Binary Trees

Basis: A single node is a rooted binary tree.

Recursive Step: If T_1 and T_2 are rooted binary trees with roots r_1 and r_2, then a tree rooted at a new node, with children r_1, r_2 is a binary tree.

size(\bullet) = 1
size(T_1) + size(T_2) + 1

height(\bullet) = 0
height(T_1) + height(T_2) = 1 + max(height(T_1), height(T_2))

Structural Induction Template

1. Define $P()$ State that you will show $P(x)$ holds for all $x \in S$ and that your proof is by structural induction.

2. Base Case: Show $P(b)$
 [Do that for every b in the basis step of defining S]

3. Inductive Hypothesis: Suppose $P(x)$
 [Do that for every x listed as already in S in the recursive rules].

4. Inductive Step: Show $P()$ holds for the “new elements.”
 [You will need a separate step for every element created by the recursive rules].

5. Therefore $P(x)$ holds for all $x \in S$ by the principle of induction.
Functions on Strings
Since strings are defined recursively, most functions on strings are as well.

Length:
\[\text{len}(\varepsilon) = 0; \]
\[\text{len}(wa) = \text{len}(w) + 1 \text{ for } w \in \Sigma^*, a \in \Sigma \]

Reversal:
\[\varepsilon^R = \varepsilon; \]
\[(wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma \]

Concatenation
\[x \cdot \varepsilon = x \text{ for all } x \in \Sigma^*; \]
\[x \cdot (wa) = (x \cdot w)a \text{ for } w \in \Sigma^*, a \in \Sigma \]

Number of c's in a string
\[\#_c(\varepsilon) = 0 \]
\[\#_c(wa) = \#_c(w) + 1 \text{ for } w \in \Sigma^*; \]
\[\#_c(wa) = \#_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma \setminus \{c\}. \]

Claim for all \(x, y \in \Sigma^* \) \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \).”

We prove \(P(y) \) for all \(x \in \Sigma^* \) by structural induction.

Base Case:
Inductive Hypothesis
Inductive Step:

We conclude that \(P(y) \) holds for all string \(y \) by the principle of induction. Unwrapping the definition of \(P \), we get \(\forall x \forall y \in \Sigma^* \, \text{len}(xy) = \text{len}(x) + \text{len}(y) \), as required.