NFA that recognizes “binary strings with a 1 in the third position from the end”

“Perfect Guesser”: The NFA has input x, and whenever there is a choice of what to do, it magically guesses a transition that will eventually lead to acceptance (if one exists).

Perfect guesser view makes this easier.
Design an NFA for the language in the title.

An example (starting point)

```
N
```

```
D
```

```
{a, b}
```

```
{a}
```

```
{c}
```
Let \(P(A) \) be “There is an NFA whose language is the same as the language for \(A \).”

Base Cases:

\[\emptyset \]

\[\varepsilon \]

\[a \ (a \in \Sigma) \]

Let \(R \) be a regex not covered by the base cases. By the exclusion rule, \(R = A \cup B \) or \(AB \) or \(A^* \) from some regexes \(A, B \).

Inductive Hypothesis: Suppose \(P(A) \) and \(P(B) \).

Inductive Step: **Case 2: \(AB \)**

Want a machine that accepts exactly strings matched by \(AB \).