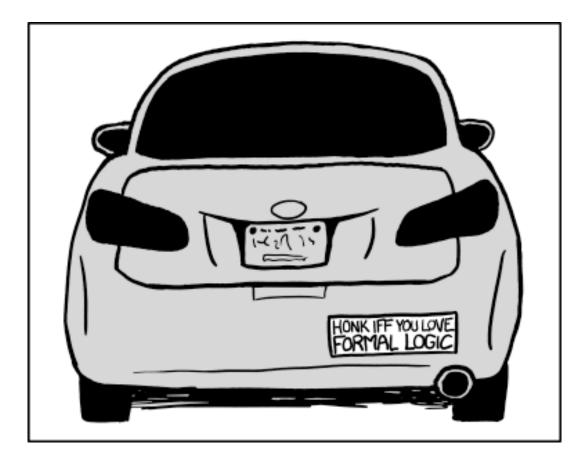
CSE 311: Foundations of Computing I

Topic 1: Propositional Logic



What is logic and why do we need it?

Logic is a language, like English or Java, with its own

- words and rules for combining words into sentences (syntax)
- ways to assign meaning to words and sentences (semantics)

Compared to English, Logic is more

- concise (useful)
- precise (critical!)

Importantly, Logic comes with its own formal toolkit

Why not use English?

– Turn right here...

Does "right" mean the direction or now?

- We saw her duck

Does "duck" mean the animal or crouch down?

Buffalo buffalo Buffalo buffalo buffalo buffalo

This means "Bison from Buffalo, that bison from Buffalo bully, themselves bully bison from Buffalo.

Natural languages can be unclear / imprecise

A proposition is a statement that

- is "well-formed"
- is either true or false

Propositions: building blocks of logic

A proposition is a statement that

- is "well-formed"
- is either true or false

Garfield is a mammal and Garfield is a cat true

Odie is a mammal and Odie is a cat false

2 + 2 = 5

This is a proposition. It's okay for propositions to be false.

x + 2 = 5389, where x is my PIN number

This is a proposition. We don't need to know what x is.

Akjsdf!

Not a proposition because it's gibberish.

Who are you?

This is a question which means it doesn't have a truth value.

Every positive even integer can be written as the sum of two primes.

This is a proposition. We don't know if it's true or false, but we know it's one of them!

We need a way of talking about arbitrary ideas...

```
Propositional Variables: p, q, r, s, ...
```

Constant truth values:

- T for true
- F for false

Java boolean represents a truth value

- constants true and false
- variables hold unknown values

Operators calculate new values from given ones

- unary: not (!)
- binary: and (&&), or (||)

Negation (not) $\neg p$ Conjunction (and) $p \land q$ Disjunction (or) $p \lor q$

con	with	<i>p</i> with <i>q</i> (i.e., both)
dis-	apart from	not necessarily both

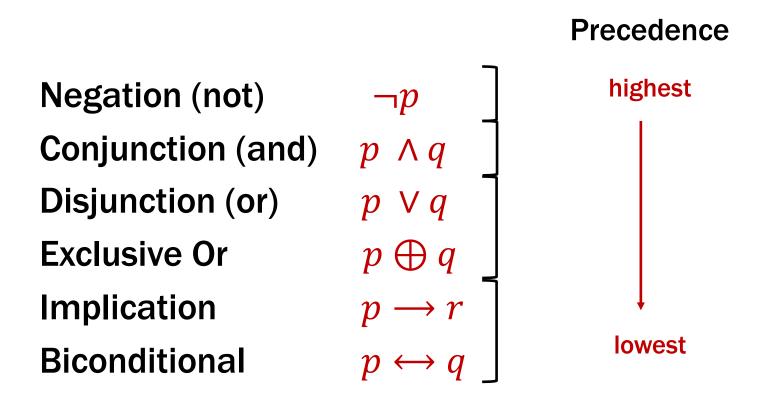
Negation (not) $\neg p$ Conjunction (and) $p \land q$ Disjunction (or) $p \lor q$ Exclusive Or $p \bigoplus q$

 $p \lor q$ at least one of p or q

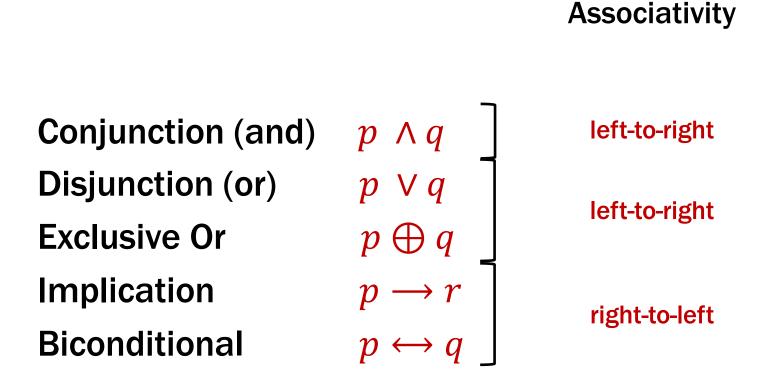
 $p \oplus q$ exactly one of p or q

Logic forces us to distinguish \lor from \oplus

Negation (not)	$\neg p$
Conjunction (and)	$p \land q$
Disjunction (or)	$p \lor q$
Exclusive Or	$p \oplus q$
Implication	$p \longrightarrow r$
Biconditional	$p \leftrightarrow q$

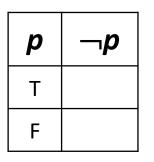


 $p \lor q \land r \longrightarrow t$ means $(p \lor (q \land r)) \longrightarrow t$



 $p \lor q \lor r \lor t$ means $((p \lor q) \lor r) \lor t$ $p \to q \to r$ means $p \to (q \to r)$

Some Truth Tables

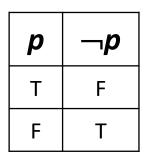


p	q	p∧q
Т	Т	
Т	F	
F	Т	
F	F	

p	q	$p \lor q$
Т	Т	
Т	F	
F	Т	
F	F	

p	q	$p \oplus q$
Т	Т	
Т	F	
F	Т	
F	F	

Some Truth Tables



p	q	$p \wedge q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

p	q	p \oplus q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- Example of a "case analysis":
 - list off all possible cases
 - analyze each one individually
- Truth table: one case for each setting of variables with n variables, we get 2^n cases (rows)
- Useful tool for many kinds of problems
 - will see more examples in the homework...

p	r	$p \rightarrow r$
Т	Т	
Т	F	
F	Т	
F	F	

With implication (\rightarrow) , *p* is called the "premise" and r is called the "conclusion".

The implication is true when **p** and **r** are true.

The implication is true ("vacuously") when **p** is false.

p	r	$p \rightarrow r$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

With implication (\rightarrow) , *p* is called the "premise" and r is called the "conclusion".

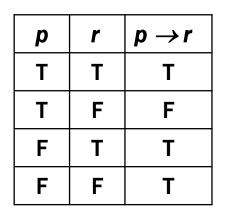
The implication is true when **p** and **r** are true.

The implication is true ("vacuously") when **p** is false.

"If it was raining, then I had my umbrella"

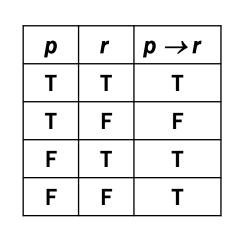
It's useful to think of implications as promises. That is "Was I wrong?"

	It's raining	It's not raining
l have my umbrella		
l do not have my umbrella		



"If it was raining, then I had my umbrella"

It's useful to think of implications as promises. That is "Was I wrong?"



	It's raining	It's not raining
l have my umbrella	No	No
l do not have my umbrella	Yes	No

I am only wrong when:

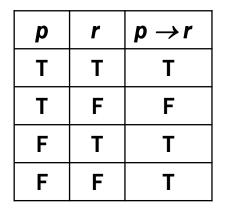
- (a) It's raining AND
- (b) I don't have my umbrella

Implication

"If the Seahawks won, then I was at the game."

In what scenario was I wrong?

	I was at the game	I wasn't at the game
Seahawks won		
Seahawks lost		

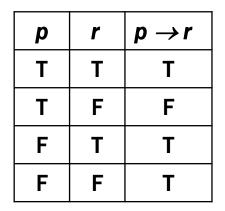


Implication

"If the Seahawks won, then I was at the game."

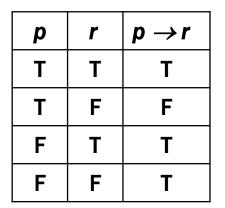
In what scenario was I wrong?

	I was at the game	I wasn't at the game
Seahawks won	Ok	Doh!
Seahawks lost	Ok	Ok



"If it's raining, then I have my umbrella"

Are these true?



$2 + 2 = 4 \rightarrow$ earth is a planet

The fact that these are unrelated doesn't make the statement false! "2 + 2 = 4" is true; "earth is a planet" is true. T \rightarrow T is true. So, the statement is true.

$2 + 2 = 5 \rightarrow 26$ is prime

Again, these statements may or may not be related. "2 + 2 = 5" is false; so, the implication is true. (Whether 26 is prime or not is irrelevant).

Implication is not a causal relationship!

(1) "I have collected all 151 Pokémon if I am a Pokémon master"(2) "I have collected all 151 Pokémon only if I am a Pokémon master"

In English, the "if" can be written at the end of the sentence rather than at the beginning of the sentence (followed by a ",").

(1) "I have collected all 151 Pokémon if I am a Pokémon master"
(2) "I have collected all 151 Pokémon only if I am a Pokémon master"

These sentences are implications in opposite directions:

- (1) "Pokémon masters have all 151 Pokémon"
- (2) "People who have 151 Pokémon are Pokémon masters"

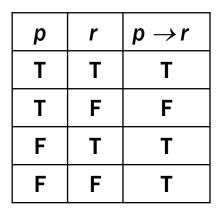
So, the implications are:

(1) If I am a Pokémon master, then I have collected all 151 Pokémon.

(2) If I have collected all 151 Pokémon, then I am a Pokémon master.

Implication:

- -p implies r
- whenever *p* is true, *r* must be true
- if p, then r
- *r* if *p*
- p only if r
- -p is sufficient for r
- r is necessary for p



- *p* if and only if *q*
- *p* "iff" *q*

– p and q have the same value truth value

p	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	т	F
F	F	Т

A Compound Proposition (Practical Example)

"Show the notification to the user if its their second login or they've used it for two weeks and haven't tried the feature X unless they did use the feature Y."

Not at all clear what exactly this means!

Can use logic to understand exactly when to show it

A Compound Proposition (Silly Example)

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

We'd like to understand what this proposition means.

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

We'd like to understand what this proposition means.

First find the simplest (atomic) propositions:

- q "Garfield has black stripes"
- r "Garfield is an orange cat"
- *s* "Garfield likes lasagna"

(q if (r and s)) and (r or (not s))

Logical Connectives

Negation (not)	$\neg p$
Conjunction (and)	$p \land q$
Disjunction (or)	$p \lor q$
Exclusive Or	$p\oplus q$
Implication	$p \longrightarrow r$
Biconditional	$p \leftrightarrow q$

q "Garfield has black stripes"

- r "Garfield is an orange cat"
- s "Garfield likes lasagna"

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

(q if (r and s)) and (r or (not s))

Logical Connectives

Negation (not)	$\neg p$
Conjunction (and)	$p \land q$
Disjunction (or)	$p \lor q$
Exclusive Or	$p\oplus q$
Implication	$p \longrightarrow r$
Biconditional	$p \leftrightarrow q$

- *q* "Garfield has black stripes"
- r "Garfield is an orange cat"
- s "Garfield likes lasagna"

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

q if (r and s)) and (r or (not s))

$$((r \land s) \rightarrow q) \land (r \lor \neg s)$$

q	r	s	$((r \land s) \rightarrow q) \land (r \lor \neg s)$
F	F	F	
F	F	Т	
F	Т	F	
F	Т	Т	
Т	F	F	
Т	F	Т	
Т	Т	F	
Т	Т	Т	

subexpressions are not (yet) columns in this table

we will always include all subexpressions (easiest to verify)

q	r	s	$r \lor \neg s$	$(r \wedge s) \rightarrow q$	$((r \land s) \rightarrow q) \land (r \lor \neg s)$
F	F	F			
F	F	Т			
F	т	F			
F	Т	Т			
Т	F	F			
Т	F	Т			
Т	Т	F			
Т	Т	Т			

q	r	s	¬ <i>s</i>	$r \lor \neg s$	$r \wedge s$	$(r \wedge s) \rightarrow q$	$((r \land s) \rightarrow q) \land (r \lor \neg s)$
F	F	F					
F	F	Т					
F	Т	F					
F	Т	Т					
Т	F	F					
Т	F	Т					
Т	Т	F					
Т	Т	Т					

q	r	s	¬ <i>s</i>	$r \lor \neg s$	$r \wedge s$	$(r \wedge s) \rightarrow q$	$((r \land s) \rightarrow q) \land (r \lor \neg s)$
F	F	F	Т	т	F	Т	Т
F	F	Т	F	F	F	Т	F
F	т	F	Т	т	F	Т	Т
F	т	Т	F	т	Т	F	F
Т	F	F	Т	т	F	Т	Т
Т	F	Т	F	F	F	Т	F
Т	т	F	Т	т	F	Т	Т
Т	т	Т	F	Т	Т	Т	Т

"Garfield has black stripes if he is an orange cat and likes lasagna, and he is an orange cat or does not like lasagna"

Black Stripes	Orange	Likes Lasagna	Claim
F	F	F	т
F	F	Т	F
F	т	F	т
F	Т	Т	F
Т	F	F	т
Т	F	Т	F
Т	Т	F	т
Т	Т	Т	т

Propositional Logic makes clear exactly what is being claimed.

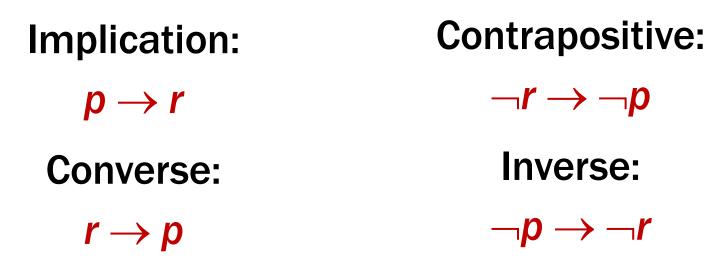
Understanding Garfield Claim

Black Stripes	Orange	Likes Lasagna	Claim
F	F	F	т
0 0 0			000
Т	Т	Т	т

Consistent with

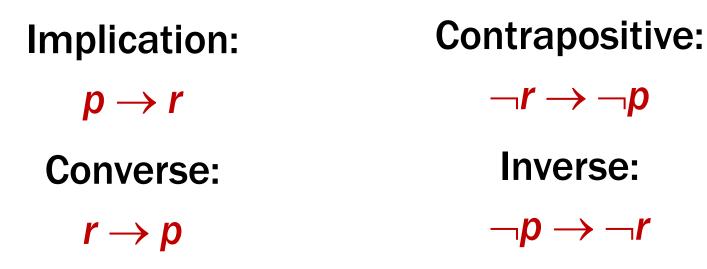
but also

- Will send out Gradescope invites shortly
- Please do Concept Check 1 before Wednesday
 - would be ideal to complete it tonight



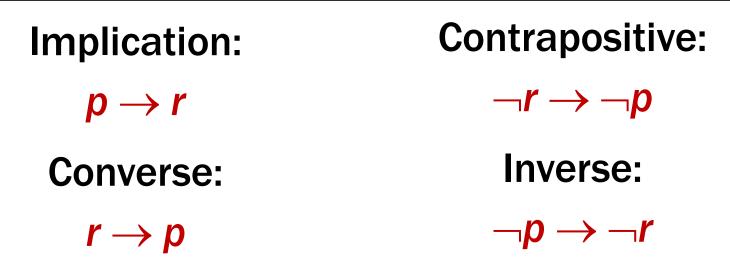
<u>Consider</u> *p:* 6 is divisible by 2 *r*: 6 is divisible by 4

$p \rightarrow r$	
$r \rightarrow p$	
$\neg r \rightarrow \neg p$	
$\neg p \rightarrow \neg r$	



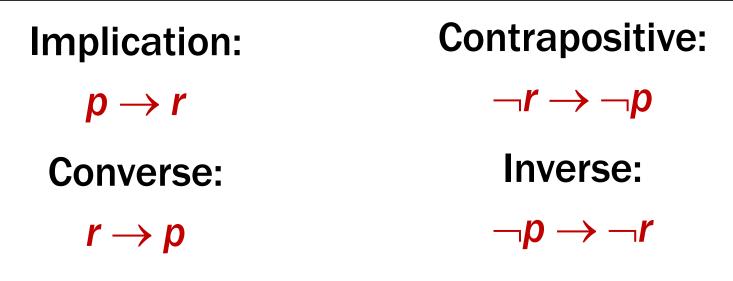
<u>Consider</u> *p:* 6 is divisible by 2 *r*: 6 is divisible by 4

$p \rightarrow r$	F
$r \rightarrow p$	Т
$\neg r \rightarrow \neg p$	F
$\neg p \rightarrow \neg r$	Т



How do these relate to each other?

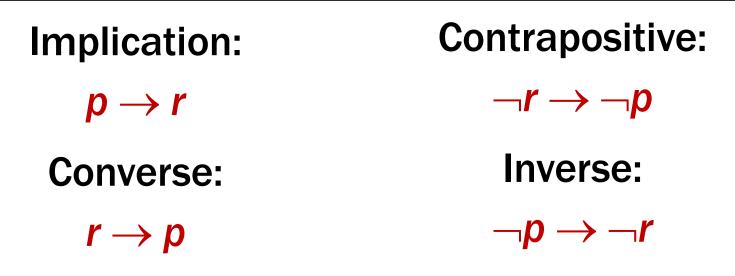
p	r	p →r	r→p	- <i>p</i>	r	¬p →¬r	¬r → ¬p
Т	Т						
Т	F						
F	Т						
F	F						



An implication and its contrapositive

have the same truth value!

p	r	p→r	r→p	_p	r	¬p →¬r	¬r → ¬p
Т	Т	Т	Т	F	F	Т	Т
Τ	F	F	Т	F	Т	Т	F
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	Т	Т	Т	Т



An implication and its inverse do not have the same truth value!

p	r	p→r	r→p	p	¬ r	¬p →¬r	¬r → ¬p
Т	Т	Т	Т	F	F	Т	Т
Т	F	F	Т	F	Т	Т	F
F	Т	Т	F	Т	F	F	Т
F	F	Т	Т	Т	Т	Т	Т

- Propositional Logic expressions with the same truth table are called "equivalent"
- Examples:
 - implication and its contrapositive are equivalent e.g., $(p \lor q) \rightarrow (q \land r)$ is equivalent to $\neg(q \land r) \rightarrow \neg(p \lor q)$
 - implication and its inverse are not equivalent
 e.g., (p ∨ q) → (q ∧ r) is not equivalent to ¬(p ∨ q) → ¬(q ∧ r) assuming they are the same is the "fallacy of the inverse"
- Greatly expand on equivalence next week
 - prove equivalence without a truth table

<u>Problem</u>: Given a Propositional Logic expression, is there a way to set the values of the variables to make the expression evaluate to T?

- if yes, the expression is "satisfiable"
- if not, the expression is "unsatisfiable"
- Many problems can be stated as SAT problems
 - e.g., many "puzzle" type problems
 see HW1 for an example
 - lots of important & useful problems in this category
 e.g., verifying correctness of hardware

<u>Problem</u>: Given a Propositional Logic expression, is there a way to set the values of the variables to make the expression evaluate to T?

- if yes, the expression is "satisfiable"

- if not, the expression is "unsatisfiable"

• Brute force is doesn't get you far...

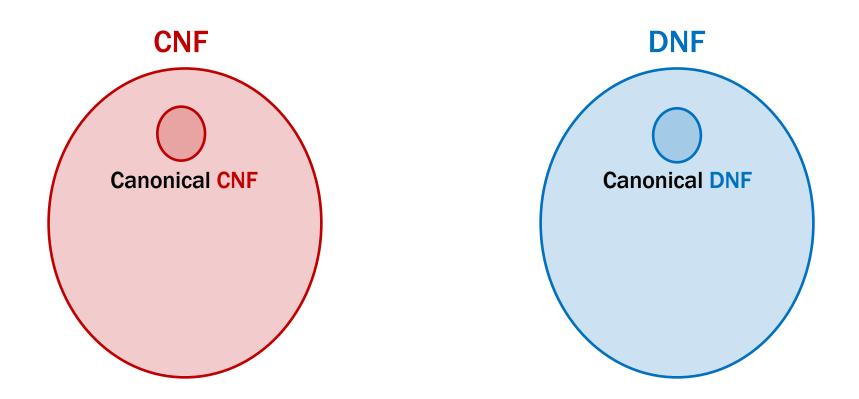
 $-2^{264} \approx #$ atoms in the observable universe

• Modern SAT solvers handle *millions* of variables

– would be nice to have access to these!

- Usually, do not accept arbitrary Logic expressions
 require the expression to come in a simpler form
- Typically, require the expression in "CNF"
 - one of the two common forms (other is "DNF")
 - see notes on the website for more on "Why CNF?"
- Once we understand CNF, we can use a SAT solver

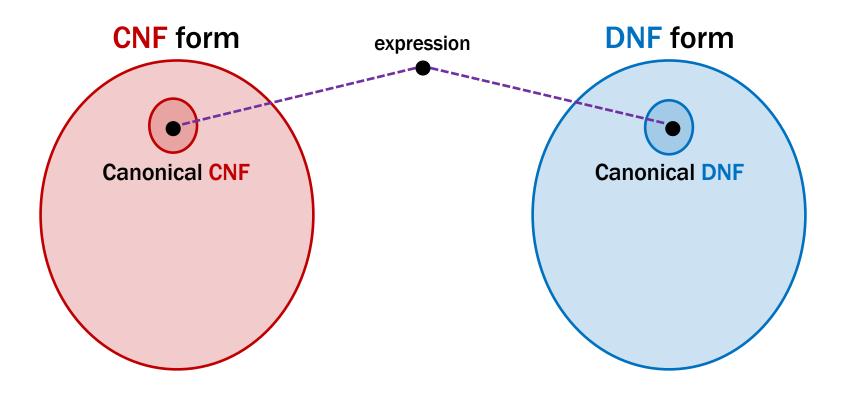
CNF & DNF



All Logic Expressions

- Canonical is from Latin "canon" (ruler)
 - compare against to see if equivalent
- We saw one way to do this already: truth table
- Canonical forms are a second way...

CNF & DNF



equivalent to exactly one in canonical CNF (up to reordering)

if our expressions are in canonical CNF, then they are equivalent iff they are the same

Suppose F is an expression using the variables a, b, c

а	b	С	F
F	F	F	F
F	F	Т	т
F	т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	т
Т	Т	F	Т
Т	Т	Т	Т

Find the T rows in the truth table

Find the T rows in the truth table

2

For each T row, write an expression that is T in that row but *no others* ("min term")

	а	b	С	F	
	F	F	F	F	
\rightarrow	F	F	Т	т	
	F	Т	F	F	
	F	Т	Т	т	
	Т	F	F	F	
	Т	F	Т	т	
	Т	Т	F	т	
	Т	Т	Т	т	

 $\neg a \land \neg b \land c$

This is only T if a = F, b = F, and c = T (AND requires *all* arguments to be T)

Find the T rows in the truth table

(2)

For each T row, write an expression that is T in that row but *no others* ("min term")

а	b	С	F	
F	F	F	F	
F	F	Т	т	
F	т	F	F	
F	Т	Т	т	
Т	F	F	F	
Т	F	Т	т	
Т	Т	F	т	
Т	Т	Т	Т	

 $\neg a \land \neg b \land c$

¬a∧b∧c

This is only T if a = F, b = T, and c = T

Find the T rows in the truth table

For each T row, write an expression that is T in that row but *no others* ("min term")

	а	b	С	F
	F	F	F	F
	F	F	Т	т
	F	т	F	F
	F	Т	Т	т
	Т	F	F	F
\rightarrow	Т	F	т	т
\rightarrow	Т	т	F	т
\rightarrow	Т	Т	Т	т

 $\neg a \land \neg b \land c$

−a∧b∧c

a ∧ ¬b ∧ c a ∧ b ∧ ¬c a ∧ b ∧ c

A **min term** includes every variable <u>exactly once</u>, either negated or unnegated, AND-ed together

а	b	С	F
F	F	F	F
F	F	Т	Т
F	т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	т
Т	Т	F	Т
Т	Т	Т	т

(1)

Find the T rows in the truth table

For each T row, write an expression that is T in that row but *no others* ("min term")

¬a ∧ ¬b ∧ c

¬a∧b∧c

 $a \land \neg b \land c$ $a \land b \land \neg c$ $a \land b \land c$

(3)

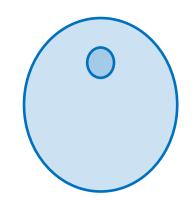
Form the disjunction (OR) of the min terms

$$(\neg a \land \neg b \land c) \lor (\neg a \land b \land c) \lor (a \land \neg b \land c) \lor (a \land b \land c) \lor (a \land b \land c)$$

- Stands for "Disjunctive Normal Form"
 - outermost operation is disjunction (OR)
 - operands are conjunctions (ANDs) of variables or their negations

 $(a \land c) \lor (\neg a) \lor (\neg a \land \neg b)$ non-canonical DNF $(a \land b \land \neg c) \lor (\neg a \land b \land c) \lor (a \land \neg b \land \neg c)$ canonical DNF

(every disjunct is a min term)



Find the F rows in the truth table

а	b	С	F
F	F	F	F
F	F	Т	Т
F	т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	Т	Т

Find the F rows in the truth table

For each F row, write an expression that is T in *every row but that one* ("max term")

а	b	С	F	_
F	F	F	F	
F	F	Т	т	
F	т	F	F	
F	Т	Т	т	
Т	F	F	F	
Т	F	Т	т	
Т	Т	F	Т	
Т	Т	Т	Т	

a V b V c

This is only F if a = F, b = F, and c = F (OR is T if *any* arguments is a T)

Find the F rows in the truth table

For each F row, write an expression that is T in *every row but that one* ("max term")

	а	b	С	F	
	F	F	F	F	
	F	F	Т	т	
\rightarrow	F	Т	F	F	
	F	Т	Т	т	
	Т	F	F	F	
	т	F	Т	т	
	т	т	F	т	
	Т	Т	Т	Т	

a V b V c

a∨¬b∨c

This is only F if a = F, b = T, and c = F

Find the F rows in the truth table

For each F row, write an expression that is T in *every row but that one* ("max term")

	а	b	С	F	
	F	F	F	F	
	F	F	Т	Т	
	F	Т	F	F	
	F	т	Т	Т	
\rightarrow	Т	F	F	F	
	Т	F	Т	т	
	Т	Т	F	Т	
	Т	Т	Т	Т	

a v b v c

a∨¬b∨c

¬a∨b∨c

This is only F if a = T, b = F, and c = F

2

(3)

For each F row, write an expression that is T in every row but that one ("max term")

а	b	С	F
F	F	F	F
F	F	Т	Т
F	Т	F	F
F	Т	Т	Т
Т	F	F	F
Т	F	Т	Т
Т	Т	F	Т
Т	Т	т	Т

a ∨ b ∨ c a ∨ ¬b ∨ c ¬a ∨ b ∨ c

Form the conjunction (AND) of the max terms

 $(a \lor b \lor c) \land (a \lor \neg b \lor c) \land (\neg a \lor b \lor c)$

- Stands for "Conjunctive Normal Form"
 - outermost operation is conjunction (AND)
 - operands (conjuncts) are disjunctions (ORs) of variables or their negations

 $(a \lor b \lor \neg c) \land (\neg a \lor b \lor c) \land (a \lor \neg b \lor \neg c)$ canonical CNF $(a \lor c) \land (\neg a) \land (\neg a \lor \neg b)$ non-canonical CNF

	DNF	CNF
operation	disjunction (OR)	conjunction (AND)
operands	conjunctions (ANDs)	disjunctions (ORs)
	(of only variables or their negations)	
canonical iff	all conjunctions are min terms	all disjunctions are max terms

• Min/Max term if every variable appears <u>exactly</u> once

	Min Term	Max Term
operation	conjunction (AND) disjunction	
	(of every variables or its negation)	
result	only one T row	only one F row

Important Corollary of DNF Construction

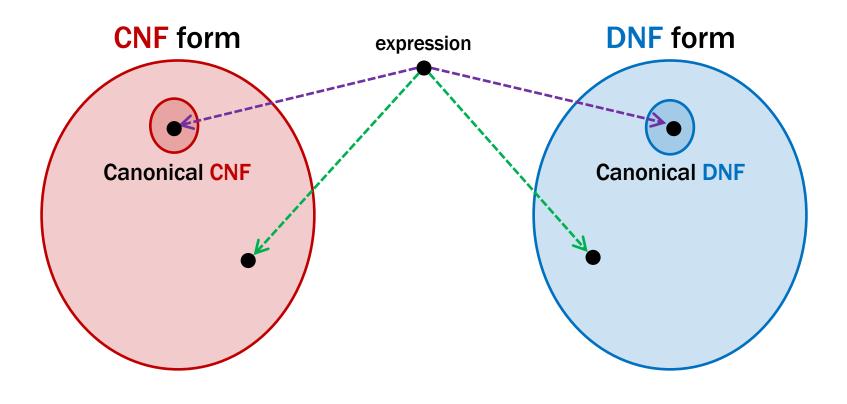
\neg , \land , \lor can implement any Boolean function!

no need for anything else

Why? Because this construction only uses \neg , \land , \lor

DNF conversion works for any boolean function

CNF & DNF



- ---- equivalent but slow conversion
 - --- fast conversion but only "equi-satisfiable" (and outside the scope of 311)