Warm up:
What is the following recursively-defined set?

Basis Step: $4 \in S$, $5 \in S$

Recursive Step: If $x \in S$ and $y \in S$ then $x - y \in S$
Trees!
More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.

Recursive Step: If T_1 and T_2 are rooted binary trees with roots r_1 and r_2, then a tree rooted at a new node, with children r_1, r_2 is a binary tree.
Functions on Binary Trees

size() = 1

size() = size(T_1) + size(T_2) + 1

height() = 0

height() = 1 + max(height(T_1), height(T_2))
Claim

We want to show that trees of a certain height can’t have too many nodes. Specifically our claim is this:

For all trees T, $\text{size}(T) \leq 2^{\text{height}(T)+1} - 1$

Take a moment to absorb this formula, then we’ll do induction!
Structural Induction on Binary Trees

Let \(P(T) \) be "\(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)". We show \(P(T) \) for all binary trees \(T \) by structural induction.

Base Case: Let \(T = \circ \). \(\text{size}(T) = 1 \) and \(\text{height}(T) = 0 \), so \(\text{size}(T) = 1 \leq 2 - 1 = 2^{0+1} - 1 = 2^{\text{height}(T)+1} - 1 \).

Inductive Hypothesis: Suppose \(P(L) \) and \(P(R) \) hold for arbitrary trees \(L, R \). Let \(T \) be the tree

Inductive step: Figure out, (1) what we must show (2) a formula for height and a formula for size of \(T \).
Structural Induction on Binary Trees (cont.)

Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$“. We show $P(T)$ for all binary trees T by structural induction.

$T =$

The height of T, $\text{height}(T) = 1 + \max\{\text{height}(L), \text{height}(R)\}$

The size of T, $\text{size}(T) = 1 + \text{size}(L) + \text{size}(R)$

So $P(T)$ holds, and we have $P(T)$ for all binary trees T by the principle of induction.
How do heights compare?

If L is taller than R?

If L, R same height?

If R is taller than L?

$$\text{height}(\bullet) = 0$$
$$\text{height}(\) = 1 + \max(\text{height}(T_1), \text{height}(T_2))$$
How do heights compare?

If L is taller than R?

If L, R same height?

If R is taller than L?

In all cases: $\text{height}(T) \geq \text{height}(L) + 1$, $\text{height}(T) \geq \text{height}(R) + 1$
Structural Induction on Binary Trees (cont.)

Let $P(T)$ be "size(T) $\leq 2^{height(T)+1} - 1$". We show $P(T)$ for all binary trees T by structural induction.

$T =$

```
  .
 /|
/ |
L R
```

height(T) $= 1 + \max\{\text{height}(L), \text{height}(R)\}$

size(T) $= 1 + \text{size}(L) + \text{size}(R)$

size(T) $= 1 + \text{size}(L) + \text{size}(R) \leq 1 + 2^{\text{height}(L)+1} - 1 + 2^{\text{height}(R)+1} - 1$ (by IH)

$\leq 2^{\text{height}(L)+1} + 2^{\text{height}(R)+1} - 1$ (cancel 1's)

$\leq 2^{\text{height}(T)} + 2^{\text{height}(T)} - 1 = 2^{\text{height}(T)+1} - 1$ (T taller than subtrees)

So $P(T)$ holds, and we have $P(T)$ for all binary trees T by the principle of induction.
Structural Induction Template

1. Define $P()$ State that you will show $P(x)$ holds for all $x \in S$ and that your proof is by structural induction.

2. Base Case: Show $P(b)$
 [Do that for every b in the basis step of defining S]

3. Inductive Hypothesis: Suppose $P(x)$
 [Do that for every x listed as already in S in the recursive rules].

4. Inductive Step: Show $P()$ holds for the “new elements.”
 [You will need a separate step for every element created by the recursive rules].

5. Therefore $P(x)$ holds for all $x \in S$ by the principle of induction.
Structural Induction on Strings
Strings

\(\varepsilon \) is "the empty string"

The string with 0 characters – "" in Java (not null!)

\(\Sigma^* \):

Basis: \(\varepsilon \in \Sigma^* \).

Recursive: If \(w \in \Sigma^* \) and \(a \in \Sigma \) then \(wa \in \Sigma^* \)

\(wa \) means the string of \(w \) with the character \(a \) appended.

You’ll also see \(w \cdot a \) (\(a \cdot \) to mean "concatenate" i.e. + in Java)
Functions on Strings

Since strings are defined recursively, most functions on strings are as well.

Length:
len(\(\varepsilon\))=0;
len(\(wa\))=len(w)+1 for \(w \in \Sigma^*, a \in \Sigma\)

Reversal:
\(\varepsilon^R = \varepsilon\);
\((wa)^R = aw^R\) for \(w \in \Sigma^*, a \in \Sigma\)

Concatenation
\(x \cdot \varepsilon = x\) for all \(x \in \Sigma^*\);
\(x \cdot (wa) = (x \cdot w)a\) for \(w \in \Sigma^*, a \in \Sigma\)

Number of \(c\)'s in a string
\(\#_c(\varepsilon) = 0\)
\(\#_c(wc) = \#_c(w) + 1\) for \(w \in \Sigma^*\);
\(\#_c(wa) = \#_c(w)\) for \(w \in \Sigma^*, a \in \Sigma \setminus \{c\}\).
Claim for all $x, y \in \Sigma^*$ \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\).

Let $P(y)$ be “for all $x \in \Sigma^*$ \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\).“

Notice the strangeness of this $P()$ there is a “for all x“ inside the definition of $P(y)$.

That means we’ll have to introduce an arbitrary x as part of the base case and the inductive step!
Claim for all $x, y \in \Sigma^*$ $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$.

Let $P(y)$ be “$\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^*$.”

We prove $P(y)$ for all $x \in \Sigma^*$ by structural induction.

Base Case:

Inductive Hypothesis

Inductive Step:

We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^*$ $\text{len}(xy) = \text{len}(x) + \text{len}(y)$, as required.
Claim for all $x, y \in \Sigma^*$\; \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$.

Let $P(y)$ be “$\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^*$.”

We prove $P(y)$ for all $x \in \Sigma^*$ by structural induction.

Base Case: Let x be an arbitrary string, $\text{len}(x \cdot \epsilon) = \text{len}(x)$

$= \text{len}(x) + 0 = \text{len}(x) + \text{len}(\epsilon)$

Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w.

Inductive Step:

We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^* \; \text{len}(xy) = \text{len}(x) + \text{len}(y)$, as required.
Claim for all $x, y \in \Sigma^*$ $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$.

Let $P(y)$ be “$\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^*$.”

We prove $P(y)$ for all $x \in \Sigma^*$ by structural induction.

Base Case: Let x be an arbitrary string, $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + 0 = \text{len}(x) + \text{len}(\varepsilon)$

Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w.

Inductive Step: Let $y = wa$ for an arbitrary $a \in \Sigma$. We show $P(y)$. Let x be an arbitrary string.

...

Therefore, $\text{len}(xy) = \text{len}(x) + \text{len}(y)$, as required.

We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^*$ $\text{len}(xy) = \text{len}(x) + \text{len}(y)$, as required.
Claim for all $x, y \in \Sigma^*$ \[\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y),\]

Let $P(y)$ be \"$\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^\$\."\

We prove $P(y)$ for all $x \in \Sigma^*$ by structural induction.

Base Case: Let x be an arbitrary string, \[\text{len}(x \cdot \epsilon) = \text{len}(x) = \text{len}(x) + 0 = \text{len}(x) + \text{len}(\epsilon)\]

Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w.

Inductive Step: Let $y = wa$ for an arbitrary $a \in \Sigma$. We show $P(y)$. Let x be an arbitrary string.

\[\text{len}(xy) = \text{len}(xwa) = \text{len}(xw) + 1\text{ (by definition of len)}\]
\[= \text{len}(x) + \text{len}(w) + 1\text{ (by IH)}\]
\[= \text{len}(x) + \text{len}(wa)\text{ (by definition of len)}\]

Therefore, \[\text{len}(xy) = \text{len}(x) + \text{len}(y),\] as required.

We conclude that $P(y)$ holds for all string y by the principle of induction. Unwrapping the definition of P, we get \[\forall x \forall y \in \Sigma^* \text{ len}(xy) = \text{len}(x) + \text{len}(y),\] as required.
Let $P(y)$ be “$\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x \in \Sigma^*$.”

We prove $P(y)$ for all $x \in \Sigma^*$ by structural induction.

Base Case: Let x be an arbitrary string, $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + 0 = \text{len}(x) + \text{len}(\varepsilon)$

Inductive Hypothesis: Suppose $P(w)$ for an arbitrary string w.

Inductive Step: Let $y = wa$ for an arbitrary $a \in \Sigma$. We show $P(y)$. Let x be an arbitrary string.

\[
\text{len}(xy) = \text{len}(xwa) = \text{len}(xw) + 1 \text{ (by definition of len)}
\]
\[
= \text{len}(x) + \text{len}(w) + 1 \text{ (by IH)}
\]
\[
= \text{len}(x) + \text{len}(wa) \text{ (by definition of len)}
\]

Therefore, $\text{len}(xy) = \text{len}(x) + \text{len}(y)$, as required.

We conclude that $P(y)$ holds for all strings y by the principle of induction. Unwrapping the definition of P, we get $\forall x \forall y \in \Sigma^* \text{ len}(xy) = \text{len}(x) + \text{len}(y)$, as required.
A few last comments
What does the inductive step look like?

Here’s a recursively-defined set:

Basis: $0 \in T$ and $5 \in T$

Recursive: If $x, y \in T$ then $x + y \in T$ and $x - y \in T$.

Let $P(x)$ be “$5 \mid x$”

What does the inductive step look like?

Well there’s two recursive rules, so we have two things to show
Let t be an arbitrary element of T not covered by the base case. By the exclusion rule $t = x + y$ or $t = x - y$ for $x, y \in T$.

Inductive hypothesis: Suppose $P(x)$ and $P(y)$ hold.

Case 1: $t = x + y$

By IH $5|x$ and $5|y$ so $5a = x$ and $5b = y$ for integers a, b.

Adding, we get $x + y = 5a + 5b = 5(a + b)$. Since a, b are integers, so is $a + b$, and $P(x + y)$, i.e. $P(t)$, holds.

Case 2: $t = x - y$

By IH $5|x$ and $5|y$ so $5a = x$ and $5b = y$ for integers a, b.

Subtracting, we get $x - y = 5a - 5b = 5(a - b)$. Since a, b are integers, so is $a - b$, and $P(x - y)$, i.e., $P(t)$, holds.

In all cases, we have $P(t)$. By the principle of induction, $P(x)$ holds for all $x \in T$.
If you don’t have a recursively-defined set

You won’t do structural induction.
You can do weak or strong induction though.

For example, Let $P(n)$ be “for all elements of S of “size” n <something> is true”

To prove “for all $x \in S$ of size n...” you need to start with “let x be an arbitrary element of size $k + 1$ in your IS.

You CAN’T start with size k and “build up” to an arbitrary element of size $k + 1$ it isn’t arbitrary.
Part 3 of the course!
Course Outline

Symbolic Logic (training wheels)
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)

Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments
But now with objects you haven’t used before.

- A first taste of how we can argue rigorously about computers.

First up: regular expressions, context free grammars, automata – understand these “simpler computers”

Soon: what these simple computers can do
Then: what simple computers can’t do.

Last week: A problem our computers cannot solve.
The definitions for Friday
Regular Expressions

I have a giant text document. And I want to find all the email addresses inside. What does an email address look like?

[some letters and numbers] @ [more letters] . [com, net, or edu]

We want to ctrl-f for a pattern of strings rather than a single string
Languages

A set of strings is called a language.

\(\Sigma^* \) is a language

“the set of all binary strings of even length” is a language.

“the set of all palindromes” is a language.

“the set of all English words” is a language.

“the set of all strings matching a given pattern” is a language.
Regular Expressions

Basis:
ε is a regular expression. The empty string itself matches the pattern (and nothing else does).
∅ is a regular expression. No strings match this pattern.
a is a regular expression, for any $a \in \Sigma$ (i.e. any character). The character itself matching this pattern.

Recursive
If A, B are regular expressions then $(A \cup B)$ is a regular expression
matched by any string that matches A or that matches B [or both]).
If A, B are regular expressions then AB is a regular expression.
matched by any string x such that $x = yz$, y matches A and z matches B.
If A is a regular expression, then A^* is a regular expression.
matched by any string that can be divided into 0 or more strings that match A.
Regular Expressions

\((a \cup bc)\)

\(0(0 \cup 1)1\)

\(0^*\)

\((0 \cup 1)^*\)
Extra Practice
Induction: Hats!

You have n people in a line ($n \geq 2$). Each of them wears either a purple hat or a gold hat. The person at the front of the line wears a purple hat. The person at the back of the line wears a gold hat.

Show that for every arrangement of the line satisfying the rule above, there is a person with a purple hat next to someone with a gold hat.

Yes, this is kinda obvious. I promise this is good induction practice.

Yes, you could argue this by contradiction. I promise this is good induction practice.
Induction: Hats!

Define $P(n)$ to be “in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show $P(n)$ for all integers $n \geq 2$ by induction on n.

Base Case: $n = 2$

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have $P(n)$ for all $n \geq 2$
Induction: Hats!

Define $P(n)$ to be “in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat.”

We show $P(n)$ for all integers $n \geq 2$ by induction on n.

Base Case: $n = 2$ The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 2$.

Inductive Step: Consider an arbitrary line with $k + 1$ people in purple and gold hats, with a gold hat at one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.

By the principle of induction, we have $P(n)$ for all $n \geq 2$.
Induction: Hats!

Define $P(n)$ to be “in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show $P(n)$ for all integers $n \geq 2$ by induction on n.

Base Case: $n = 2$ The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 2$.

Inductive Step: Consider an arbitrary line with $k + 1$ people in purple and gold hats, with a gold hat at one end and a purple hat at the other.

Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those people are the required adjacent opposite hats.

Case 2: There is a person with a gold hat next to the person in the gold hat at the end. Then the line from the second person to the end is length k, has a gold hat at one end and a purple hat at the other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have $P(k + 1)$.

By the principle of induction, we have $P(n)$ for all $n \geq 2$