
CSE 311: Foundations of Computing I Spring 2025

Problem Set 6
Due: Wednesday, May 21st by 11:00pm

Instructions

Submit your solutions in Gradescope. Your Gradescope submission should follow these rules:

– Each numbered task should be solved on its own page (or pages). Do not write your name on the
individual pages. (Gradescope will handle that.)

– When you upload your pages, make sure each one is properly rotated. If not, you can use the
Gradescope controls to turn them to the proper orientation.

– Follow the Gradescope prompt to link tasks to pages. You do not need to link tasks that you
did not include, e.g., Task 7 (extra credit).

– You are not required to typeset your solution, but your submission must be legible. It is your
responsibility to make sure solutions are readable — we will not grade unreadable write-ups.

Task 1 – Sub(set)way [16 pts]

After the last Mod(ulo) Pizza escapade, the TA’s have decided that they’ve had enough of pizza for
the next x years for some x P N (or something along those lines). Consequently, the TA’s have decided
to pursue something new: Sub(set)way, a well established sub(set) sandwich establishment! However,
the TA’s can’t figure out how to split up the change for their huge group order... That’s where you
come in. We have encoded our change debacle in a subset proof, and we need you to prove it. Last
time, we ”lied” and said we’d save a slice of pizza - but this time we REALLY ”promise” we’ll get you
a sandwich, should you so choose to help!

Let A and B be the following sets:

A :“ tn P Z : n ”6 4u

B :“ tn P Z : n2 ”6 4u

Now, consider the following claim:
A Ď B

Write an English proof that the claim holds.

Follow the structure of our template for subset proofs.

Note: even though we want you to write your proof directly in English, it must still look like the
translation of a formal proof. In particular, you must include all steps that would be required of a formal
proof, excepting only those that we have explicitly said are okay to skip in English proofs (e.g., Elim D).

1

Task 2 – Keeping Up With the Cartesians [16 pts]

Let A, B, and C be sets. Consider the following claim:

B ˆA Ď C ˆB

a) Suppose that A “ t1u, B “ t1, 2u, and C “ t1, 2, 3u.

Calculate the values of the sets B ˆA and C ˆB. Check whether the claim holds.

b) Suppose that A “ t1, 2u, B “ t1u, and C “ t1, 2, 3u.

Calculate the values of the sets B ˆA and C ˆB. Check whether the claim holds.

c) Write an English proof that the claim holds given that A Ď B and B Ď C.

(This updated claim describes the situation in part (a) but not part (b).)

Follow the structure of our template for subset proofs.

Note: even though we want you to write your proof directly in English, it must still look like the
translation of a formal proof. In particular, you must include all steps that would be required of a
formal proof, excepting only those that we have explicitly said are okay to skip in English proofs.

2

Task 3 – Our Finest Power [16 pts]

Let A, B, and C be sets. Consider the following claim:

PpAX pB Y Cqq Ď PpAXBq Y PpAX Cq

a) Suppose that A “ t1, 2u, B “ t1, 3u, and C “ t2, 4u.

Calculate the values of the sets PpAX pB YCqq and PpAXBq YPpAXCqq. Check whether
the claim holds.

b) Suppose that A “ t1u, B “ t1, 2u, and C “ t1, 3u.

Calculate the values of the sets PpAX pB YCqq and PpAXBq YPpAXCqq. Check whether
the claim holds.

c) Write an English proof that the claim holds given pAXBq Ď pAX Cq hold.

(This updated claim describes the situation in part (b) but not part (a). The claim holds when
either pA X Bq Ď pA X Cq or pA X Cq Ď pA X Bq hold, but the proof is the same for both cases
thus one was omitted. Think about why that would intuitively make sense!)

Follow the structure of our template for subset proofs.

In your proof, you are free to use (cite or apply) the following theorems about sets:

Transitivity of Subset: @A@B @C pppA Ď Bq ^ pB Ď Cqq Ñ pA Ď Cqq

Distributivity of Set: @A@B @C pAX pB Y Cq “ pAXBq Y pAX Cqq

Note: even though we want you to write your proof directly in English, it must still look like the
translation of a formal proof. In particular, you must include all steps that would be required of a
formal proof, excepting only those that we have explicitly said are okay to skip in English proofs.

3

Task 4 – Parmesian, Romano, and Meta [12 pts]

Let A, B, and C be sets. For each of the following claims:

1. State whether the the claim is true or false.

2. If the claim is true, write an English proof that the claim holds following the Meta Theorem
template. (In your equivalence chain, you can skip steps showing commutativity or associativity,
as long as each step is easy to follow.)

3. If it the claim false, give a counterexample. Provide specific finite sets for A, B, and C, and
then calculate the value of each side of the claim, showing that they do not produce the same
set. (Be sure to show the value of each intermediate expression, when calculating each side.)

a) AX pAY pB X pB Y Cqqq “ A

b) pA zBq X C “ pA zCq XB

c) pA zBq Y C “ pAY Cq z pB zCq

4

Task 5 – List Me By a Mile [20 pts]

Recall the definition of lists of numbers from lecture:

Basis Step: nil P List
Recursive Step: for any a P Z, if L P List, then a :: L P List.

For example, the list r1, 2, 3s would be created recursively from the empty list as 1 :: p2 :: p3 :: nilqq.
We will consider “::” to associate to the right, so 1 :: 2 :: 3 :: nil means the same thing.

The parts below use two recursively-defined functions. The first is sum, which calculates the sum
of the list. It is defined recursively as follows:

sumpnilq :“ 0
sumpa :: Lq :“ a` sumpLq @a P Z,@L P List

The second function, positives, which returns only the positive numbers in the list, is defined by:

positivespnilq :“ nil
positivespa :: Lq :“ positivespLq if a ď 0 @a P Z,@L P List
positivespa :: Lq :“ a :: positivespLq if a ą 0 @a P Z,@L P List

For example, from these definitions, we get positivesp´1 :: 2 :: ´3 :: nilq “ 2 :: nil.

a) Write a calculation block, citing the appropriate definitions, showing that

positivesp2 :: ´4 :: 6 :: nilq “ 2 :: 6 :: nil

b) Write a calculation block, citing the appropriate definitions, showing that

sump´1 :: 3 :: ´5 :: nilq “ ´3

c) Use structural induction to prove that

@L P List psumppositivespLqq ě sumpLqq

5

Task 6 – Node to Self: Bound the Leaves! [16 pts]

Recall the definition of rooted binary trees (with no data) from lecture:

Basis Step: ‚ P Tree
Recursive Step: if L P Tree and R P Tree, then TreepL,Rq P Tree.

Note that, in lecture, we drew “TreepL,Rq” as a picture of a tree, whereas here we are using more
normal (functional) notation, which should be easier for calculations.

Define the height of a tree as follows:

heightp‚q “ 0
heightpTreepL,Rqq “ 1`maxpheightpLq, heightpRqq

Define the number of leaves in a tree as follows:

leavesp‚q “ 1
leavespTreepL,Rqq “ leavespLq ` leavespRq

You are recommended to draw out some binary trees of your own, write their functional notation
representations, calculate the height and leaves counts in these representations, and verify the results
match the height and leaves of the trees you drew. This will help you build intuition for why the
inductive definitions of height and leaves works.

Now, consider the following claim about leaves and height:

@T P Tree pleavespT q ď 2heightpT qq

This places an exponential bound on the number of leaves a binary tree can have with respect to its
height. Prove this claim by structural induction.

6

Task 7 – Extra Credit: Walk Like an Encryption [0 pts]

As we discussed in Topic 4, an important advantage of modular arithmetic over ordinary arithmetic is
that the size of the output is fixed. The output of pa` bq mod m or ab mod m is always between 0 and
m ´ 1. This size limitation is even more important for exponentiation: ak could require exponentially
more bits than a or k to store, whereas ak mod m is, once again, between 0 and m´ 1.

It turns out that modular exponentiation is also extremely important in practice. In particular, it is
the key step of the RSA public-key encryption system. Briefly, if Bob wishes to send a secret number a
to Alice, he will calculate b “ ak mod m, where k and m are public numbers published by Alice. Alice
receives b and then calculates c “ b` mod m for where ` is a private number known only to her. The
numbers k and ` are chosen so that we always have c “ a. Furthermore, calculating a without knowing
the number ` is believed to be exponentially expensive on current computers.

How do we choose k and ` to have this property? To figure this out, we need some facts about
modular exponentiation....

We know that we can reduce the base of an exponent modulo m : ak ”m pa mod mqk. But the
same is not true of the exponent! That is, we cannot write ak ”m ak mod m. This is easily seen to be
false in general. Consider, for instance, that 210 mod 3 “ 1 but 210 mod 3 mod 3 “ 21 mod 3 “ 2.

The correct law for the exponent is more subtle. We will prove it in steps....

(a) Let R “ tn P Z : 1 ď n ď m ´ 1 ^ gcdpn,mq “ 1u. Define the set aR “ tax mod m : x P Ru.
Prove that aR “ R for every integer a ą 0 with gcdpa,mq “ 1.

(b) Consider the product of all the elements in R modulo m and the elements in aR modulo m.
By comparing those two expressions, conclude that, for all a P R, we have aφpmq ”m 1, where
φpmq “ |R|.

(c) Use the last result to show that, for any b ě 0 and a P R, we have ab ”m ab mod φpmq.

(d) Finally, prove the following two facts about the function φ above. First, if p is prime, then φppq “
p ´ 1. Second, for any primes a and b with a ­“ b, we have φpabq “ φpaqφpbq. (Or slightly more
challenging: show this second claim for all positive integers a and b with gcdpa, bq “ 1.)

The second fact of part (d) implies that, if p and q are primes, then φppqq “ pp´ 1qpq ´ 1q.

How does that help us choose k and `? Since c “ b` mod m and b “ ak mod m, we can see that
c ”m pakq` ”m ak`. By what we just learned, we can see that ak` ”m ak` mod ϕpmq. Thus, if we
choose k and ` to be multiplicative inverses modulo ϕpmq, so that we have k` ”ϕpmq 1, then we have

c ”m ak` ”m ak` mod ϕpmq ”m a1 “ a, showing that Alice does indeed calculate the secret number that
Bob was hoping to send her!

7

