
Section 06: Solutions

1. Reversing a Binary Tree

Recall the following recursive definition of the set of Trees from lecture:
Basis Step: null ∈ Tree

Recursive Step: If L,R ∈ Tree and a ∈ Z, then (L, a,R) ∈ Tree.

Now consider the following recursive definitions of the functions sum and reverse:
sum(null) = 0
sum((L, a,R)) = a+ sum(L) + sum(R)

reverse(null) = null
reverse((L, a,R)) = (reverse(R), a, reverse(L))

Prove that for every Tree T ∈ Tree that sum(reverse(T )) = sum(T )

Solution:

Let P (T ) be “sum(reverse(T )) = sum(T )”. We show P (T ) for all T ∈ Tree by structural induction.

Base Case. We show P(null) holds. Observe that the LHS evaluates to sum(reverse(null)) = sum(null) = 0.
Observe that the RHS evaluates to sum(null) = 0. Since 0 = 0, the base case holds.

Induction Hypothesis. Suppose P(L) and P(R) hold for some arbitrary treesL,R ∈ Tree. That is, sum(reverse(L)) =
sum(L) and sum(reverse(R)) = sum(R)

Induction Step. Goal: sum(reverse((L, a,R))) = sum((L, a,R)) for any a ∈ Z

Let a ∈ Z be arbitrary. Then observe that:

sum(reverse((L, a,R))) = sum((reverse(R), a, reverse(L))) [By Definition of reverse]

= a+ sum(reverse(R)) + sum(reverse(L)) [By Definition of sum]

= a+ sum(R) + sum(L) [By IH]

= sum((L, a,R)) [By Definition of sum]

This proves P((L, a,R)).

Conclusion. Thus, P(T ) holds for all trees T ∈ Tree by structural induction.

2. Treeshake

We define simple binary trees as the recursive set B:

Basis Step: • ∈ B.
Recursive Step: If L,R ∈ B, then (L, •, R) ∈ B.

Note that these are slightly different than the trees defined in class. These trees cannot be null.
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Define the following functions on simple binary trees:

edges(t) =

{
0 if t = •
2 + edges(L) + edges(R) if t = (L, •, R)

degree(t) =

{
1 if t = •
3 if t = (L, •, R)

sum(t) =

{
degree(t) if t = •
degree(t) + sum(L) + sum(R) if t = (L, •, R)

Prove that for all t ∈ B, sum(t) = 2 · edges(t) + 1.

This is a special case of an important result in graph theory called the Handshaking Lemma. You will probably use
it a lot if you end up taking an algorithms or graph theory course.

Solution:

Let P (t) :=“sum(t) = 2 · edges(t) + 1”. We will prove P (t) holds for all t ∈ B by structural induction.

Basis Step: From the definitions,
sum(•) = degree(•) = 1

and
2 · edges(•) + 1 = 2(0) + 1 = 1

Since both are 1, the base case is satisfied.

Inductive Hypothesis: Suppose P (L) and P (R) for some arbitrary simple binary trees L,R.

Inductive Step: Let t = (L, •, R). We will show P (t).

sum(t) = degree(t) + sum(L) + sum(R)

= 3 + sum(L) + sum(R)

= 3 + 2 · edges(L) + 1 + 2 · edges(R) + 1 by IH

= 5 + 2 · edges(L) + 2 · edges(R)

= 1 + 2(2) + 2 · edges(L) + 2 · edges(R)

= 1 + 2(2 + edges(L) + edges(R))

= 1 + 2 · edges(t)

This proves P (t).

Conclusion: Therefore, P (t) holds for all t ∈ B by structural induction.

3. A Set Theory Interlude

(a) Prove or disprove: For all sets A,B,C if A ∩ C = B ∩ C then A = B.

Solution:

This claim is false. Consider A = {1}, B = {2}, and C = ∅. Then A ∩ C = ∅ = B ∩ C, but A 6= B.

(b) Prove or disprove: For all sets A,B,C if A ∪ C = B ∪ C then A = B.

Solution:
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This claim is false. Consider A = {1}, B = {2}, and C = {1, 2}. Then A∪C = {1, 2} = B∪C, but A 6= B.

(c) Prove or disprove: For all sets A,B,C if A ∪ C = B ∪ C and A ∩ C = B ∩ C then A = B.

Solution:

This claim is true. Let sets A,B,C be arbitrary, and suppose that A∪C = B ∪C and A∩C = B ∩C. We
prove by two subset proofs.

⊆: We aim to show that A ⊆ B. Let x ∈ A be arbitrary.
Case 1: x ∈ A and x ∈ C. Then by definition of intersection, x ∈ A∩C. Since A∩C = B ∩C, x ∈ B ∩C.
Then by definition of intersection, x ∈ B and x ∈ C. So x ∈ B. Since x was arbitrary, A ⊆ B.
Case 2: x ∈ A and x 6∈ C. Since x ∈ A, by definition of union, x ∈ A∪C. Since A∪C = B∪C, x ∈ B∪C.
Then by definition of union, x ∈ B or x ∈ C. But since x 6∈ C, we have x ∈ B. Since x was arbitrary,
A ⊆ B.
Thus in all cases A ⊆ B.

⊇: Now we aim to show that B ⊆ A. This argument follows similarly to the previous, since the setup is
symmetric.

Thus we have shown that A ⊆ B and B ⊆ A, so A = B, as desired. Since A,B,C were arbitrary, the
claim holds.

4. Geometric Sum

Suppose that a and r are real numbers with r 6= 1. Prove by induction that for all n ∈ N:

a+ ar + ar2 + ...+ arn =
a · rn+1 − a

r − 1

Solution:

Let P(n) be “a+ ar + ar2 + ...+ arn = a·rn+1−a
r−1 ”. We will prove P(n) for all n ∈ N by induction.

Base Case. The LHS simplifies to a · r0 = a. The RHS simplifies to a·r0+1−a
r−1 = ar−a

r−1 = a(r−1)
r−1 = a. Since a = a,

the base case holds.

Inductive Hypothesis. Assume that P(k) holds true for some arbitrary k ≥ 0. Then a+ ar + ar2 + ...+ ark =
a·rk+1−a

r−1 .
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Inductive Step Goal: Show a+ ar + ar2 + ...+ ark+1 =
a · rk+2 − a

r − 1

a+ ar + ar2 + ...+ ark+1 = a+ ar + ar2 + ...+ ark + ark+1 [Show another term inside “...”]

=
ark+1 − a

r − 1
+ ark+1 [Inductive Hypothesis]

=
ark+1 − a

r − 1
+

ark+1(r − 1)

r − 1
[Finding Common Denominator]

=
ark+1 − a+ ark+1r − ark+1

r − 1
[Algebra]

=
ark+2 − a

r − 1
[Algebra]

Therefore P(k + 1) holds.

Conclusion. P(n) holds for all n ∈ N by induction.
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