Homework 5: Number Theory and Induction

Version 3: Updated 2/2 4 PM. Added extra credit problem.

Version 2: Updated 2/1 9 AM. Question 6 should be T'(n) = 3"n!

Due date: Wednesday February 7th at 11:59 PM

If you work with others (and you should!), remember to follow the collaboration policy outlined in the syllabus.
In general, you are graded on both the clarity and accuracy of your work. Your solution should be clear enough
that someone in the class who had not seen the problem before would understand it.

We sometimes describe approximately how long our explanations are. These are intended to help you understand
approximately how much detail we are expecting. You are allowed to have longer explanations, but explanations
significantly longer than necessary may receive deductions.

Be sure to read the grading guidelines on the assignments page for more information on what we’re looking
for.

In order to assist with the transition from formal proofs to English proofs, we’ve published a style guide on the
website containing some tips. This guide contains references to proof materials that we haven’t taught yet, so don’t
worry if some of these terms are unfamiliar.

This homework comes in two parts. Part one is practice with modular arithmetic; part two is practice with
induction.

We will have two separate gradescope submission boxes. Using one late day allows you to submit both parts one
day later (e.g. one late day lets you submit both parts on Thursday February 8th).

The staff will focus on grading part 2 first. If you don’t use any late days, we will get you feedback on part two
before the midterm (we want to be really sure you get feedback on at least one induction problem in time). We will
likely not get the part 1 feedback returned before the midterm.

Part I

1. Backwards Proofs [6 points]

A common error now that we’re doing a lot of algebra is to write a “backwards” or “U-shaped” proof. For a proof
to be valid, we must start from facts we know (either givens, or accepted facts, or supposing hypotheses to prove
implications), and derive from them the statement we desire.

We cannot start from the equation to be shown and simplify it to something “obviously true.”

Read the slides and watch the video on panopto and/or read the reading about backwards proofs. Then do these
problems

(a) Complete the Backwards Proof Practice assignment on gradescope. This part will feel like a concept check (ex-
planations appear when correct, problem is graded automatically, etc.) but counts in the homework category
for grades. [4 points]

(b) On the practice, question 4 is an incorrect proof that 5/(9% — 4%), which is the base case in an induction proof
of 5/(9™ — 4™) for integers n > 2. Write a correct proof of only the base case (this should be very short). [2
points]

2. Like —2 but better! [22 points]

In normal arithmetic, a + 2 + (—2) = a for every integer a. So we say that -2 “undoes” 2. In modular arithmetic, a
similar statement might be that a+2+3 = a (mod 5), so 3 “undoes 2 for (mod 5) addition.” More generally, given
an integer n, we say that an integer b “undoes 2 for (mod n) addition” if and only if for all integersa, a+2+b=a
(mod n).

https://courses.cs.washington.edu/courses/cse311/23au/syllabus/index.html
https://courses.cs.washington.edu/courses/cse311/23au/assignments/
https://courses.cs.washington.edu/courses/cse311/23wi/resources/styleguide.pdf
https://courses.cs.washington.edu/courses/cse311/23au/lecture/HW5-backwards-proofs.pdf
https://courses.cs.washington.edu/courses/cse311/23au/resources/reading03-backwards.pdf
https://www.gradescope.com/courses/691458/assignments/4013782/submissions

In this problem, you will show that for every integer n (where n > 2), there exists some integer b, where 1 < b < n,
which undoes 2 for (mod n) addition.

@

(b)

(]

Write the statement “for every integer n (where n > 2), there exists some integer b, where 1 < b < n, which
undoes 2 for (mod n) addition.” in predicate logic. You should use the predicate “Undoes2(b,n) to say “b
undoes 2 in (mod n) arithmetic” [2 points]

You (hopefully!) have a statement which starts Yn3b. Recall that since the 3 come second, the value of b is
allowed to depend on n. Give a formula for the b (in range 1 < b < n) for which Undoes2(b, n) evaluates to
true. The formula will depend on n. [2 points]

Now do the actual proof. You’ll start the proof by introducing an arbitrary variable (you’re proving a V) then
you’ll be doing an exists proof (tell us what value of b you want and argue that it makes Undoes2() evaluate
to true). Be sure you don’t do a backwards proof! For this part, you may not use facts about modular
equivalences, you may only use the definitions of divides and equivalence mod n and algebra (applied to
equations or individual numbers, not to equivalences). [8 points]

Hint: Don’t forget that the definition of Undoes2 has another V quantifier inside of it!

Now that we’ve shown there is a way to undo 2, next we’re going to try to show there’s not a bunch of different
ways. In this problem, you’ll show that for every integer n (where n > 2), for all integers b, ¥’ where both b and ¥’
undo 2 for (mod n) addition, that b = b’ (mod n). Note that we’ve gotten rid of the 1 < b < n requirement in this
part! [6 points]

(d

(e)

®

3.

Write the statement above in predicate logic. Use the predicate Undoes2(b,n) for “b undoes 2 for (mod n)
arithmetic.” [2 points]

Now write an English proof of the statement. For this part you may use theorems shown in class and on the
Number Theory Reference Sheet. [8 points]
You may also use the following fact:

Theorem 1 (Transitivity of Equivalence). For all integers a, b, c,n with n. > 0:
ifa=b (mod n) and b = ¢ (mod n) then a = ¢ (mod n).

For similar concepts in modular arithmetic, people will say things like “There is a unique number that undoes
2 (mod n).” Ponder why this use of “unique” makes sense, but also why this is a little different from the
example of “unique” we saw in class. You do not have to write anything for this part [0 points]

GCD Proof [12 points]

Bezout’s Theorem (one of the theorems in the optional number theory content) tells us that if « and b are positive
integers, then there exist some integers s and ¢ such that ged(a,b) = sa + tb.

However, the converse isn’t always true: there could exist some integers s and ¢ such that d = sa + tb, but d isn’t
necessarily gced(a, b). In this problem, we will see a special case where the converse does hold.

(@

(b)

For all positive integers a and b, prove the following claim: if there exist some integers s and ¢ such that
sa + tb =1, then ged(a,b) = 1. [9 points]

You may use without proof that if any integer k satisfies k|1, then k must be either 1 or —1.

Hint: The facts about GCD that you will need for this problem are that if « = ged(b, ¢) then a|b and a|c, and
it is the largest integer that does this.

Use part (a) to show that ged(n,n + 1) = 1 for all positive integers n. [3 points]

https://courses.cs.washington.edu/courses/cse311/23au/resources/reference-number-theory.pdf

4. Transitivity [8 points]

Prove that for all integers a, b, ¢, and n, where n > 0: if a = b (mod n) and b = ¢ (mod n), then a = ¢ (mod n)

Extra Credit: Exponentially increasing fun [0 points]

Since a = a % n (mod n), we know that we can reduce the base of an exponent in (mod n) arithmetic. That
is:
a* =(a%n)* (modn).

But the same is not true of the exponent! That is, we cannot say that * = a(* ™) (mod n). Consider, for instance,
that 2'© = 1 (mod 3) but 2(1° % 3) = 2 (mod 3). The correct way to simplify exponents is quite a bit more subtle.
In this problem you’ll prove it in steps.

For these proofs you may use any theorem on the number theory reference sheet, even the ones we haven’t proven
yet in class.

(@ LetR={teZ:1<t<n-—1Agcd(t,n) =1}. Define the set aR = {(az) % n : x € R}. Prove that aR = R
for every integer a > 0 with ged(a,n) = 1.

(b) Consider the product of all elements in R (taken (mod n)) and consider the product of all the elements in aR
(again, taken (mod n)). By comparing these two expressions, conclude that for all a € R we have a#(") = 1
(mod n) where ¢(n) = |R|.

(c) Use the previous part to show that for any b > 0 and a € R we have a® = a(® % ¢(") (mod n).

(d) Now suppose thaty = ¢ (mod n) for some z with gcd(z, n) = 1 and e some integer > 0 such that ged(e, ¢(n)) =
1. Letd = e~! (mod ¢(n)). Prove that y¢ = 2 (mod n).

(e) Prove the following two facts about ¢: First, if p is prime then ¢(p) = p — 1. Second, for any positive integers
a and b with ged(a,b) = 1, we have ¢(ab) = ¢(a)p(b).

These facts together are the basis for the most-widely used “public key encryption system.” One chooses n = pq
for large primes p and ¢, and a value of e. The numbers n and e are made public to anyone who wants to send a
message securely. To send a message x, the sender computes y = z¢ % n and sends y (the “encrypted text”). To
decrypt, one computes y? % n (note that the recipient must be the one who chose p, ¢ so they can calculate d). The
security of the system relies on it being hard to compute d from just e and m.

Part II

5. First Induction [20 points]

Prove that for all positive integers n, the following equality is true:

4-1344-2244-3 4+ +4-n* =n*(n+1)?

You must use induction for this problem. Be sure to start by defining your predicate P().

https://courses.cs.washington.edu/courses/cse311/24wi/resources/reference-number-theory.pdf

6. More Induction [20 points]

Suppose we have the following recursively defined function, T'(n):
ifn=0

1
T(n)=<3 ifn=1
(9n? —9n) - T(n — 2) if n is a natural number and n > 2

Use induction to prove that for all integers n with n > 0, T'(n) = 3™nl.
Recall that for a positive integer n, n! =n-(n—1)-(n—2)-...-1, and that 0! = 1.

7. Feedback [1 point]

Answer these questions on the separate gradescope box for this question.

Please keep track of how much time you spend on this homework and answer the following questions. This can
help us calibrate future assignments and future iterations of the course, and can help you identify which areas are
most challenging for you.

* How many hours did you spend working on this assignment (excluding any extra credit questions, if applica-
ble)? Report your estimate to the nearest hour.

* Which problem did you spend the most time on?

* Any other feedback for us?

	1 Backwards Proofs [6 points]
	2 Like -2 but better! [22 points]
	3 GCD Proof [12 points]
	4 Transitivity [8 points]
	5 First Induction [20 points]
	6 More Induction [20 points]
	7 Feedback [1 point]

