Section 04: Number Theory and Sets

1. It's Prime Time

Prove for all prime numbers $p>2$, either $p \equiv 3(\bmod 4)$ or $p \equiv 1(\bmod 4)$.

2. A Visit to Primes Square

Prove that for all positive integers a and b which have $\operatorname{gcd}(a, b)=1$, that $\operatorname{gcd}\left(a, b^{2}\right)=1$.

3. How many?

In each problem, count the number of elements in each set. If the set has infinitely many elements, say so.
(a) $A=\{1,2,3,2\}$
(b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$
(c) $C=\emptyset$
(d) $D=\{\emptyset\}$
(e) $E=\mathcal{P}(\{\emptyset\})$

4. Set Equality

Let \mathcal{U} be the universal set. Prove that $A \cap(A \cup B)=A$ for all sets A and B.

5. Tricky Set Equality

This problem should only be covered in section if there is extra time. Prove that for any set X and set $A \in \mathcal{P}(X)$, there exists a set B such that the following conditions are both true:

- $A \cap B=\emptyset$
- $A \cup B=X$

6. No number is...

Note: only parts (a) and (b) are necessary, c-e are bonus material although they are good practice. In this problem we will walk through how to prove the following claim about numbers: No integer n which satisfies $n \equiv 3$ $(\bmod 4)$ is the sum of two squares. That is to say, there do not exist integers a, b such that $n=a^{2}+b^{2}$.
(a) Translate the claim into logic, using quantifiers as necessary. You may assume the domain of discourse is positive integers. Then, using DeMorgan's law for quantifiers, remove any $\neg \exists$ so that all quantifiers are \forall.
(b) Prove the following (slightly) easier claim: Every integer c has either $c^{2} \equiv 0(\bmod 4)$ or $c^{2} \equiv 1(\bmod 4)$. Hint: Prove it for two cases, one when c is odd and one when c is even.
(c) Let S be the set of values which $\left(a^{2}+b^{2}\right) \% 4$ may take on for integers a, b. Write a definition for S in set builder notation.
(d) Using what you proved in part(b), prove that $S=\{0,1,2\}$.
(e) Prove the claim from the beginning of the problem. This should be very short since you can cite what you have proved in any above part.

