
Practice Final Exam

Task 1 – Regularly Irregular

Let Σ “ t0, 1u. For a string s, denote #0psq,#1psq to be the number of 0s and 1s in s, respectively.
Prove that L “ tx P Σ˚ : #0pxq ă #1pxqu is irregular.

Suppose, for the sake of contradiction, that there exists a DFA M that recogizes L.

Define S “ t0n : n ě 0u. Since S has infinitely many strings and M has finitely many
states, there must be 2 distinct strings 0a, 0b P S, where a, b ě 0 and a ‰ b, that M takes
to the same (intermediate) state p.

We go by cases, since knowing a ‰ b means a ă b or a ą b.

Case 1: Suppose that a ă b. Then consider appending 1b to both 0a, 0b.

Then 0a1b P L because #0p0
a1bq “ a ă b “ #1p0

a1bq.

But 0b1b R L because #0p0
b1bq “ b “ #1p0

b1bq.

Since M takes 0a, 0b to the same state p, M takes 0a1b, 0b1b to the same (final) state q.
Since 0a1b P L, q must be accepting. But 0b1b R L so M incorrectly accepts a string not
in L, which is a contradiction!

Case 2: Suppose that b ă a. The consider appending 1a to both 0a, 0b.

Then 0a1a R L because #0p0
a1aq “ a “ #1p0

a1aq.

But 0b1a P L because #0p0
b1aq “ b ă a “ #1p0

b1aq.

Since M takes 0a, 0b to the same state p, M takes 0a1a, 0b1a to the same (final) state q.
Since 0b1a P L, q must be accepting. But 0a1a R L so M incorrectly accepts a string not
in L, which is a contradiction!

In both cases, we’ve derived a contradiction, so we have a contradiction overall. So there’s
no DFA that recognizes L. Thus, L is irregular.

1

Task 2 – Recurrences, Recurrences

Define

T pnq “

#

n if n “ 0, 1

4T ptn2 uq ` n otherwise

Prove that T pnq ď n3 for all n ě 3. You may cite the fact that for positive integers x ě 0, txu ď x
as a floor function property.

Let P pnq be “T pnq ď n3”. We prove P pnq holds for all n ě 3 by strong induction on n.

Base cases:

For n “ 3, T p3q “ 4T pt32 uq ` 3 “ 4T p1q ` 3 “ 4p1q ` 3 “ 7 ď 27 “ 33. So P p3q holds.

For n “ 4, T p4q “ 4T pt42 uq ` 4 “ 4T p2q ` 4 “ 4p4T pt22 uq ` 2q ` 4 “ 4p4T p1q ` 2q ` 4 “
4p4p1q ` 2q ` 4 “ 28 ď 64 “ 43. So P p4q holds.

For n “ 5, T p5q “ 4T pt52 uq ` 5 “ 4T p2q ` 5 “ 4p4T pt22 uq ` 2q ` 5 “ 4p4T p1q ` 2q ` 5 “
4p4p1q ` 2q ` 5 “ 29 ď 125 “ 53. So P p5q holds.

Inductive Hypothesis: Suppose P p3q^P p4q^ ¨ ¨ ¨^P pkq holds for some arbitrary integer
k ě 5.

Inductive Step: We show P pk ` 1q holds.

First, we show that 3 ď tk`1
2 u ď k so it is valid to apply the IH. Since k ě 5, it follows

that k ` 1 ě 6, so tk`1
2 u is at least 3. Using the bounds on the floor function and that

k ` 1 ď 2k for k ě 1, we have that tk`1
2 u ď k`1

2 ď k.

T pk ` 1q “ 4T

ˆZ

k ` 1

2

^˙

` pk ` 1q By definition of T, k ` 1 ě 2

ď 4

ˆZ

k ` 1

2

^˙3

` pk ` 1q By IH

ď 4

ˆ

k ` 1

2

˙3

` pk ` 1q By floor function property

“ 4

ˆ

pk ` 1q3

23

˙

` pk ` 1q

“
pk ` 1q3

2
` pk ` 1q

“
pk ` 1qppk ` 1q2 ` 2q

2

ď
pk ` 1qppk ` 1q2 ` pk ` 1q2q

2
since pk ` 1q2 ě 2 for k ě 1

“ pk ` 1q3

Conclusion: Thus, P pnq is true for all integers n ě 3 by strong induction.

2

Task 3 – All The Machines!

Let Σ “ t0, 1, 2u and define the following language:

L “ tw P Σ˚ : Every 1 in the string has at least one 0 before and after it (not necessarily immediately)u

a) Give a regular expression that represents L.

p0Y 2q˚pεY 0p0Y 1Y 2q˚0qp0Y 2q˚

b) Give a DFA that recognizes L.

s0 s2

s1

s3Start

0, 1, 2

2

1

0

0, 2 1, 2

1

0

The key idea is that the 2s we see don’t matter and we must see a 0 before the first 1.

s0: Haven’t seen 0 or 1.

s1: Saw a 1 before any 0s.

s2: Saw a 0 before any 1s and has at least one 0 after every 1.

s3: Saw a 1 but haven’t seen a 0 after it.

c) Give a CFG that generates L.

S Ñ ABA

AÑ 0A | 2A | ε

B Ñ 0C0 | ε

C Ñ 0C | 1C | 2C | ε

A generates the p0Y 2q˚ part.

B generates the εY 0 . . . 0 part of the regular expression.

C generates p0Y 1Y 2q˚ part.

3

Task 4 – Structural CFGs

Consider the following CFG: S Ñ ε|SS|S1|S01. Another way of writing the recursive definition of this
set, Q, is as follows:

- ε P Q

- If S P Q, then S1 P Q and S01 P Q

- If S, T P Q, then ST P Q

Prove, by structural induction that if w P Q, then w has at least as many 1’s as 0’s.

Let P pwq be “#0pwq ď #1pwq”. We show P pwq holds for all w P Q by structural induction
on w.

Base Case: #0pεq “ 0 and #1pεq “ 0. Therefore, #0pεq “ #1pεq, and P pεq holds.

Inductive Hypothesis: Suppose that P pxq, P pyq hold for some arbitrary x, y P Q.

Inductive Step:

We consider all the recursive steps as cases:

For the first recursive rule, we show P px1q, P px01q hold.

Observe that

#0px1q “ #0pxq

ď #1pxq by IH

ă #1pxq ` 1

“ #1px1q

and that

#0px01q “ #0pxq ` 1

ď #1pxq ` 1 by IH

“ #1px1q

For the second recursive rule, we show P pxyq holds.

#0pxyq “ #0pxq `#0pyq

ď #1pxq `#1pyq by IH

“ #1pxyq

Conclusion: Therefore, P pwq holds for all w P Q by structural induction.

4

Task 5 – Tralse!

a) True/False: Any subset of a regular language is also regular.

False. Consider t0, 1u˚ and t0n1n : n ě 0u. Note that the first is regular (we can create
a regular expression representation for it) and the second is irregular, but the second is a
subset of the first.

b) True/False: The set of programs that loop forever on at least one input is decidable.

False. If we could solve this problem, we could solve HaltNoInput. Intuitively, a program
that solves this problem would have to try all inputs, but, since the program might infinte
loop on some of them, it won’t be able to.

c) If R Ď A for some set A, then A is uncountable.

True. Diagonalization would still work; alternatively, if A were countable, then we could
find an surjective (i.e., onto) function between N and R by skipping all the elements in
A that aren’t in R.

d) True/False: If the domain of discourse is people, the logical statement

DpP pxq Ñ @ypx ‰ y Ñ P pyqqq

can be correctly translated as “There exists a unique person who has property P”.

False. Any x for which P pxq is false makes the entire statement true. This is not the
same as there existing a unique person with property P .

e) True/False: Dxp@yP px, yqq Ñ @ypDxP px, yqq is true regardless of what the predicate P is.

True. The left part of the implication is saying that there is a single x that works for all
y; the right one is saying that for every y, we can find an x that depends on it, but the
single x that works for everything will still work.

5

Task 6 – Relationships!

The following is the graph of a binary relation R.

a) Draw the transitive-reflexive closure of R.

Reflexive closure shown by “self-loops” for each vertex.

Transitive closure shown by repeatedly adding edges so that the start and end of paths of
length 2 also have a path of length 1 (i.e., one direct edge from start to end).

b) Let S “ tpX,Y q : X Ď Y u be a binary relation on P pNq.
Recall that R is antisymmetric iff @a@bppa, bq P R^ a ‰ bÑ pb, aq R Rq.

Prove that S is antisymmetric.

Let X,Y P PpNq be arbitrary. Suppose X ‰ Y and pX,Y q P S. By definition of S,
X Ď Y . Since X ‰ Y , we must have some element in Y that is not in X (as every
element of X is in Y from the definition of subset, so it can’t be the other way around).
Therefore, Y Ę X, and pY,Xq R S. SInce X,Y were arbitrary, we’ve shown that S is
antisymmetric.

6

Task 7 – Construction Paper!

Convert the following NFA into a DFA using the algorithm from lecture.

q0 q1 q2
1

ε

1

1

1

0

tq0, q2u

tq1, q2u

tq1u H

1

0

1

0 1

0

0,1

7

Task 8 – Modern DFAs

Let Σ “ t0, 1, 2u. Construct a DFA that recognizes exactly strings with a 0 in all positions i where
i mod 3 “ 0. Consider the first character to be at position 0. E.g., ε, 0 are strings in the language, but
1, 0112 are not.

1

2

0

H

0, 1, 2

0, 1, 2

0

1, 2

0, 1, 2

8

