# CSE 311: Winter 2024 Midterm Exam Solutions

| Name: | NetID: | @uw.edu |
|-------|--------|---------|

## **Instructions**

- You have ninety minutes to complete this exam.
- You are permitted one piece of 8.5x11 inch paper with handwritten notes (notes are allowed on both sides of the paper).
- You may not use a calculator or any other electronic devices during the exam.
- We will be scanning your exams before grading them. Please write legibly, and avoid writing up to the edge of the paper.
- Problems are printed on both the front and back of each page!
- You may also use the last page for extra space, but tell us where to find your answer if it's not right below the problem.
- If you want us to grade something you wrote on scratch paper, put your name and netid on the paper and tell us when you turn in your exam that you have an extra sheet.
- For multiple choice questions
  - If options are shown in circles, completely fill in the circle for the (one) best answer.
  - If options are shown in ☐ squares, completely fill in the squares for ALL correct answers (there may be more than one).

## **Advice**

- Remember to properly format English proofs (e.g. introduce all your variables).
- All proofs for this exam must be English proofs.
- We give partial credit for the beginning and end of a proof. Even if you don't know how the middle goes, you can write the start of the proof and put the "target" and conclusion at the bottom.
- Remember to take deep breaths.

| Question      | Max points |
|---------------|------------|
| Rubik's Cubes | 18         |
| A Proof       | 16         |
| Induction     | 20         |
| Short Answer  | 16         |
| Total         | 70         |

## 1. Rubik's Cubes!! [18 points]

For the rest of this problem, let the domain of discourse be people. Interpret all sentences below as being in "mathematical English."

You may use the following predicates; the definition for the predicate is given after the colon in the list below.

- Cuber(x): x is a cuber (a cuber is someone who likes Rubik's cubes)
- CanSolve(x): x can solve a Rubik's cube
- AttendsCompetition(x): x attends a competition
- CanSolveBlindfoled(x): x can solve a Rubik's cube blindfolded (you may abbreviate this predicate as CSB)
- Cooler (x, y): x is cooler (more impressive) than y

Use x = y to state that x and y are the same person, and  $x \neq y$  to state they are different.

**Note**: Do not give more information than needed. The correct translation of "Everyone can solve a rubik's cube blindfolded" is  $\forall x (CanSolveBlindFolded(x))$ . Do NOT add the predicate CanSolve(x) in that answer.

Translate the following English sentences in part (a) and (b) into predicate logic.

(a) Every cuber that attends a competition must know how to solve a Rubik's cube.

#### **Solution:**

```
\forall x ((\mathsf{Cuber}(x) \land \mathsf{AttendsCompetition}(x)) \to \mathsf{CanSolve}(x))
```

(b) There are exactly two cubers that can solve a Rubik's cube blindfolded. Solution:

```
\exists x \exists y (\mathsf{Cuber}(x) \land \mathsf{CanSolveBlindfolded}(x) \land \mathsf{Cuber}(y) \land \mathsf{CanSolveBlindfolded}(y) \land x \neq y \land \forall z ((\mathsf{Cuber}(z) \land \mathsf{CanSolveBlindfolded}) \rightarrow (z = x \lor z = y)))
```

Translate the predicate logic statements in parts (c) and (d) into **English**. Your English translation must take advantage of domain restriction where possible.

(c)  $\exists x (\mathsf{Cuber}(x) \land \neg \mathsf{CanSolve}(x) \land \forall y ((\mathsf{Cuber}(y) \land \mathsf{CanSolve}(y)) \rightarrow \mathsf{Cooler}(y, x)))$ Solution:

Solution: There is a cuber who cannot solve a Rubik's cube, and any cuber that can solve a Rubik's cube is cooler than them.

Alternatively: There is a cuber who cannot solve a Rubik's cube, and they are not as cool as any cuber who knows how to solve a Rubik's cube.

(d)  $\forall x \exists y (\mathsf{Cuber}(x) \to [\mathsf{CanSolve}(y) \land \mathsf{Cooler}(y, x)])$  **Solution:** 

A cuber can always find another cuber who can solve a Rubik's Cube and is cooler than themselves.

Parts (e) and (f) refer to this predicate statement:

```
\forall x ((CanSolve(x) \lor AttendsCompetition(x)) \rightarrow Cuber(x))
```

(e) State the contrapositive of the statement above in **English**. Your solution must explicitly state all quantifiers, have negations applied to individual predicates, and take advantage of domain restriction. **Solution:** 

"Every non-cuber cannot solve a Rubik's cube and doesn't attend competitions."

(f) State the negation of the statement above in **English**. Your solution must explicitly state all quantifiers, have negations applied to individual predicates, and take advantage of domain restriction.

### **Solution:**

"There exists a non-cuber that can solve a rubik's cube or attends competitions."

Alternative that doesn't fully take advantage of domain restriction: "There exists a person that can solve a Rubik's cube or attends a competition, and that person is a non-cuber". This solution does NOT recieve full points.

## 2. Number Theory! [16 points]

(a) For all integers p, n, and q where n > 0, prove:

If 
$$p \equiv 1 \pmod{3n}$$
 and  $q \equiv 2 \pmod{4n}$ , then  $4p + 3q \equiv 10 \pmod{12n}$ .

Hint Use your definitions! [13 points] Solution:

Let p, q, and n be arbitrary integers where n>0. Suppose that  $p\equiv 1\pmod{3n}$  and  $q\equiv 2\pmod{4n}$ . Therefore by definition of modular equivalence, we have 3n|p-1 and 4n|q-2. By definition of divides, we know have that for some integer k, j: 3n(k)=p-1 and 4n(j)=q-2. Solving for p and q gives us p=3nk+1, and q=4nj+2. We then have:

$$4p+3q$$
 
$$=4(3nk+1)+3(4nj+2)$$
 Subbing in values for  $p,q$  
$$=12nk+4+12nj+6$$
 
$$=12n(k+j)+10$$

Notice this shows, 4p+3q=12n(k+j)+10. Rearranging, we have 4p+3q-10=12n(k+j). Since k+j is an integer under closure of addition, we have 12n|4p+3q-10 by definition of divides. We therefore have  $4p+3q\equiv 10\pmod{12n}$  by definition of congruence.

Therefore, since p,q, and n were arbitrary, we have proven that if  $p \equiv 1 \pmod{3n}$  and  $q \equiv 2 \pmod{4n}$ , than  $4p + 3q \equiv 10 \pmod{12n}$ .

| (h) | Which of the  | following is true | about divides | for all integers | a b c? [3    | noints] |
|-----|---------------|-------------------|---------------|------------------|--------------|---------|
| (U) | Willer Of the | Tollowing is true | about divides | ioi an integers  | a, b, c: [3] | homre   |

- $\bigcirc$  If a|b, then b|a.
- $\bigcirc$  If a|b, then  $b \nmid a$ .
- $\bigcirc$  If a|b and b|c, then a|c.
- $\bigcirc$  If a|b and b|c, then  $a \nmid c$ . Solution:

Number 3

## 3. Induction! [20 points]

Prove by induction that for all integers  $n \ge 1$ :

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = \frac{n}{n+1}$$

This equation can be written equivalently in summation notation as

$$\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$$

You may use either (or both) formulations in your proof.

Make sure to use the template covered in class, including defining a predicate P().

## **Solution:**

Let P(n) be " $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$ ". We will show P(n) holds for all integers  $n \ge 1$  by induction on n.

Base case: For n = 1, we have

$$\frac{1}{1\cdot(1+1)} = \frac{1}{2} = \frac{1}{1+1}$$

so P(1) holds.

Inductive Hypothesis: Suppose P(k) holds for some arbitrary integer  $k \ge 1$  (i.e.  $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \cdots + \frac{1}{k(k+1)} = \frac{k}{k+1}$ ).

Inductive step: We will show that P(k+1) holds (i.e.  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{(k+1)(k+2)} = \frac{k+1}{k+2}$ ).

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(k+1)(k+2)} = (\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{k(k+1)}) + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$$

$$= \frac{k(k+2) + 1}{(k+1)(k+2)}$$

$$= \frac{k^2 + 2k + 1}{(k+1)(k+2)}$$

$$= \frac{(k+1)^2}{(k+1)(k+2)}$$

$$= \frac{k+1}{k+2}$$
[Inductive Hypothesis]

Therefore, we have proven P(n) holds or that  $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \cdots + \frac{1}{n(n+1)} = \frac{n}{n+1}$  for all integers  $n \ge 1$  by induction.

# 4. Short Answer [16 points]

| (a) | ou wish to show "For every integer, if it is divisible by 10 then it is even" with a proof by contrapositive. State he contrapositive of the claim in English. [4 points]                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|     | Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|     | "for every integer, if it is odd, then it is not divisible by 10."                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| (b) | Which of the following describes what it means when we write $\exists x \forall y P(x,y)$ ? [2 points] $\bigcirc$ All the values $(x)$ in our domain have the same value $y$ that makes $P(x,y)$ true. $(y \text{ cannot depend on } x)$ $\bigcirc$ All the values $(y)$ in our domain have a value $x$ that makes $P(x,y)$ true. $(x \text{ can depend on } y)$ . $\bigcirc$ There is a value $(x)$ in our domain so that for all values $(x)$ is true. Solution: |  |  |  |  |
|     | Third option                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| (c) | Which of the following expressions are <b>NOT</b> equivalent to $(p \lor q) \lor r$ ? Mark ALL that apply [2 points]                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|     | Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|     | First option only                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| (d) | A reliable source tells you the following statement is true: "If a student is taking 311, then they know DeMorgan's Law." What can you conclude about the statement "If a student knows DeMorgan's Law, then they are taking 311."? [2 points]                                                                                                                                                                                                                     |  |  |  |  |
|     | The second statement must be true. The second statement cannot be true. The second statement might or might not be true.                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|     | Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|     | Answer choice 3                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| (e) | Which of the following expressions are equivalent to $(p \lor q) \land v$ ? Mark ALL that apply? [2 points]                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|     | First option only                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |

(f) Which of the following is the **DNF** of the following truth table? [2 points]

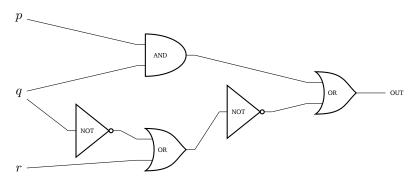
| p | q | r | $(p \to q) \land r$ |
|---|---|---|---------------------|
| Т | Т | Т | Т                   |
| Т | Т | F | F                   |
| Т | F | Т | F                   |
| Т | F | F | F                   |
| F | Т | Т | Т                   |
| F | Т | F | F                   |
| F | F | Т | Т                   |
| F | F | F | F                   |

- $\bigcirc (p \lor q \lor r) \land (\neg p \lor q \lor r) \land (\neg p \lor \neg q \lor r) \\ \bigcirc (p \land q \land r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land r) \\ \bigcirc (\neg p \land \neg q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (p \land q \land \neg r) \\ \bigcirc (\neg p \lor \neg q \lor \neg r) \land (p \lor \neg q \lor \neg r) \land (p \lor q \lor \neg r)$

#### **Solution:**

Answer choice 2

(g) Which of the following is the circuit below equivalent to? [2 points]



### **Solution:**

Answer choice 3