Another Proof

Claim: $\forall a (\text{Even}(a^2) \rightarrow \text{Even}(a))$ “if a^2 is even, then a is even.”

See how far you get (this is somewhat a trick question).

At the very least, introduce variables, assume anything you can at the start, put down your “target” at the bottom of the paper.

Divides

For integers x, y we say $x|y$ (“x divides y”) iff there is an integer z such that $xz = y$.

Which of these are true?

$2|4$ $4|2$ $2|\ -2$

$5|0$ $0|5$ $1|5$
Unique

The Division Theorem

For every \(a \in \mathbb{Z}, \ d \in \mathbb{Z} \) with \(d > 0 \)
There exist **unique** integers \(q, r \) with \(0 \leq r < d \)
Such that \(a = dq + r \)

“unique” means “only one”….but be careful with how this word is used.
\(r \) is unique, **given** \(a, d \). – it still depends on \(a, d \) but once you’ve chosen \(a \) and \(d \)

“unique” is not saying \(\exists r \forall a, d \ P(a, d, r) \)
It’s saying \(\forall a, d \exists r [P(a, d, r) \land [P(a, d, x) \rightarrow x = r]] \)

Another Proof

For all integers, \(a, b, c \): Show that if \(a \nmid (bc) \) then \(a \nmid b \) or \(a \nmid c \).
Proof:
Let \(a, b, c \) be arbitrary integers, and suppose \(a \nmid (bc) \).
Then there is not an integer \(z \) such that \(az = bc \)

...

So \(a \nmid b \) or \(a \nmid c \)