
CSE 311: Foundations of Computing I Spring 2025

Problem Set 7
Due: Wednesday, May 28th by 11:00pm

Instructions

Submit your solutions in Gradescope. Your Gradescope submission should follow these rules:

– Each numbered task should be solved on its own page (or pages). Do not write your name on the
individual pages. (Gradescope will handle that.)

– When you upload your pages, make sure each one is properly rotated. If not, you can use the
Gradescope controls to turn them to the proper orientation.

– Follow the Gradescope prompt to link tasks to pages. You do not need to link tasks that you
did not include, e.g., Task 1f (ungraded) and Task 7 (extra credit).

– You are not required to typeset your solution, but your submission must be legible. It is your
responsibility to make sure solutions are readable — we will not grade unreadable write-ups.

1

Task 1 – i l˚vε rεgY10r εxprε2210n2 [10 pts]

For each of the following, construct regular expressions that match the given set of strings. Write a brief
explanation of your regular expression’s design and why you believe it recognizes exactly the language
(and no strings that are not in the language).

a) Syllables, which are defined for the sake of this problem as [1] optionally starting with only one
consonant letter, [2] followed by one or more vowels, [3] optionally ending with another consonant
letter. For example, “oar”, “car”, and “queue” are syllables, whereas “regular” is not (but “reg”,
“u”, and “lar” all are). You may use “b Y c Y . . . Y z” as shorthand for “all consonants”. For the
sake of this problem, y is exclusively a consonant. The following letter are vowels: a, e, i, o, u.

b) Positive integer solutions to the equation x ”5 1 (written in base-10). You may write 1Y2Y . . .Y9
as shorthand for 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9. In general, if you write iY pi` 1q Y . . .Y j, we
will assume you are applying Y for all integers from i to j inclusive. Note that leading zeros are not
valid (e.g., accept 321 but not 00321).

c) Binary strings with an odd number of 1s.

d) Binary strings which do not have any 3 or more consecutive repetitions of a digit (e.g., the following
would not belong to this language: 111, 1000110, 0011000011).

e) Years Rick Astley was alive (1966 to present, 2025). That is, all numbers from 1966 to 2025,
inclusive. Your expression must not be “brute force” (e.g., 1966Y 1967Y . . .Y 2025): you should
never have more than 10 things unioned together at once (e.g., 1 Y 2 Y . . . Y 20, although if you
are gonna write something like p1 Y 2 Y . . . Y 10qp11 Y 12 Y . . . Y 20q, that is okay). Give extra
thought to breaking down the structure of this language to avoid brute forcing. Like before, you
may use 1Y 2Y . . .Y 9 as shorthand for 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9. Don’t give up!

f) Choose your own real-life example of a regular language and write a regular expression for it. Some
examples to try out: CSS hex codes, phone numbers, Roman numerals, URLs, email addresses,
ordinal numbers (e.g., “1st”, “2nd”, “5th”, “50th”, “51st”), command line options, license plates,
arithmetic expressions without parentheses, basic human conversations, etc. This problem will be
ungraded so you may leave it empty, but this is an opportunity to deepen your understanding and
appreciation for regular expressions. If you make a submission, staff will comment on it!

Submit and check your answers to parts (c) and (d) here:

http://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before sub-
mitting. You have only 5 chances to submit a correct answer.

Note: Parts (a-b) and (e-f) should be submitted in Gradescope.

2

http://grin.cs.washington.edu

Task 2 – Glitz and Grammar [15 pts]

For each of the following, construct a context-free grammar that generates the given set of strings.

If your grammar has more than one variable (also called a non-terminal symbol), write a sentence
describing what sets of strings you expect each variable in your grammar to generate. For example, if
your grammar was:

S Ñ E | O

O Ñ EC

E Ñ EE | CC

C Ñ 0 | 1

You could say “C generates binary strings of length one, E generates (non-empty) even length binary
strings, and O generates odd length binary strings.” It is also fine to use a regular expression, rather
than English, to describe the strings generated by a variable (assuming such a regular expression exists).
If you only use one variable (i.e., S), an explanation is not required but you should provide the grammar.

a) Binary strings matching the regular expression “10p01Y 1q˚11Y 0110”.
Hint: You can use the technique described in lecture to convert this RE to a CFG.

b) All strings of the form #y#x, with x, y P t0, 1u˚ and y is xR, but with each of the characters
optionally doubled.

(Here xR means the reverse of x.)

c) All binary strings in the set t1m0n : m,n P N and m ą 2n` 1u.

Submit and check your answers to this question here:

http://grin.cs.washington.edu

Think carefully about your answer to make sure it is correct before sub-
mitting. You have only 5 chances to submit a correct answer.

Note: You must also include each grammar and sentences describing
each new non-terminal, as described above, in Gradescope.

3

http://grin.cs.washington.edu

Task 3 – Hope Strings Eternal [15 pts]

In this problem, we will demonstrate by example that context-free grammars (with exactly one variable)
and recursively defined sets are capable of describing exactly the same languages.

As an example, consider binary strings of even length. We can define a grammar for them as follows:

S Ñ S00 | S01 | S10 | S11 | ε

To do the same thing with recursion, we first define a set T that records a sequence of substitutions
used by the grammar. This can be done as follows:

Basis: Empty P T
Recursive Step: If L P T and a, b P t0, 1u, then AppendpL, a, bq P T

For example, the derivation S Ñ S01Ñ S1101Ñ ε1101 would be represented by the tree

AppendpAppendpEmpty, 1, 1q, 0, 1q

Note that Append is not a function call! AppendpL, a, bq is data, not code. We saw the same thing in
Homework 6 Task 6, where TreepL,Rq denotes a node in the tree. Here, Append makes tree nodes.
(Recursively defined sets that keep track of the operation of a grammar are generically referred to as
“parse trees”. Our set T consists of parse trees for the grammar S above.)

To get the string in the language, we define the following recursive function that traverses the tree and
outputs the string that was generated:

traversepEmptyq :“ ε

traversepAppendpL, a, bqq :“ traversepLqab

Note that traverse returns a string, so on the second line, traversepLqab means that we make a recursive
call to traversepLq and then append characters ‘a’ and ‘b’ to the string that it returned.
With this definition, we can see, for example, that

traversepAppendpAppendpEmpty, 1, 1q, 0, 1qq

“ traversepAppendpEmpty, 1, 1qq01 def of traverse

“ traversepEmptyq1101 def of traverse

“ ε1101 def of traverse

showing that the this was indeed a derivation of the string “1101”.

Having seen a first example, let’s try out some more....

4

Consider the following grammar:
S Ñ 10S | 0S | ε

It generates all strings where every 1 is immediately followed by a 0.

a) Write a recursive definition of a set T of parse trees for this grammar.

b) Define a recursive function that traverses your parse trees from part (a) and outputs the string that
was generated by the grammar above.

Be careful to indicate anywhere that string concatenation is used with ‚ rather than juxtaposition.
(The latter is just for appending one character to a string.)

Now consider the following grammar:

S Ñ S00 | S01 | S10 | S11 | 10

It generates all strings of even length starting with 10.

c) Write a recursive definition of a set T of parse trees for this grammar.

d) Define a recursive function that traverses your parse trees from part (c) and outputs the string that
was generated by the grammar above.

Be careful to indicate anywhere that string concatenation is used with ‚ rather than juxtaposition.
(The latter is just for appending one character to a string.)

To see the other direction, consider the following recursive definition:

Basis: Start P T
Recursive Step: If L P T and a P t0, 1u, then AppendpL, aq P T

And suppose that we generate strings from these with the following traversal:

traversepStartq :“ 0

traversepAppendpL, aqq :“ traversepLqa

The set S “ ttraversepLq : L P T u, which consists of all strings that can be generated by building
a parse tree and then traversing it, contains all binary strings starting with “0”.

e) Define a context-free grammar that matches these definitions.

Note that your grammar must not only generate all strings starting with in “0”. It must have
derivations that exactly correspond to the parse trees above!

5

Task 4 – Relatin’ Canes [12 pts]

One would think that by Week 8, the TA’s would stop getting into situations involving their fast food
orders, but, alas, it has happened once more. During the TA’s trip to Relatin’ Canes, an incredibly pop-
ular chicken establishment (and, apparently, gathering spot for discrete math nerds), the TA’s couldn’t
figure out what to order, where to sit, and who’s going! They have encoded the whole situation into
several relations over sets; we need your help to figure out the properties of these relations and solve
this once and for all! Last week, we ”promised” you a sub(set) sandwich – this week, we ASSURE you
that we will bring something back, should you so choose to help! :)

For each of the relations below, determine whether or not it has each of the properties of reflexivity,
symmetry, antisymmetry, and/or transitivity. If a relation has a property, simply say so without any
further explanation. If a relation does not have a property, state a counterexample, but do not explain
your counterexample further.

a) Define R Ď Zˆ Z by pa, bq P R iff a` b is odd.

b) Define S Ď Nˆ N by pa, bq P S iff a ¨ b ě 0.

c) Let A “ tk P Z : k ă 0u be the set of negative integers. Define T Ď A ˆ A by pa, bq P T iff
aˆ b ą 0

d) Let B “ PpNq. Define U Ď B ˆ B by pX,Y q P U iff X Y r6s Ď Y X r6s. (Remember that
rns “ t1, . . . , nu.)

Hint: What can be in X? What can’t be?

Task 5 – Get a Prove On [12 pts]

Let R be a relation on a set A. Recall from lecture that “R is symmetric” iff

@a P A@b P A ppa, bq P RÑ pb, aq P Rq

i.e. if a pair pa, bq is in R, then swapped pair pb, aq is also in R.

Now, let R and S be relations on a set A, and consider the following claim:

Given that R and S are symmetric, it follows that R zS is symmetric.

Write an English proof that the claim holds.

Note: even though we want you to write your proof directly in English, it must still look like the
translation of a formal proof. In particular, you must include all steps that would be required of a formal
proof, excepting only those that we have explicitly said are okay to skip in English proofs (e.g., Elim D).

Hint: Remember that the Absurdum rule can be used to show that a claim is not true. Within the
direct proof required by Absurdum, the Contradiction rule is needed to prove F.

6

Task 6 – Better Get Proving [12 pts]

Let R be a relation on a set A. Recall from lecture the definition of the composition of two relations:

R ˝R :“ tpa, bq | Dc ppa, cq P R^ pc, bq P Rqu

and “R is transitive” iff

@a P A@b P A@c P A pppa, bq P R^ pb, cq P Rq Ñ pa, cq P Rq

and “R is antisymmetric” iff

@a P A@b P A pppa, bq P R^ pb, aq P Rq Ñ a “ bq

The definition of antisymmetric is different from the one in the lecture, but it is equivalent. Using this
definition can make the proof slightly easier.

Now, consider the following claim:

Given that R is transitive and antisymmetric, it follows that R ˝R is antisymmetric.

Write an English proof that the claim holds.

Note: even though we want you to write your proof directly in English, it must still look like the
translation of a formal proof. In particular, you must include all steps that would be required of a formal
proof, excepting only those that we have explicitly said are okay to skip in English proofs (e.g., Elim D).

7

Task 7 – Extra Credit: With a Grammar, the Whole World is a Nail [0 pts]

Consider the following context-free grammar.

xStmty Ñ xAssigny | xIfTheny | xIfThenElsey | xBeginEndy

xIfTheny Ñ if condition then xStmty

xIfThenElsey Ñ if condition then xStmty else xStmty

xBeginEndy Ñ begin xStmtListy end

xStmtListy Ñ xStmtListyxStmty | xStmty

xAssigny Ñ a := 1

This is a natural-looking grammar for part of a programming language, but unfortunately the grammar
is “ambiguous” in the sense that it can be parsed in different ways (that have distinct meanings).

a) Show an example of a string in the language that has two different parse trees that are meaningfully
different (i.e., they represent programs that would behave differently when executed).

b) Give two different grammars for this language that are both unambiguous but produce different
parse trees from each other.

8

