Section 04: Number Theory and Sets

1. It’s Prime Time

Prove for all prime numbers \(p > 2 \), either \(p \equiv 3 \pmod{4} \) or \(p \equiv 1 \pmod{4} \).

2. A Visit to Primes Square

Prove that for all positive integers \(a \) and \(b \) which have \(\gcd(a, b) = 1 \), that \(\gcd(a, b^2) = 1 \).

3. How many?

In each problem, count the number of elements in each set. If the set has infinitely many elements, say so.

(a) \(A = \{1, 2, 3, 2\} \)
(b) \(B = \{\emptyset, \{\emptyset\}, \{\emptyset, \emptyset\}, \{\emptyset, \emptyset, \emptyset\}, \ldots\} \)
(c) \(C = \emptyset \)
(d) \(D = \{\emptyset\} \)
(e) \(E = \mathcal{P}(\emptyset) \)

4. Set Equality

Let \(U \) be the universal set. Prove that \(A \cap (A \cup B) = A \) for all sets \(A \) and \(B \).

5. Tricky Set Equality

This problem should only be covered in section if there is extra time. Prove that for any set \(X \) and set \(A \in \mathcal{P}(X) \), there exists a set \(B \) such that the following conditions are both true:

- \(A \cap B = \emptyset \)
- \(A \cup B = X \)

6. No number is...

Note: only parts (a) and (b) are necessary, c-e are bonus material although they are good practice. In this problem we will walk through how to prove the following claim about numbers: No integer \(n \) which satisfies \(n \equiv 3 \pmod{4} \) is the sum of two squares. That is to say, there do not exist integers \(a, b \) such that \(n = a^2 + b^2 \).

(a) Translate the claim into logic, using quantifiers as necessary. You may assume the domain of discourse is positive integers. Then, using DeMorgan’s law for quantifiers, remove any \(\neg \exists \) so that all quantifiers are \(\forall \).

(b) Prove the following (slightly) easier claim: Every integer \(c \) has either \(c^2 \equiv 0 \pmod{4} \) or \(c^2 \equiv 1 \pmod{4} \). Hint: Prove it for two cases, one when \(c \) is odd and one when \(c \) is even.

(c) Let \(S \) be the set of values which \((a^2 + b^2) \% 4\) may take on for integers \(a, b \). Write a definition for \(S \) in set builder notation.

(d) Using what you proved in part(b), prove that \(S = \{0, 1, 2\} \).
(e) Prove the claim from the beginning of the problem. This should be very short since you can cite what you have proved in any above part.