Section 06: Solutions

1. Reversing a Binary Tree

Recall the following recursive definition of the set of Trees from lecture: **Basis Step:** $null \in Tree$

Recursive Step: If $L, R \in$ Tree and $a \in \mathbb{Z}$, then $(L, a, R) \in$ Tree.

Now consider the following recursive definitions of the functions sum and reverse: sum(null) = 0sum((L, a, R)) = a + sum(L) + sum(R)

 $\begin{aligned} & \mathsf{reverse}(\mathsf{null}) = \mathsf{null} \\ & \mathsf{reverse}((L, a, R)) = (\mathsf{reverse}(R), a, \mathsf{reverse}(L)) \end{aligned}$

Prove that for every Tree $T \in \text{Tree that } \text{sum}(\text{reverse}(T)) = \text{sum}(T)$

Solution:

Let P(T) be "sum(reverse(T)) = sum(T)". We show P(T) for all $T \in$ Tree by structural induction.

Base Case. We show P(null) holds. Observe that the LHS evaluates to sum(reverse(null)) = sum(null) = 0. Observe that the RHS evaluates to sum(null) = 0. Since 0 = 0, the base case holds.

Induction Hypothesis. Suppose P(L) and P(R) hold for some arbitrary trees $L, R \in \text{Tree. That is, } \text{sum}(\text{reverse}(L)) = \text{sum}(L)$ and sum(reverse(R)) = sum(R)

Induction Step. Goal: sum(reverse((L, a, R))) = sum((L, a, R)) for any $a \in \mathbb{Z}$

Let $a \in \mathbb{Z}$ be arbitrary. Then observe that:

$$\begin{split} \mathsf{sum}(\mathsf{reverse}((L,a,R))) &= \mathsf{sum}((\mathsf{reverse}(R),a,\mathsf{reverse}(L))) & [\texttt{By Definition of reverse}] \\ &= a + \mathsf{sum}(\mathsf{reverse}(R)) + \mathsf{sum}(\mathsf{reverse}(L)) & [\texttt{By Definition of sum}] \\ &= a + \mathsf{sum}(R) + \mathsf{sum}(L) & [\texttt{By IH}] \\ &= \mathsf{sum}((L,a,R)) & [\texttt{By Definition of sum}] \end{split}$$

This proves P((L, a, R)).

Conclusion. Thus, P(T) holds for all trees $T \in$ **Tree** by structural induction.

2. Treeshake

We define simple binary trees as the recursive set \mathcal{B} :

Basis Step: $\bullet \in \mathcal{B}$. **Recursive Step:** If $L, R \in \mathcal{B}$, then $(L, \bullet, R) \in \mathcal{B}$.

Note that these are slightly different than the trees defined in class. These trees cannot be null.

Define the following functions on simple binary trees:

$$\begin{split} \mathsf{edges}(t) &= \begin{cases} 0 & \text{if } t = \bullet \\ 2 + \mathsf{edges}(L) + \mathsf{edges}(R) & \text{if } t = (L, \bullet, R) \end{cases} \\ \mathsf{degree}(t) &= \begin{cases} 1 & \text{if } t = \bullet \\ 3 & \text{if } t = (L, \bullet, R) \end{cases} \\ \mathsf{sum}(t) &= \begin{cases} \mathsf{degree}(t) & \text{if } t = \bullet \\ \mathsf{degree}(t) + \mathsf{sum}(L) + \mathsf{sum}(R) & \text{if } t = (L, \bullet, R) \end{cases} \end{split}$$

Prove that for all $t \in \mathcal{B}$, $sum(t) = 2 \cdot edges(t) + 1$.

This is a special case of an important result in graph theory called the *Handshaking Lemma*. You will probably use it a lot if you end up taking an algorithms or graph theory course.

Solution:

Let P(t) := "sum $(t) = 2 \cdot \text{edges}(t) + 1$ ". We will prove P(t) holds for all $t \in \mathcal{B}$ by structural induction. Basis Step: From the definitions, $sum(\bullet) = degree(\bullet) = 1$ and $2 \cdot edges(\bullet) + 1 = 2(0) + 1 = 1$ Since both are 1, the base case is satisfied. Inductive Hypothesis: Suppose P(L) and P(R) for some arbitrary simple binary trees L, R. Inductive Step: Let $t = (L, \bullet, R)$. We will show P(t).

$$\begin{split} \mathsf{sum}(t) &= \mathsf{degree}(t) + \mathsf{sum}(L) + \mathsf{sum}(R) \\ &= 3 + \mathsf{sum}(L) + \mathsf{sum}(R) \\ &= 3 + 2 \cdot \mathsf{edges}(L) + 1 + 2 \cdot \mathsf{edges}(R) + 1 & \text{by IH} \\ &= 5 + 2 \cdot \mathsf{edges}(L) + 2 \cdot \mathsf{edges}(R) \\ &= 1 + 2(2) + 2 \cdot \mathsf{edges}(L) + 2 \cdot \mathsf{edges}(R) \\ &= 1 + 2(2 + \mathsf{edges}(L) + \mathsf{edges}(R)) \\ &= 1 + 2 \cdot \mathsf{edges}(t) \end{split}$$

This proves P(t).

Conclusion: Therefore, P(t) holds for all $t \in \mathcal{B}$ by structural induction.

3. A Set Theory Interlude

(a) Prove or disprove: For all sets A, B, C if $A \cap C = B \cap C$ then A = B.

Solution:

This claim is false. Consider $A = \{1\}$, $B = \{2\}$, and $C = \emptyset$. Then $A \cap C = \emptyset = B \cap C$, but $A \neq B$.

(b) Prove or disprove: For all sets A, B, C if $A \cup C = B \cup C$ then A = B.

Solution:

This claim is false. Consider $A = \{1\}, B = \{2\}$, and $C = \{1, 2\}$. Then $A \cup C = \{1, 2\} = B \cup C$, but $A \neq B$.

(c) Prove or disprove: For all sets A, B, C if $A \cup C = B \cup C$ and $A \cap C = B \cap C$ then A = B.

Solution:

This claim is true. Let sets A, B, C be arbitrary, and suppose that $A \cup C = B \cup C$ and $A \cap C = B \cap C$. We prove by two subset proofs.

 \subseteq : We aim to show that $A \subseteq B$. Let $x \in A$ be arbitrary. **Case 1:** $x \in A$ and $x \in C$. Then by definition of intersection, $x \in A \cap C$. Since $A \cap C = B \cap C$, $x \in B \cap C$. Then by definition of intersection, $x \in B$ and $x \in C$. So $x \in B$. Since x was arbitrary, $A \subseteq B$. **Case 2:** $x \in A$ and $x \notin C$. Since $x \in A$, by definition of union, $x \in A \cup C$. Since $A \cup C = B \cup C$, $x \in B \cup C$. Then by definition of union, $x \in B$ or $x \in C$. But since $x \notin C$, we have $x \in B$. Since x was arbitrary, $A \subseteq B$. Thus in all cases $A \subseteq B$.

 \supseteq : Now we aim to show that $B \subseteq A$. This argument follows similarly to the previous, since the setup is symmetric.

Thus we have shown that $A \subseteq B$ and $B \subseteq A$, so A = B, as desired. Since A, B, C were arbitrary, the claim holds.

4. Geometric Sum

Suppose that *a* and *r* are real numbers with $r \neq 1$. Prove by induction that for all $n \in \mathbb{N}$:

$$a + ar + ar^{2} + \dots + ar^{n} = \frac{a \cdot r^{n+1} - a}{r - 1}$$

Solution:

Let P(n) be " $a + ar + ar^2 + ... + ar^n = \frac{a \cdot r^{n+1} - a}{r-1}$ ". We will prove P(n) for all $n \in \mathbb{N}$ by induction.

Base Case. The LHS simplifies to $a \cdot r^0 = a$. The RHS simplifies to $\frac{a \cdot r^{0+1} - a}{r-1} = \frac{ar-a}{r-1} = \frac{a(r-1)}{r-1} = a$. Since a = a, the base case holds.

Inductive Hypothesis. Assume that P(k) holds true for some arbitrary $k \ge 0$. Then $a + ar + ar^2 + ... + ar^k = \frac{a \cdot r^{k+1} - a}{r-1}$.

$$\begin{array}{l} \mbox{Inductive Step} \end{array} \hline \mbox{Goal: Show } a + ar + ar^2 + \ldots + ar^{k+1} = \frac{a \cdot r^{k+2} - a}{r-1} \\ a + ar + ar^2 + \ldots + ar^{k+1} = a + ar + ar^2 + \ldots + ar^k + ar^{k+1} & [Show another term inside "..."] \\ &= \frac{ar^{k+1} - a}{r-1} + ar^{k+1} & [Inductive Hypothesis] \\ &= \frac{ar^{k+1} - a}{r-1} + \frac{ar^{k+1}(r-1)}{r-1} & [Finding Common Denominator] \\ &= \frac{ar^{k+1} - a + ar^{k+1}r - ar^{k+1}}{r-1} & [Algebra] \\ &= \frac{ar^{k+2} - a}{r-1} & [Algebra] \end{array}$$

Therefore P(k+1) holds.

Conclusion. P(n) holds for all $n \in \mathbb{N}$ by induction.