Try it...

What’s a possible domain of discourse for these lists of predicates?

1. “x is a cat”, “x barks”, “x likes to take walks”

2. “x is prime”, “$x=5$” “$x < 20$” “x is a power of two”

3. “x is enrolled in course y”, “y is a pre-req for z”

Translations

“For every x, if x is even, then $x = 2$.”

“There are x, y such that $x < y$.”

\[
\exists x \ (\text{Odd}(x) \land \text{LessThan}(x, 5))
\]

\[
\forall y \ (\text{Even}(y) \land \text{Odd}(y))
\]
Quantifiers

Writing implications can be tricky when we change the domain of discourse.

For every cat: if the cat is fat, then it is happy.

\[\forall x [\text{Cat}(x) \land \text{Fat}(x) \rightarrow \text{Happy}(x)] \]

Domain of Discourse: cats

What if we change our domain of discourse to be all mammals? We need to limit \(x\) to be a cat. How do we do that?

\[\forall x [\text{Cat}(x) \land (\text{Fat}(x) \rightarrow \text{Happy}(x))] \]

Universal Quantifier

“\(\forall x \)”

“for each \(x\)”, “for every \(x\)”, “for all \(x\)” are common translations
Remember: upside-down-A for All.

Existential Quantifier

“\(\exists x \)”

“there is an \(x\)”, “there exists an \(x\)”, “for some \(x\)” are common translations
Remember: backwards-E for Exists.