
Section 07: Solutions

1. A Hint for the Homework

This problem uses a similar technique to the number theory problem on HW6.

Prove that if 18|(n− 4) then 19|(2n + 3) for all integers n ≥ 0.

Hint: You may use without proof the fact that 218 ≡19 1.

Solution:

Let n be an arbitrary integer ≥ 0 such that 18|n− 4. Then by definition of divides, n = 18k+4 for some integer
k.

2n ≡19 218k+4 ≡19 (218)k · 24 ≡19 1k · 16 ≡19 16.

And so,
2n + 3 ≡19 16 + 3 ≡19 0.

Therefore by definition of ≡19, 19|2n + 3. Since n was arbitrary, the claim holds for all integers n ≥ 0.

2. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).

Solution:

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

Solution:

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗0)

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring
“000”.

Solution:

(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗(0 ∪ 00 ∪ ε)

(d) Write a regular expression that matches all binary strings that do not have any consecutive 0’s or 1’s.

Solution:

((01)∗(0 ∪ ε)) ∪ ((10)∗(1 ∪ ε))

(e) Write a regular expression that matches all binary strings of the form 1ky, where k ≥ 1 and y ∈ {0, 1}∗ has at
least k 1’s.

1

Solution:

1(0 ∪ 1)∗1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s there are, it turns out that
we don’t. Convince yourself that strings in the language are exactly those of the form 1x, where x is any
binary string with at least one 1. Hence, x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)∗.

3. CFGs

Write a context-free grammar to match each of these languages.

(a) All binary strings that end in 00.
Solution:

S → 0S | 1S | 00

(b) All binary strings that contain at least three 1’s.
Solution:

S → TTT

T → 0T | T0 | 1T | 1

(c) All binary strings of the form xy, where |x| = |y|, but x 6= y.

Solution:

S → AB | BA

A → 0 | 0A0 | 0A1 | 1A0 | 1A1

B → 1 | 0B0 | 0B1 | 1B0 | 1B1

Explanation: We will explain the forward direction (i.e. this grammar generates strings of the desired
form); in particular, we will examine strings generated by the rule AB, as the other rule follows similarly.
An arbitrary string generated by AB will look like a10a2b11b2, where a1, a2, b1, b2 ∈ {0, 1}∗, |a1| = |a2| = k1,
and |b1| = |b2| = k2 for some k1, k2 ∈ N. In particular, we can “repartition” the substring a2b1 into a′2b

′
1

s.t. |a′2| = k2 and |b′1| = k1. Letting x = a10a
′
2 and y = b′11b2, observe that |x| = |y| = k1 + k2 + 1 and x

and y differ at the (k1 + 1)-th character.

2

4. Airports

Suppose you want to book a flight from Seattle (SEA) to New York (JFK), but you’re not sure which route to take.
In the diagram below, suppose that lines are drawn between two airports if and only if there exist regular flights
between them.

SEA

LAX

JFK

ATL

Design an CFG which describes all the possible flight paths from SEA to JFK. A flight path is defined as a sequence
of airport codes separated by to indicate a flight. For example, the following are valid:

• SEA LAX ATL JFK

• SEA LAX JFK

• SEA JFK ATL LAX JFK

Note that a flight path may visit an airport any number of times, however it cannot traverse between airports which
do not have a line between them on the map and it must begin with SEA and end with JFK. Your non-terminals
should be the set {SEA,LAX,ATL, JFK, }.

Solution:

Use sea as the starting non-terminal.

sea → SEA jfk | SEA lax

lax → LAX sea | LAX atl |LAX jfk

atl → ATL lax | ATL jfk

jfk → JFK | JFK sea | JFK lax | JFK atl

3

	1 A Hint for the Homework
	2 Regular Expressions
	3 CFGs
	4 Airports

