
CSE 311: Foundations of Computing I Spring 2025

Problem Set 3
Due: Wednesday, April 23rd by 11:00pm

Instructions

Tasks 2, 4, 6, and optionally 7 should be submitted in Gradescope.

Tasks 1, 3, and 5 should be submitted on Cozy. (See the instructions at the end of those tasks for
how to do that.) If you are unable to submit in Cozy due to technical problems or if you are unable to
complete the problem, you can submit your work on Gradescope (for partial credit in the second case).

Your Gradescope submission should follow these rules:

– Each numbered task should be solved on its own page (or pages). Do not write your name on the
individual pages. (Gradescope will handle that.)

– When you upload your pages, make sure each one is properly rotated. If not, you can use the
Gradescope controls to turn them to the proper orientation.

– Follow the Gradescope prompt to link tasks to pages. You do not need to link tasks that you
did not include, e.g., Task 7 (extra credit) or Tasks 1, 3, or 5 (if you submitted on Cozy).

– You are not required to typeset your solution, but your submission must be legible. It is your
responsibility to make sure solutions are readable — we will not grade unreadable write-ups.
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Task 1 – Make the First Prove [20 pts]

For each of the following, complete a formal proof that the claim holds.

a) Given P ^ pQ^Rq, S, and pR^ Sq Ñ pV ^ Uq, it follows that P ^ U holds.

Your proof is only allowed to use the rules Modus Ponens, Intro ^, Elim ^.

b) Given P ^Q,  Q_R, and p P _Rq Ñ S. it follows that S ^ P holds.

Your proof is only allowed to use Modus Ponens, Intro ^, Elim ^, Intro _, and Equivalent.
(Hint: One of the known equivalences will be useful!)

c) Given P _Q, P Ñ pR_ Sq, QÑ pR_ Sq, and pR_ Sq Ñ pU ^ V q. it follows that P _ pV ^Uq
holds.

Your proof is only allowed to use the rules Modus Ponens, Intro ^, Elim ^, Intro _, and Cases.

d) Given P _Q, R^ P , and  pQ^ Sq. it follows that S ^R holds.

Your proof is only allowed to use Modus Ponens, Intro ^, Elim ^, Intro _, Cases, and Equivalent.

e) Given pP Ñ Rq ^ pQ_ P q,  Q^ R, and RÑ pS _ V q. it follows that RÑ pS ^ V q holds.

Your proof is only allowed to use Modus Ponens, Intro ^, Elim ^, Intro _, Elim _, Cases,
Principium Contradictionis, and Ex Falso. (Hint: Focus on using those last two!)

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.
If technical problems prevent you from saving or if you are unable

to complete the problem and wish to submit partially complete work for
partial credit, you can instead submit in Gradescope. But cozy is where
we’d like you to submit your answers.

Documentation is available on the Cozy homepage, at the the link
labelled “Docs” at the top of the page.

Task 2 – Proof Ñ Formal [18 pts]

For each of the following, complete a formal proof that the claim holds.

a) Given AÑ pB _ Cq, C Ñ p D ^Aq, E ^ C, it follows that  D ^ pB _ Cq holds.

Your proof is only allowed to use Modus Ponens, Elim ^, Intro ^, Elim _, and Intro _.

b) Given P ^ pQ^ S ) and QÑ R, it follows that pR_ T q ^ pR_ Sq holds.

Your proof is only allowed to use the rules Modus Ponens, Elim ^, Intro ^, Elim _, and Intro _.

c) Given  pB _Dq Ñ  A, F Ñ pB _Dq, and pC ^ F q ^  B. it follows that D holds.

Your proof is only allowed to use the rules Modus Ponens, Elim ^, Intro ^, Elim _, Intro _,
Equivalent, and Cases.

2

http://cozy.cs.washington.edu


Task 3 – Provin’ Right Along [20 pts]

For each of the following, complete a formal proof that the claim holds.

a) Given pq ^ rq Ñ ps_ uq,  pÑ pr ^ uq, and p_ q, it follows that  pÑ s.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _. (Hint: Direct Proof will be needed!)

b) Given pq Ñ  sq Ø p r Ñ uq and u^ s, it follows that  q.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, Elim _, and Equivalent. Note that there are no rules for “Ø”! To use the first fact, you
will need to rewrite it as an equivalent statement with only “Ñ”s.

c) Given q Ñ ps_ pq, pp^ sq _ pq ^ sq, and p_ s, it follows that p holds.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, Elim _, and the Latin Rules. Note, in particular, that Equivalent is not allowed.

Hint: Prove that  pq ^ sq holds using Reductio Ad Absurdum. Then, you can apply Elim _.

d) Given pq _ pq Ñ r, pq _ pq Ñ u, and p, it follows that ppÑ qq Ñ pr ^ uq.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _. Equivalent is not allowed.

e) Given pq _ pq Ñ r, pq _ pq Ñ u, and p, it follows that pÑ pq Ñ pr ^ uqq.

Your proof is only allowed to use the rules the Modus Ponens, Direct Proof, Intro ^, Elim ^,
Intro _, and Elim _. Equivalent is not allowed.

Note that the only difference from part (d) is that we have moved the parentheses. We went
from pp Ñ qq Ñ pr ^ uq to p Ñ pq Ñ pr ^ uqq, but these are two very different statements! The
former is an implication with another implication in its premise, while this is an implication with
another implication in its conclusion. In part (d), using Direct Proof gives us an assumption that is
an implication. Here, Direct Proof will give us P as an assumption, which is simpler, but since the
conclusion is another implication, we need to use another Direct Proof, nested within the first one!

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.
If technical problems prevent you from saving or if you are unable

to complete the problem and wish to submit partially complete work for
partial credit, you can instead submit in Gradescope. But cozy is where
we’d like you to submit your answers.
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Task 4 – One False Prove [12 pts]

For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of
the following categories describes the formal proof:

Proof The proof is correct.

Goof The claim is true but the proof is wrong.

Spoof The claim is false.

Finally, (3) if it is a goof, point out the errors in the proof and explain how to correct them, and if
it is a spoof, point out the first error in the proof and then show that the claim is false by giving a
counterexample. (If it is a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible,
including translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the
claim is false, i.e., a goof is not a spoof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as
long as it is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the
proof is incorrect. The proof is incorrect when it asserts a fact that is not necessarily true or does not
follow by the reason given.

Hint: To give a counterexample to a claim in propositional logic, describe what truth values each
atomic variable should have so that all the givens are true but the result is false.

a) Claim: Given a^ b and cÑ  a^ b, it follows that  c holds.

Proof or Spoof : Observe that the first given is equivalent to   a ^   b, which is equivalent to
 p a ^  bq. The contrapositive of the second given is  p a ^  bq Ñ  c. Therefore,  c must
follow.

b) Claim: Given r Ñ  p, p_ s and r Ø s, it follows that p‘ s holds.

Proof or Spoof : First, we show  pp^ sq holds. For contradiction, assume p^ s is true. Since p is
true,  r follows from the contrapositive of the first given. Since we have  r, it must be that  s
holds from the third given. Since both s and  s holds, we have a contradiction! Thus,  pp ^ sq
holds. Combined with the second given, this is equivalent to p‘ s.

Hint: At least one of the Latin rules might be useful!
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Task 5 – Get a Prove On [20 pts]

For each of the following, write a formal proof that the claim holds.

Your proof is allowed to use the basic six rules of Propositional Logic (Modus Ponens, Direct Proof,
Intro ^, Elim ^, Intro _, and Elim _ or Cases), Equivalent, and the four rules for Predicate Logic
(Intro @, Elim @, Intro D, Elim D).

Let P pxq, Q(x), and Rpx, yq be predicates defined in some fixed domain of discourse, and let c be
some well-known constants in that domain.

a) Given Dx, P pxq, @x, pRpx, cqq, and @x, pP pxq Ñ Rpc, xqq, it follows that we must have Dx, D y, pRpx, yq^
Rpy, xqq.

b) Given @x, pRpx, cq ^ Qpxqq and @x,@ y, pRpx, yq Ñ Rpy, xqq, it follows that @x, D y, pRpx, yq ^
Rpy, xqq.

c) Given @x, pP pxq ^ pD y,Rpx, yqqq, it follows that @x, D y, pP pxq ^Rpx, yqq.

The fact that we can move the D outside of the ^ was noted (but not proven) in lecture. In this
problem, you will prove that you can sometimes move an D outside of a ^.

d) Given @x, pP pxq Ñ Qpxqq, it follows that p@x, P pxqq Ñ p@x,Qpxqq.

In Homework 2 Task 6, you were asked to explain why the latter fact follows from the former
one. In this problem, you are asked to prove it using our rules!

Hints: The claim to be proven is an “Ñ”, so your last step should be Direct Proof. The conclusion
of that implication is a “@”’, so your second to last step should be Intro @. This means that your
proof will have a subproof within a subproof!

e) Given @x, pP pxq Ñ Rpx, cqq and @x,@ y, ppQpxq ^ Rpx, yqq Ñ Rpy, xqq, it must be the case that
p@x, pP pxq ^Qpxqqq Ñ p@x,Rpc, xqq.

Hints: As in part (d), the claim to be proven is an “Ñ” with a “@” in its conclusion, so your last
two steps should be Intro @ and Direct Proof. Once again, you will have subproofs nested two deep.

Submit and check your formal proofs here:

http://cozy.cs.washington.edu

You can make as many attempts as needed to find a correct answer.
Important: Cozy uses low precedence quantifiers “@x,” and “Dx,”,

rather than the high precedence version shown in the lecture slides. The
extra “,” is an indicator of the difference.

If technical problems prevent you from saving or if you are unable
to complete the problem and wish to submit partially complete work for
partial credit, you can instead submit in Gradescope. But cozy is where
we’d like you to submit your answers.
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Task 6 – Bust a Prove [12 pts]

For each of the claims below, (1) translate the English proof into a formal proof and (2) say which of
the following categories describes the formal proof:

Proof The proof is correct.

Goof The claim is true but the proof is wrong.

Spoof The claim is false.

Finally, (3) if it is a goof, point out the errors in the proof and explain how to correct them, and if
it is a spoof, point out the first error in the proof and then show that the claim is false by giving a
counterexample. (If it is a correct proof, then skip part (3).)

Be careful! We want you to translate the English proof to a formal proof as closely as possible,
including translating the mistake(s), if any! Also, an incorrect proof does not necessarily mean the
claim is false, i.e., a spoof is not a goof!

Note that English proofs often skip steps that would be required in formal proofs. (That is fine as
long as it is easy for the reader to see what needs to be filled in.) Skipped steps do not mean that the
proof is incorrect. The proof is incorrect when it asserts a fact that is not necessarily true or does not
follow by the reason given.

Hint: To give a counterexample to a claim in predicate logic, describe a domain of discourse and
definitions for all predicates such that all the givens are true but the result is false.

a) Claim: Given @x Dy P px, yq and Dx@y Qpx, yq, it must follow that Dx Dy pP px, yq ^Qpx, yqq

Proof or Spoof : From the second given, we know that for some a, Qpa, yq is true for all y. From
the first given, we know that P pa, bq is true for some b. Since Qpa, yq holds for all y, it must hold
for b, so Qpa, bq is true. Therefore, the claim is true.

b) Claim: Given Dx Dy pP px, yq Ñ  P py, xqq, it follows that  @xP px, xq.

Proof or Spoof : For contradiction, assume that P px, xq holds for all x. From the given, taking a
for x and y, we get that P pa, aq is sufficient for  P pa, aq. Since P pa, aq is true,  P pa, aq must also
be true. Since we cannot have both P pa, aq and  P pa, aq true, we have a contradiction. Therefore,
the claim is true.

6



Task 7 – Extra Credit: Put That In Your Type and Smoke It [0 pts]

In this problem, we will extend the machinery we used in Homework 1’s extra credit problem in two ways.
First, we will add some new instructions. Second, and more importantly, we will add type information
to each instruction.

Rather than having a machine with single bit registers, we will imagine that each register can store
more complex values such as

Primitives These include values of types int, long, float, boolean, char, and String.

Pairs of values The type of a pair is denoted by writing “ˆ” between the types of the two parts. For
example, the pair p1, trueq has type “int ˆ boolean” since the first part is an int and the second
part is a boolean.

Functions The type of a function is denoted by writing a “Ñ” between the input and output types.
For example, a function that takes an int and returns a String is written “int Ñ String”.

We add type information, describing what is stored in each each register, in an additional column
next to the instructions. For example, if R1 contains a value of type int and R2 contains a value of type
int Ñ pString ˆ intq, i.e., a function that takes an int as input and returns a pair containing a String
and an int, then we could write the instruction

R3 :“ CALLpR1, R2q Stringˆ int

which calls the function stored in R2, passing in the value from R1 as input, and stores the result in R3,
and write a type of “Stringˆ int” in the right column since that is the type that is now stored in R3.

In addition to CALL, we add new instructions for working with pairs. If R1 stores a pair of type
Stringˆ int, then LEFTpR1q returns the String part and RIGHTpR1q returns the int part. If R2 contains
a char and R3 contains a boolean, then PAIRpR2, R3q returns a pair of containing a char and a boolean,
i.e., a value of type charˆ boolean.

a) Complete the following set of instructions so that they compute a value of type floatˆ char in the
last register assigned (RN for some N):

R1 floatˆ pStringˆ booleanq

R2 int

R3 pbooleanˆ intq Ñ plongˆ charq

R4 :“ . . . . . .

The first three lines show the types already stored in registers R1, R2, and R3 at the start, before
your instructions are executed. You are free to use the values in those registers in later instructions.

Store into a new register on each line. Do not reassign any registers.

b) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Task 1(a). Give a collection of text substitutions, such as replacing all instances of “P” by
“float” (these can include substitutions for atomic propositions and for operators), that will make
the sequence of propositions in Task 1(a) exactly match the sequence of types in part (a).

Note: You may need to change your solution to part (a) slightly to make this work!
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c) Now, let’s add another way to form new types. If A and B are types, then A` B will be the type
representing values that can be of either type A or type B. For example, String ` int would be a
type of values that can be strings or integers.

To work with this new type, we need some new instructions. First, if R1 has type A, then the
instruction LCASEpR1q returns the same value but now having type A ` B and RCASEpR1q returns
the same value but now having type B`A (Note that we can pick any type B that we want here.)

Second, if R2 stores a value of type A ` B, R3 stores a function of type A Ñ C (a function
taking an A as input and returning a value of type C), and R4 stores a function of type B Ñ C,
then the instruction SWITCHpR2, R3, R4q returns a value of type C: it looks at the value in R2, and,
if it is of type A, it calls the function in R3 and returns the result, whereas, if it is of type B, it calls
the function in R4 and returns the result. In either case, the result is something of type C.

Complete the following set of instructions so that they compute some value whose type is
float` plongˆ charq in the last register assigned:

R1 float` String

R2 float Ñ pboolean` intq

R3 String Ñ pboolean` intq

R4 pboolean` intq Ñ pcharˆ longq

R5 :“ . . . . . .

The first four lines again show the types of values already stored in registers R1 through R4. As
before, do not reassign any registers. Use a new register for each instruction’s result.

d) Compare the types listed next to these instructions to the propositions listed on the lines of your
proof in Task 1(c). Give a collection of text substitutions, such as replacing all instances of “P” by
“float” (these can include substitutions for atomic propositions and for operators), that will make
the sequence of propositions in Task 1(c) exactly match the sequence of types in part (c). (You may
need to change your solution to part (c) slightly to make this work!)

e) Now that we see how to match up the propositions in our earlier proofs with types in the code above,
let’s look at the other two columns. Describe how to translate each of the rules of inference used in
the proofs from both Task 1(a) and (c) so that they turn into the instructions in parts (a) and (c).

f) One of the important rules not used in Task 1(a) or (c) was Direct Proof. What new concept would
we need to introduce to our assembly language so that the similarities noted above apply could also
to proofs that use Direct Proof?
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