Elim ": 1.1
1.5.	 $𝒙	𝑷 𝒙     Intro $: 1.4

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove ("x P(x)) ® ($x P(x))

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption
1.2. 𝑷(𝟓)     Elim ": 1.1 
1.3.	 $𝒙	𝑷 𝒙     Intro $: 1.2

Integers
Domain of Discourse

This follows our usual strategy — eliminate forward, 
introduce backward — but it is weird…

How did we know to use 5?

Randomly guessing numbers is not good proof strategy!

We didn't! We just guessed it.



Our General Proof Strategy

1.  "𝒙	( 𝒙 > 𝟗 → 𝑷 𝒙 ) Given

…

?.  $𝒙	𝑷 𝒙     ?

Use elimination rules
to move down

Use introduction rules
to move up



Our General Proof Strategy

1.  "𝒙	( 𝒙 > 𝟗 → 𝑷 𝒙 ) Given

…
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Domain Knowledge

• Intro ∃ and Elim ∀ are creative steps
– need to know the right object to use

make the wrong choice and the proof won't work

– the other rules are mechanical
you can apply them blindly without thinking too hard

• Requires your understanding (and intuition)
of the objects in question
– i.e., your "domain knowledge"



Predicate Logic Proofs with more content

• Want to be able to use domain knowledge
so that proofs are about things we understand

• Example:

• Given the basic properties of arithmetic on integers, 
define:

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions

Integers
Domain of Discourse



A Not so Odd Example

Integers
Domain of Discourse

Formally: prove  $x Even(x) 
Prove  “There is an even number”

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions



A Not so Odd Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse

Formally: prove  $x Even(x) 
Prove  “There is an even number”

1. 	 6 = 2⋅3   Algebra
2.    $y (6 = 2⋅y) Intro $: 1
3.  Even(6)  Definition of Even
4.	 	 $x Even(x)  Intro $: 3



A Prime Example

Integers
Domain of Discourse

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x)) 

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)
Prime(x) := “…”

Predicate Definitions



A Prime Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)
Prime(x) := “…”

Predicate Definitions
Integers

Domain of Discourse

1. 	 2 = 2⋅1      Algebra
2.  $y (2 = 2⋅y)    Intro $: 1
3.  Even(2)     Def of Even: 3
4.  Prime(2)     Property of integers
5.  Even(2) Ù Prime(2)  Intro Ù: 3, 4
6.	 	 $x (Even(x) Ù Prime(x)) Intro $: 5

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x)) 

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c has to be a NEW name!

"x P(x)        
∴          P(a)  (for any a)

“Let a be arbitrary*”...P(a)
      ∴        "x P(x)

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

Intro "$x P(x)
∴ P(c) for some special** c

Elim $

Note: bottom two rules are 
complex but mechanical

(you can apply them blindly)



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 
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Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer

 
 
 

 
 1.1  Even(a)®Even(a2) 
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1   Even(a)                 Assumption
    

 
 
1.1.6  Even(a2)             

 1.1   Even(a)®Even(a2)      Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1   Even(a)              Assumption
1.1.2	 ∃y (a = 2y)           Definition of Even: 1.1.1
 

1.1.6  Even(a2)  
 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1   Even(a)              Assumption
1.1.2	 ∃y (a = 2y)           Definition of Even: 1.1.1
 

1.1.5	 ∃y (a2 = 2y)           
1.1.6  Even(a2)            Definition of Even

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even: 1.1.1
1.1.3 a = 2b              Elim $: 1.1.2

1.1.5 ∃y (a2 = 2y)           
1.1.6  Even(a2)            Definition of Even

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

Need a2 = 2c 
for some c



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even
1.1.3 a = 2b              Elim $
1.1.4   a2 = 2(2b2)      Algebra
1.1.5 ∃y (a2 = 2y)     Intro $
1.1.6  Even(a2)            Definition of Even

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

Used a2 = 2c for c=2b2



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Let a be an arbitrary integer
1.1.1 Even(a)              Assumption
1.1.2 ∃y (a = 2y)           Definition of Even: 1.1.1
1.1.3 a = 2b              Elim $: 1.1.2
1.1.4   a2 = 2(2b2)      Algebra: 1.1.3
1.1.5 ∃y (a2 = 2y)     Intro $: 1.1.4
1.1.6  Even(a2)            Definition of Even: 1.1.5

 1.1   Even(a)®Even(a2)     Direct proof
1.   "x (Even(x)®Even(x2))         Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Predicate Logic Proofs

• Can use
– Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan’s)
even on subformulas

– Propositional logic inference rules
 whole formulas only

– Propositional logic equivalences
even on subformulas



Rules for Propositional Logic w/o Tautology

Elim ∧ Intro  ∧

Intro  ∨

Modus Ponens Direct Proof

∧

∨

®

Principium
Contradictionis

Reductio Ad 
Absurdum

Ex Falso
Quodlibet

Ad Litteram
Verum

¬

F / T

Elimination Introduction

Cases



Recall: Important Equivalences



Recall: Proof by Cases

Some rules can be written in different ways
– e.g., two different elimination rules for “∨”

A Ú B ; A ® C ; B ® C
∴ C

Cases

A Ú B ; ¬A
∴ B

Elim ∨

these rules are equally capable



Example: Absorption via Latin Rules

Show that 𝑷 follows from 𝑷 ∨ (𝑷 ∧ 𝑸)…

1.  𝑷 ∨ (𝑷	Ù	𝑸)              Given
 

4.  𝑷         ?

A Ú B ; A ® C ; B ® C
∴ C

Cases
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4.  𝑷         Cases: 1, 2, 3
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Example: Absorption via Latin Rules

Show that 𝑷 follows from 𝑷 ∨ (𝑷 ∧ 𝑸)…

1.  𝑷 ∨ (𝑷	Ù	𝑸)              Given
 2.1.  𝑷	        Assumption 
2.  𝑷 → 𝑷       Direct Proof
 3.1.  𝑷	Ù	𝑸       Assumption
 3.2.  𝑷        Elim ∧: 3.1
3.  (𝑷	Ù	𝑸) → 𝑷     Direct Proof
4.  𝑷         Cases: 1, 2, 3



Example: Distributivity via Latin Rules

Show 𝑷 ∧ 𝑸 ∨ (𝑷 ∧ 𝑹) follows from 𝑷 ∧ (𝑸 ∨ 𝑹)…
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Example: Distributivity via Latin Rules

Show 𝑷 ∧ 𝑸 ∨ (𝑷 ∧ 𝑹) follows from 𝑷 ∧ (𝑸 ∨ 𝑹)…
1.  𝑷 ∧ (𝑸 ∨ 𝑹)      Given
2.  𝑷	        Elim ∧: 1
3.  𝑸 ∨ 𝑹	       Elim ∧: 1
 4.1.  𝑸        Assumption
 4.2.  𝑷 ∧ 𝑸       Intro ∧: 2, 4.1
 4.3.  𝑷 ∧ 𝑸 ∨ (𝑷 ∧ 𝑹)    Intro ∨: 4.2
4.  𝑸 → 𝑷 ∧ 𝑸 ∨ (𝑷 ∧ 𝑹)   Direct Proof
 5.1.  𝑹        Assumption
 5.2.  𝑷 ∧ 𝑹       Intro ∧: 2, 5.1
 5.3.  𝑷 ∧ 𝑸 ∨ (𝑷 ∧ 𝑹)    Intro ∨: 5.2
5.  𝑹 → 𝑷 ∧ 𝑸 ∨ (𝑷 ∧ 𝑹)   Direct Proof
6.  𝑷 ∧ 𝑸 ∨ (𝑷 ∧ 𝑹)    Cases: 3, 4, 5



Recall: the Latin Rules

More rules makes proofs easier

¬A ; A 
∴ F

A Þ F  
∴ ¬A 

x   
∴ T

Principium
Contradictionis

Reductio Ad 
Absurdum

F    
∴ A

Ex Falso
Quodlibet

Ad Litteram
Verum

useful for proving things
without the Tautology rule



Example: De Morgan's Law via Latin Rules

Show that ¬(𝐴 ∨ 𝐵) follows from ¬𝐴 ∧ ¬𝐵…
1.  ¬𝑨 ∧ ¬𝑩      Given

4.  ¬(𝑨 ∨ 𝑩)      ?



Example: De Morgan's Law via Latin Rules

Show that ¬(𝐴 ∨ 𝐵) follows from ¬𝐴 ∧ ¬𝐵…
1.  ¬𝑨 ∧ ¬𝑩      Given
2.  ¬𝑨        Elim ∧: 1
3.  ¬𝑩        Elim ∧: 1

4.  ¬(𝑨 ∨ 𝑩)      Absurdum

A Þ F  
∴ ¬A 

Reductio Ad 
Absurdum
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Example: De Morgan's Law via Latin Rules

Show that ¬(𝐴 ∨ 𝐵) follows from ¬𝐴 ∧ ¬𝐵…
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Example: De Morgan's Law via Latin Rules

Show that ¬(𝐴 ∨ 𝐵) follows from ¬𝐴 ∧ ¬𝐵…
1.  ¬𝑨 ∧ ¬𝑩      Given
2.  ¬𝑨        Elim ∧: 1
3.  ¬𝑩        Elim ∧: 1
 4.1.  𝑨 ∨ 𝑩       Assumption
  4.2.1.  𝑨       Assumption

  4.2.2.  𝐅       ?
 4.2.  𝑨 → 𝐅       Direct Proof
 4.3.  𝑩 → 𝐅       ?
 4.4.  𝐅        Cases: 4.1, 4.2, 4.3
4.  ¬(𝑨 ∨ 𝑩)      Absurdum

¬A ; A 
∴ F

Principium
Contradictionis



Example: De Morgan's Law via Latin Rules

Show that ¬(𝐴 ∨ 𝐵) follows from ¬𝐴 ∧ ¬𝐵…
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  4.2.2.  𝐅       Contradiction: 4.2.1, 2
 4.2.  𝑨 → 𝐅       Direct Proof
 4.3.  𝑩 → 𝐅       ?
 4.4.  𝐅        Cases: 4.1, 4.2, 4.3
4.  ¬(𝑨 ∨ 𝑩)      Absurdum



Example: De Morgan's Law via Latin Rules

Show that ¬(𝐴 ∨ 𝐵) follows from ¬𝐴 ∧ ¬𝐵…
1.  ¬𝑨 ∧ ¬𝑩      Given
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  4.2.1.  𝑨       Assumption
  4.2.2.  𝐅       Contradiction: 4.2.1, 2
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Example: De Morgan's Law via Latin Rules

Show that ¬(𝐴 ∨ 𝐵) follows from ¬𝐴 ∧ ¬𝐵…
1.  ¬𝑨 ∧ ¬𝑩      Given
2.  ¬𝑨        Elim ∧: 1
3.  ¬𝑩        Elim ∧: 1
 4.1.  𝑨 ∨ 𝑩       Assumption
  4.2.1.  𝑨       Assumption
  4.2.2.  𝐅       Contradiction: 4.2.1, 2
 4.2.  𝑨 → 𝐅       Direct Proof
  4.3.1.  𝑩       Assumption
  4.3.2.  𝐅       Contradiction: 4.3.1, 3
 4.3.  𝑩 → 𝐅       Direct Proof
 4.4.  𝐅        Cases: 4.1, 4.2, 4.3
4.  ¬(𝑨 ∨ 𝑩)      Absurdum



Recall: Important Equivalences

Does not follow
from Latin rules



Recall: Inference Rules for Quantifiers

* in the domain of P 
** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c has to be a NEW name!

"x P(x)        
∴          P(a)  (for any a)

“Let a be arbitrary*”...P(a)
      ∴        "x P(x)

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

Intro "$x P(x)
∴ P(c) for some special** c

Elim $



Recall; Proofs with Domain Knowledge

• Want to be able to use domain knowledge
so that proofs are about things we understand

• Example:

• Given the basic properties of arithmetic on integers, 
define:

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions

Integers
Domain of Discourse



Odd Plus Odd

Prove: “The sum of two odd numbers is even.”
      Formal proof of:  "x "y (Odd(x) ∧ Odd(y) ® Even(x+y))

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

 
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) ?



Even and Odd

Prove: “The sum of two odd numbers is even.”
      Formal proof of:  "x "y (Odd(x) ∧ Odd(y) ® Even(x+y))

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

Let a and b be an arbitrary integer

 1.1   Odd(a) ∧ Odd(b) ® Even(a+b)     ?
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) Intro "



Even and Odd

Prove: “The sum of two odd numbers is even.”
      Formal proof of:  "x "y (Odd(x) ∧ Odd(y) ® Even(x+y))

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

Let a and b be an arbitrary integer
1.1.1 Odd(a) ∧ Odd(b)        Assumption

1.1.? Even(a + b)             ?
 1.1   Odd(a) ∧ Odd(b) ® Even(a+b)     Direct proof
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) Intro "



Even and Odd

Let a and b be an arbitrary integer
1.1.1 Odd(a) ∧ Odd(b)       Assumption
1.1.2 Odd(a)         Elim ∧: 1.1.1
1.1.3 Odd(b)         Elim ∧: 1.1.1

1.1.? Even(a + b)           ?
 1.1   Odd(a) ∧ Odd(b) ® Even(a+b)    Direct proof
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Let a and b be an arbitrary integer
1.1.1 Odd(a) ∧ Odd(b)       Assumption
1.1.2 Odd(a)         Elim ∧: 1.1.1
1.1.3 Odd(b)         Elim ∧: 1.1.1
1.1.4 ∃y (a = 2y+1)             Def of Odd: 1.1.2
1.1.5 ∃y (b = 2y+1)             Def of Odd: 1.1.3

1.1.? Even(a + b)           ?
 1.1   Odd(a) ∧ Odd(b) ® Even(a+b)    Direct proof
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Let a and b be an arbitrary integer
1.1.1 Odd(a) ∧ Odd(b)       Assumption
1.1.2 Odd(a)         Elim ∧: 1.1.1
1.1.3 Odd(b)         Elim ∧: 1.1.1
1.1.4 ∃y (a = 2y+1)             Def of Odd: 1.1.2
1.1.5 ∃y (b = 2y+1)             Def of Odd: 1.1.3

1.1.? ∃y (a + b = 2y)        ?
1.1.? Even(a + b)           Def of Even

 1.1   Odd(a) ∧ Odd(b) ® Even(a+b)    Direct proof
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Let a and b be an arbitrary integer
1.1.1 Odd(a) ∧ Odd(b)       Assumption
1.1.2 Odd(a)         Elim ∧: 1.1.1
1.1.3 Odd(b)         Elim ∧: 1.1.1
1.1.4 ∃y (a = 2y+1)             Def of Odd: 1.1.2
1.1.5 ∃y (b = 2y+1)             Def of Odd: 1.1.3
1.1.6 a = 2c + 1                Elim $: 1.1.4
1.1.7 b = 2d + 1            Elim $: 1.1.5

1.1.? ∃y (a + b = 2y)        ?
1.1.? Even(a + b)           Def of Even

 1.1   Odd(a) ∧ Odd(b) ® Even(a+b)    Direct proof
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Let a and b be an arbitrary integer
1.1.1 Odd(a) ∧ Odd(b)       Assumption
1.1.2 Odd(a)         Elim ∧: 1.1.1
1.1.3 Odd(b)         Elim ∧: 1.1.1
1.1.4 ∃y (a = 2y+1)             Def of Odd: 1.1.2
1.1.5 ∃y (b = 2y+1)             Def of Odd: 1.1.3
1.1.6 a = 2c + 1                Elim $: 1.1.4
1.1.7 b = 2d + 1            Elim $: 1.1.5
1.1.8   a + b = 2(c + d +1)       Algebra: 1.1.6–7
1.1.9 ∃y (a + b = 2y)        Intro $: 1.1.8
1.1.10 Even(a + b)           Def of Even: 1.1.9

 1.1   Odd(a) ∧ Odd(b) ® Even(a+b)    Direct proof
1.   "x "y (Odd(x) ∧ Odd(y) ® Even(x+y)) Intro "

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Formal Proofs

• Formal proofs follow simple well-defined rules
– “assembly language” (like byte code) for proofs
– easy for a machine to check

• Important to understand
– mental "foundations" of Computer Science
– has useful applications, e.g., Programming Languages



Formal Proofs

• In principle, formal proofs are the standard for 
what it means to be “proven” in mathematics
– almost all math (and theory CS) done in Predicate Logic

• But they can be tedious and impractical…



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

1. Rational(x) ∧ Rational(y) ® Rational(xy)    ?



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

1.1.   Rational(x) ∧ Rational(y)      Assumption

 1.?.   Rational(x + y)            Def of Rational
1. Rational(x) ∧ Rational(y) ® Rational(xy)    Direct Proof



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

1.1.   Rational(x) ∧ Rational(y)      Assumption

 1.?.   Rational(x + y)            Def of Rational
1. Rational(x) ∧ Rational(y) ® Rational(xy)    Direct Proof

Then, x = a/b for some integers a, b, where b¹0, 
and y = c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd).
Since b and d are both non-zero, so is bd.
Furthermore, ac and bd are integers.
By definition, then, xy is rational.



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption

  

1.4 ∃𝑝	∃𝑞	( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 ) 
             Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
         Elim ∃: 1.4
1.6 ∃𝑝	∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

        Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
         Elim ∃: 1.4

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption

  ??

1.4 ∃𝑝	∃𝑞	( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 ) 
             Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
         Elim ∃: 1.4
1.6 ∃𝑝	∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

        Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
         Elim ∃: 1.4

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption
1.2 Rational 𝑥         Elim ∧: 1.1
1.3 Rational 𝑦         Elim ∧: 1.1
1.4 ∃𝑝	∃𝑞	( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 ) 

             Def Rational: 1.2
1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
         Elim ∃: 1.4
1.6 ∃𝑝	∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

        Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
         Elim ∃: 1.4

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
        Algebra

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

    ??

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
        Algebra

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
1.8  𝑥 = 𝑎/𝑏    Elim ∧: 1.5
1.9  𝑦 = 𝑐/𝑑    Elim ∧: 1.7
1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
        Algebra

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.11  𝑏 ≠ 0	    Elim ∧: 1.5*
1.12  𝑑 ≠ 0    Elim ∧: 1.7
1.13  𝑏𝑑 ≠ 0    Prop of Integer Mult

* Oops, I skipped steps here...

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

...

1.5 𝑥 = 𝑎/𝑏 ∧ (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0 )
...

1.7 𝑦 = 𝑐/𝑑 ∧ (Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0 )
...

1.11 Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
        Elim ∧: 1.5
1.12  Integer 𝑏 ∧ 𝑏 ≠ 0    Elim ∧: 1.11
1.13  𝑏 ≠ 0	      Elim ∧: 1.12

We left out the parentheses...

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.13  𝑏 ≠ 0	    Elim ∧: 1.5
...

1.16  𝑑 ≠ 0    Elim ∧: 1.7
1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Furthermore, ac and bd are integers.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.19 Integer 𝑎    Elim ∧: 1.5*
...

1.22 Integer 𝑏    Elim ∧: 1.5*
...

1.24 Integer 𝑐    Elim ∧: 1.7*
...

1.27 Integer 𝑑    Elim ∧: 1.7*
1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

By definition, then, xy is rational.

...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult
...

1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult
1.30 Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0  Intro ∧: 1.29, 1.17
1.31 Integer 𝑎𝑐 ∧ Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0
       Intro ∧: 1.28, 1.30
1.32 𝑥𝑦 = (𝑎/𝑏)/(𝑐/𝑑) ∧ Integer 𝑎𝑐 ∧
Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0    Intro ∧: 1.10, 1.31
1.33	∃𝑝	∃𝑞 𝑥𝑦 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

      Intro ∃: 1.32
1.34 Rational 𝑥𝑦    Def of Rational: 1.3

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult
...

1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult
...

1.34 Rational 𝑥𝑦    Def of Rational: 1.32

And finally...

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult
...

1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult
...

1.34 Rational 𝑥𝑦    Def of Rational: 1.32

1. Rational 𝑥 ∧ Rational 𝑦 → Rational 𝑥𝑦
             Direct Proof

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Proof: Suppose x and y are rational.
Then, x = a/b for some integers a, b, where b¹0, and y = 
c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (ac)/(bd). Since b and d are 
both non-zero, so is bd. Furthermore, ac and bd are 
integers. By definition, then, xy is rational.

Real Numbers
Domain of Discourse

vs more than 35 lines of formal proof

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Formal Proofs

• In principle, formal proofs are the standard for 
what it means to be “proven” in mathematics
– almost all math (and theory CS) done in Predicate Logic

• But they can be tedious and impractical
– e.g., applications of commutativity and associativity
– Russell & Whitehead’s formal proof that 1+1 = 2 is 

several hundred pages long
we allow ourselves to cite “Arithmetic”, “Algebra”, etc.

• Historically, rarely used for “real mathematics”...



English Proofs

• Vastly more common in CS and math

•  High-level language that lets us work more quickly
– not necessary to spell out every detail
– reader checks that the writer is not skipping too much

the reader is the "compiler" for English proofs
they implement a community standard of correctness

• English proofs require understanding formal proofs
– English proof follows the structure of a formal proof
– we will learn English proofs by translating from formal

eventually, we will write English directly



English Proofs

• Vastly more common in CS and math

•  High-level language that lets us work more quickly
– not necessary to spell out every detail
– reader checks that the writer is not skipping too much

the reader is the "compiler" for English proofs
they implement a community standard of correctness

• Examples of what can be skipped (more to come):
– Intro and Elim ∧
– explicitly stating existence claims (Elim ∃ immediately)
– explicitly invoking Direct Proof (clear from context)


