1. Reversing a Binary Tree

Recall the following recursive definition of the set of Trees from lecture: **Basis Step:** null ∈ Tree

Recursive Step: If $L, R \in \text{Tree}$ and $a \in \mathbb{Z}$, then $(L, a, R) \in \text{Tree}$.

Now consider the following recursive definitions of the functions sum and reverse: $sum(null) = 0$ $sum((L, a, R)) = a + sum(L) + sum(R)$

 $reverse(null) = null$ $reverse((L, a, R)) = (reverse(R), a, reverse(L))$

Prove that for every Tree $T \in$ Tree that sum(reverse(T)) = sum(T)

2. Treeshake

We define simple binary trees as the recursive set B :

Basis Step: • ∈ B. **Recursive Step:** If $L, R \in \mathcal{B}$, then $(L, \bullet, R) \in \mathcal{B}$.

Note that these are slightly different than the trees defined in class. These trees cannot be null.

Define the following functions on simple binary trees:

$$
\begin{aligned} \text{edges}(t) &= \begin{cases} 0 & \text{if } t = \bullet \\ 2 + \text{edges}(L) + \text{edges}(R) & \text{if } t = (L, \bullet, R) \end{cases} \\ \text{degree}(t) &= \begin{cases} 1 & \text{if } t = \bullet \\ 3 & \text{if } t = (L, \bullet, R) \end{cases} \\ \text{sum}(t) &= \begin{cases} \text{degree}(t) & \text{if } t = \bullet \\ \text{degree}(t) + \text{sum}(L) + \text{sum}(R) & \text{if } t = (L, \bullet, R) \end{cases} \end{aligned}
$$

Prove that for all $t \in \mathcal{B}$, sum $(t) = 2 \cdot \text{edges}(t) + 1$.

This is a special case of an important result in graph theory called the *Handshaking Lemma*. You will probably use it a lot if you end up taking an algorithms or graph theory course.

3. A Set Theory Interlude

- (a) Prove or disprove: For all sets A, B, C if $A \cap C = B \cap C$ then $A = B$.
- (b) Prove or disprove: For all sets A, B, C if $A \cup C = B \cup C$ then $A = B$.

(c) Prove or disprove: For all sets A, B, C if $A \cup C = B \cup C$ and $A \cap C = B \cap C$ then $A = B$.

4. Geometric Sum

Suppose that a and r are real numbers with $r \neq 1$. Prove by induction that for all $n \in \mathbb{N}$:

$$
a + ar + ar2 + ... + arn = \frac{a \cdot r^{n+1} - a}{r - 1}
$$