Practice Final Exam

Task 1 — Regularly Irregular

Let ¥ = {0,1}. For a string s, denote #¢(s), #1(s) to be the number of Os and 1s in s, respectively.
Prove that L = {x € ¥* : #¢(x) < #1(x)} is irregular.

Suppose, for the sake of contradiction, that there exists a DFA M that recogizes L.

Define S = {0" : n = 0}. Since S has infinitely many strings and M has finitely many
states, there must be 2 distinct strings 0%, 0° € S, where a,b > 0 and a # b, that M takes
to the same (intermediate) state p.

We go by cases, since knowing a # b means a < b or a > b.

Case 1: Suppose that a < b. Then consider appending 1° to both 0%, 0.
Then 091° € L because #0(0°1%) = a < b = #;(0°1%).

But 0°1° ¢ L because #0(0°1%) = b = #1(0°1%).

Since M takes 0%,0° to the same state p, M takes 0%1°,0°1° to the same (final) state q.
Since 0°1° € L, ¢ must be accepting. But 0°1° ¢ L so M incorrectly accepts a string not
in L, which is a contradiction!

Case 2: Suppose that b < a. The consider appending 1% to both 0%, 0°.
Then 091 ¢ L because #¢(0%1%) = a = #;(0%1%).
But 0°1% € L because #0(0°1%) = b < a = #1(0°19).

Since M takes 0%,0° to the same state p, M takes 091%,0°1¢ to the same (final) state g.
Since 0°1% € L, ¢ must be accepting. But 091 ¢ L so M incorrectly accepts a string not
in L, which is a contradiction!

In both cases, we've derived a contradiction, so we have a contradiction overall. So there's
no DFA that recognizes L. Thus, L is irregular.

Task 2 — Recurrences, Recurrences

T(n):{n ifn=p,1

4T(|5]) +n otherwise

Define

Prove that T'(n) < n? for all n > 3. You may cite the fact that for positive integers = > 0, |z] < =
as a floor function property.

Let P(n) be “T'(n) < n3". We prove P(n) holds for all n > 3 by strong induction on n.
Base cases:

Forn=3,T(3) =4T(|2]) +3=4T(1) + 3 =4(1) + 3 =7 < 27 = 3%. So P(3) holds.
Forn =4, T(4) = AT(|4]) + 4 = 4T(2) + 4 = 4AT(|2]) + 2) + 4 = 4(4T(1) +2) + 4 =
A(4(1) +2) + 4 = 28 < 64 = 43. So P(4) holds.

Forn =5, T(5) =4T(|3]) + 5 =4T(2) + 5 = 4(4T(|3]) + 2) + 5 = 4(4T(1) +2) + 5 =
4(4(1) +2) +5 =29 < 125 = 53. So P(5) holds.

Inductive Hypothesis: Suppose P(3) A P(4) A --- A P(k) holds for some arbitrary integer
k=5.

Inductive Step: We show P(k + 1) holds.

First, we show that 3 < [%J < k so it is valid to apply the IH. Since k& > 5, it follows

that k + 1 > 6, so |E2!| is at least 3. Using the bounds on the floor function and that
k+ 1< 2k for k > 1, we have that |22 | < Bt < k.

[\l [d%)

IS

T(k+1)= 4TQJ> +(k+1) By definition of T,k + 1 > 2

<4<V;;J>3+(k+1) By IH
k 3

<4 <2 +(k+1) By floor function property

= +(k+1)

_ B+ D((k+1)?+2)
2
_ k4 D((k+ 1)+ (k+1)%)
h 2
= (k+1)3

since (k+1)2>2fork>1

Conclusion: Thus, P(n) is true for all integers n > 3 by strong induction.

Task 3 — All The Machines!

Let ¥ = {0,1,2} and define the following language:

L = {w e X* : Every 1 in the string has at least one 0 before and after it (not necessarily immediately)}
a) Give a regular expression that represents L.

0u2)*(eu0(0uUlu2)*0)(0uU2)*

b) Give a DFA that recognizes L.

Start

The key idea is that the 2s we see don’t matter and we must see a 0 before the first 1.
sp: Haven't seen 0 or 1.

s1: Saw a 1 before any Os.

s9: Saw a 0 before any 1s and has at least one O after every 1.

s3: Saw a 1 but haven't seen a 0 after it.

c) Give a CFG that generates L.

S — ABA

A—0A|2A ¢

B—0C0|e

C—-0C|1C|2C ¢

A generates the (0 U 2)* part.

B generates the e U 0...0 part of the regular expression.
C generates (0 U 1 U 2)* part.

Task 4 — Structural CFGs

Consider the following CFG: S — £|SS|S1|S01. Another way of writing the recursive definition of this
set, Q, is as follows:

-e€eqQ
- If Se@, then S1e€ @ and S01 € Q
-If S, T e, then STeQ

Prove, by structural induction that if w € (), then w has at least as many 1's as 0's.

Let P(w) be “#o(w) < #1(w)". We show P(w) holds for all w € @ by structural induction
on w.

Base Case: #((c) = 0 and #1(g) = 0. Therefore, #¢(c) = #1(g), and P(¢g) holds.
Inductive Hypothesis: Suppose that P(z), P(y) hold for some arbitrary z,y € Q.
Inductive Step:

We consider all the recursive steps as cases:

For the first recursive rule, we show P(z1), P(xz01) hold.

Observe that

#o(zl) = #o(2)
< #1(x) by IH
< #i1(x)+1
= #1(x1)

and that

#0($01) = #0($) +1
< #i(z) +1 by IH
= #1($1)

For the second recursive rule, we show P(zy) holds.

#o(wy) = #o(z) + #o(y)
< #1(w) + #1(y) by I1H
= #1(zy)

Conclusion: Therefore, P(w) holds for all w € @ by structural induction.

Task 5 — Tralse!

a) True/False: Any subset of a regular language is also regular.

False. Consider {0,1}* and {0"1" : n > 0}. Note that the first is regular (we can create
a regular expression representation for it) and the second is irregular, but the second is a
subset of the first.

b) True/False: The set of programs that loop forever on at least one input is decidable.

False. If we could solve this problem, we could solve HaltNolnput. Intuitively, a program
that solves this problem would have to try all inputs, but, since the program might infinte
loop on some of them, it won't be able to.

c) If R < A for some set A, then A is uncountable.

True. Diagonalization would still work; alternatively, if A were countable, then we could
find an surjective (i.e., onto) function between N and R by skipping all the elements in
A that aren't in R.

d) True/False: If the domain of discourse is people, the logical statement
I(P(z) = Vy(z #y — —P(y)))
can be correctly translated as “There exists a unique person who has property P".

False. Any z for which P(z) is false makes the entire statement true. This is not the
same as there existing a unique person with property P.

e) True/False: 3x(VyP(z,y)) — Vy(3xP(z,y)) is true regardless of what the predicate P is.

True. The left part of the implication is saying that there is a single = that works for all
y; the right one is saying that for every y, we can find an z that depends on it, but the
single = that works for everything will still work.

Task 6 — Relationships!

The following is the graph of a binary relation R.

O

@

a) Draw the transitive-reflexive closure of R.

Reflexive closure shown by “self-loops” for each vertex.
Transitive closure shown by repeatedly adding edges so that the start and end of paths of
length 2 also have a path of length 1 (i.e., one direct edge from start to end).

b) Let S = {(X,Y): X € Y} be a binary relation on P(N).

Recall that R is antisymmetric iff VaVb((a,b) € R A a # b — (b,a) ¢ R).

Prove that S is antisymmetric.
Let X,Y € P(N) be arbitrary. Suppose X # Y and (X,Y) € S. By definition of S,
X €Y. Since X # Y, we must have some element in Y that is not in X (as every
element of X is in Y from the definition of subset, so it can’t be the other way around).
Therefore, Y & X, and (Y, X) ¢ S. Slnce X,Y were arbitrary, we've shown that S is
antisymmetric.

Task 7 — Construction Paper!

Convert the following NFA into a DFA using the algorithm from lecture.
1

@

Task 8 — Modern DFAs

Let ¥ = {0,1,2}. Construct a DFA that recognizes exactly strings with a 0 in all positions i where

i mod 3 = 0. Consider the first character to be at position 0. E.g., £,0 are strings in the language, but
1,0112 are not.

0,1,2

