
Section 09: Solutions

1. Irregular Languages

(a) Let Σ = {0, 1}. Prove that {0n1n0n : n ≥ 0} is irregular.

Solution:

Let L = {0n1n0n : n ≥ 0}. Let D be an arbitrary DFA, and suppose for contradiction that D accepts L.
Consider S = {0n1n : n ≥ 0}. Since S contains infinitely many strings andD has a finite number of states,
two strings in S must end up in the same state. Let these strings be 0i1i and 0j1j for some i, j ≥ 0 such
that i 6= j. Append the string 0i to both of these strings. The two resulting strings are:

• a = 0i1i0i, which is in L.

• b = 0j1j0i, which is not in L since i 6= j.

Since a and b end up in the same state, but a ∈ L and b /∈ L, that state must be both an accepting and a
rejecting state, which is a contradiction. Since D was arbitrary, there is no DFA that recognizes L, so L is
not regular.

(b) Let Σ = {0, 1, 2}. Prove that {0n(12)m : n ≥ m ≥ 0} is not regular.

Solution:

Let L = {0n(12)m : n ≥ m ≥ 0}. Assume, for the sake of contradiction, that there exists a deterministic
finite automaton (DFA) D that accepts L.

Consider the set S = {0n : n ≥ 0}. Since S contains infinitely many strings and D has a finite number of
states, by the Pigeonhole Principle, there must be two distinct strings 0i and 0j (with i > j) in S that are
mapped to the same state by D.

Now, append the string (12)i to both of these strings. We obtain two new strings:

a = 0i(12)i

b = 0j(12)i

Note that a ∈ L because i ≥ i.

However, b 6∈ L because i > j implies n = j and m = i does not satisfy the condition n ≥ m.

Since a and b end up in the same state in D, but a ∈ L and b 6∈ L, it follows that the state reached by a
and b must be both an accepting state and a rejecting state, which is a contradiction.

Therefore, no such DFA D exists that accepts L. Consequently, L is not a regular language.

2. Countability

(a) Prove that the set {5x : x ∈ N} is countable.

Solution:

Define the function f : N → {5x : x ∈ N} as follows:

f(0) = 0, f(1) = 5, f(2) = 10, f(3) = 15, . . . , f(n) = 5n.

1



This function is onto since for every element s in the set, s = 5x for some x ∈ N and by the definition of
f , f(x) = s, which means that every element in the set is reached.

(b) Prove that the set of irrational numbers is uncountable. You may use the fact that the real numbers are
uncountable and the rationals are countable. Hint: Every real number is either rational or irrational.

Solution:

Suppose for contradiction that the irrational numbers were countable. Then we have a function g which
maps the naturals to the irrationals. We also know that the rationals are countable, so there exists a
function h which maps the naturals to the irrationals. Then define a new function f which alternates
between g and h like so:

f(0) = g(0), f(1) = h(0), f(2) = g(1), f(3) = h(1), f(4) = g(2), . . . , f(n) =

{
g(n/2) if n even
h((n− 1)/2) if n odd

This function is onto the reals since g and h are onto the irrationals and rationals, which would mean that
the reals are countable. But this is a contradiction since we know the reals are uncountable. Therefore
the irrational numbers must be uncountable.

(c) Prove that P(N) is uncountable.

Solution:

Assume for the sake of contradiction that P(N) is countable. This means we can define an enumeration of
elements Si in P(N). Let si be the binary set representation of Si in N. For example, for the set {0, 1, 2},
the binary set representation would be 111000 . . ..

We then construct a new subset X ⊂ N such that x[i] = 1 if si[i] = 0, and x[i] = 0 otherwise. Note that X
is not any of the Si, since it differs from Si on the i-th natural number. However, X still represents a valid
subset of the natural numbers, which means our enumeration is incomplete, leading to a contradiction.
Since the above proof works for any listing of P(N), no listing can be created for P(N), and therefore P(N)
is uncountable.

3. Translations

Translate the following sentences into logical notation if the English statement is given or to an English statement
if the logical statement is given, taking into account the domain restriction.

Let the domain of discourse be students and courses.

Use predicates Student, Course, CseCourse to do the domain restriction.

You can use Taking(x, y) which is true if and only if x is taking y. You can also use JacobTeaches(x) if and only if
Jacob teaches x and ContainsTheory(x) if and only if x contains theory.

(a) Every student is taking some course.

Solution:

∀x∃y(Student(x) → [Course(y) ∧ Taking(x, y)])

(b) There is a student that is not taking every CSE course. Solution:

∃x∃y[Student(x) ∧ (CseCourse(y) → ¬Taking(x, y))]

(c) Some student has taken only one CSE course. Solution:

2



∃x∃y[Student(x) ∧ CseCourse(y) ∧ Taking(x, y) ∧ ∀z((CseCourse(z) ∧ Taking(x, z)) → y = z)]

(d) ∀x[(Course(x) ∧ JacobTeaches(x)) → ContainsTheory(x)] Solution:

Every course taught by Jacob contains theory.

(e) ∃x(CseCourse(x)∧ JacobTeaches(x)∧ ContainsTheory(x)∧∀y((CseCourse(y)∧ JacobTeaches(y)) → x = y)
Solution:

There is only one CSE course that Jacob teaches and that course contains theory.

3



4. Induction

(a) A Husky Tree is a tree built by the following definition:

Basis: A single gold node is a Husky Tree.

Recursive Rules:

(i) Let T1 and T2 be two Husky Trees, both with root nodes colored gold. Make a new purple root node and
attach the roots of T1 and T2 to the new node to make a new Husky Tree.

(ii) Let T1 and T2 be two Husky Trees, both with root nodes colored purple. Make a new purple root node
and attach the roots of T1 and T2 to the new node to make a new Husky Tree.

(iii) Let T1 and T2 be two Husky Trees, one with a purple root and the other with a gold root. Make a new
gold root node and attach the roots of T1 and T2 to the new node to make a new Husky Tree.

Use structural induction to show that for every Husky Tree:

• If it has a purple root, then it has an even number of leaves.

• If it has a gold root, then it has an odd number of leaves.

Solution:

Let P (T ) be “if T has a purple root, then it has an even number of leaves, and if T has a gold root, then it
has an odd number of leaves.”

We show P (T ) holds for all Husky Trees T by structural induction.

Base Case: Let T be a Husky Tree made from the basis step. By the definition of a Husky Tree, T must be
a single gold node. That node is also a leaf node (since it has no children), so there are an odd number
(specifically, 1) of leaves, as required for a gold root node.

Inductive Hypothesis: Let T1 and T2 be arbitrary Husky Trees, and suppose P (T1) and P (T2) hold.

Inductive Step: We will have separate cases for each possible rule.

• Rule 1: Suppose T1 and T2 both have gold roots. By the recursive rule, T has a purple root. By the
inductive hypothesis on T1, since T1’s root is gold, it has an odd number of leaves. Similarly, by the
inductive hypothesis, T2 has an odd number of leaves. T ’s leaves are exactly the leaves of T1 and T2,
so the total number of leaves in T is the sum of two odd numbers, which is even. Thus, T has an
even number of leaves, as is required for a purple root. Thus, P (T ) holds.

• Rule 2: Suppose T1 and T2 both have purple roots. By the recursive rule, T has a purple root. By
the inductive hypothesis on T1, since T1’s root is purple, it has an even number of leaves. Similarly,
by the inductive hypothesis, T2 has an even number of leaves. T ’s leaves are exactly the leaves of T1

and T2, so the total number of leaves in T is the sum of two even numbers, which is even. Thus, T
has an even number of leaves, as is required for a purple root. Thus, P (T ) holds.

• Rule 3: Suppose T1 and T2 have opposite colored roots. Let T1 be the one with a gold root, and T2

the one with a purple root. By the recursive rule, T has a gold root. By the inductive hypothesis on
T1, since T1’s root is gold, it has an odd number of leaves. Similarly, by the inductive hypothesis, T2

has an even number of leaves since it has a purple root. T ’s leaves are exactly the leaves of T1 and
T2, so the total number of leaves in T is the sum of an odd number and an even number, which is
odd. Thus, T has an odd number of leaves, as is required for a gold root. Thus, P (T ) holds.

By the principle of induction, we have that for every Husky Tree T , P (T ) holds.

(b) Use induction to prove that for every positive integer n,

1 + 5 + 9 + · · ·+ (4n− 3) = n(2n− 1).

Solution:

4



For n ∈ Z+ let P (n) be ``1+5+9+ · · ·+(4n−3) = n(2n−1)′′. We show P (n) for all n ∈ Z+ by induction
on n.

Base Case: We have 1 = (1) = 1(2− 1) which is P (1) so the base case holds.

Inductive Hypothesis: Suppose P (k) holds for some arbitrary integer k ≥ 1.

Inductive Step: We have

1 + 5 + 9 + · · ·+ (4(k + 1)− 3) = 1 + 5 + 9 + · · ·+ (4k − 3) + (4(k + 1)− 3)

= k(2k − 1) + (4(k + 1))− 3) [Inductive Hypothesis]

= k(2k − 1) + (4k + 1)

= 2k2 + 3k + 1

= (k + 1)(2k + 1)

= (k + 1)(2(k + 1)− 1).

which proves P (k + 1).

Conclusion: P (n) holds for all n ∈ Z+ by the principle of induction.

5. Languages

(a) Construct a regular expression that represents binary strings where no occurence of 11 is followed by a 0.

Solution:

(0∗(10)∗)∗1∗

(b) Construct a CFG that represents the following language: {1x2y3y4x : x, y ≥ 0}.

Solution:

S → 1S4 | T

T → 2T3 | ε

(c) Construct a DFA that recognizes the language of all binary strings which,when interpreted as a binary number,
are divisible by 3. e.g. 11 is 3 in base-10, so should be accepted while 111 is 7 in base-10, so should be rejected.
The first bit processed will be the most-significant bit. Hint: you need to keep track of the remainder mod 3.
What happens to a binary number when you add a 0 at the end? A 1? It’s a lot like a shift operation...

Solution:

q0start q1 q2

0
1 0

1 0

1

5


	1 Irregular Languages
	2 Countability
	3 Translations
	4 Induction
	5 Languages

