Section 06: Solutions

1. Reversing a Binary Tree

Recall the following recursive definition of the set of Trees from lecture: **Basis Step:** null ∈ Tree

Recursive Step: If $L, R \in \text{Tree}$ and $a \in \mathbb{Z}$, then $(L, a, R) \in \text{Tree}$.

Now consider the following recursive definitions of the functions sum and reverse: $sum(null) = 0$ $sum((L, a, R)) = a + sum(L) + sum(R)$

 $reverse(null) = null$ $reverse((L, a, R)) = (reverse(R), a, reverse(L))$

Prove that for every Tree $T \in$ Tree that sum(reverse (T)) = sum (T)

Solution:

Let $P(T)$ be "sum(reverse(T)) = sum(T)". We show $P(T)$ for all $T \in$ Tree by structural induction.

Base Case. We show P(null) holds. Observe that the LHS evaluates to sum(reverse(null)) = sum(null) = 0. Observe that the RHS evaluates to sum(null) = 0. Since $0 = 0$, the base case holds.

Induction Hypothesis. Suppose $P(L)$ and $P(R)$ hold for some arbitrary trees $L, R \in$ Tree. That is, sum(reverse(L)) = $sum(L)$ and $sum(reverse(R)) = sum(R)$

Induction Step. Goal: $sum(\text{reverse}((L, a, R))) = sum((L, a, R))$ for any $a \in \mathbb{Z}$

Let $a \in \mathbb{Z}$ be arbitrary. Then observe that:

 $sum(reverse((L, a, R)))$ = $sum((reverse(R), a, reverse(L)))$ [By Definition of reverse] $= a + \textsf{sum}(\textsf{reverse}(R)) + \textsf{sum}(\textsf{reverse}(L))$ [By Definition of sum] $= a + \textsf{sum}(R) + \textsf{sum}(L)$ [By IH] $= sum((L, a, R))$ [By Definition of sum]

This proves $P((L, a, R)).$

Conclusion. Thus, $P(T)$ holds for all trees $T \in$ Tree by structural induction.

2. Treeshake

We define simple binary trees as the recursive set B :

Basis Step: $\bullet \in \mathcal{B}$. **Recursive Step:** If $L, R \in \mathcal{B}$, then $(L, \bullet, R) \in \mathcal{B}$.

Note that these are slightly different than the trees defined in class. These trees cannot be null.

Define the following functions on simple binary trees:

$$
\begin{aligned} \text{edges}(t) & = \begin{cases} 0 & \text{if } t = \bullet \\ 2 + \text{edges}(L) + \text{edges}(R) & \text{if } t = (L, \bullet, R) \end{cases} \\ \text{degree}(t) & = \begin{cases} 1 & \text{if } t = \bullet \\ 3 & \text{if } t = (L, \bullet, R) \end{cases} \\ \text{sum}(t) & = \begin{cases} \text{degree}(t) & \text{if } t = \bullet \\ \text{degree}(t) + \text{sum}(L) + \text{sum}(R) & \text{if } t = (L, \bullet, R) \end{cases} \end{aligned}
$$

Prove that for all $t \in \mathcal{B}$, sum $(t) = 2 \cdot \text{edges}(t) + 1$.

This is a special case of an important result in graph theory called the *Handshaking Lemma*. You will probably use it a lot if you end up taking an algorithms or graph theory course.

Solution:

Let $P(t) := "sum(t) = 2 \cdot edges(t) + 1".$ We will prove $P(t)$ holds for all $t \in B$ by structural induction.

Basis Step: From the definitions,

 $sum(\bullet) = degree(\bullet) = 1$

and

$$
2 \cdot \text{edges}(\bullet) + 1 = 2(0) + 1 = 1
$$

Since both are 1, the base case is satisfied.

Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ for some arbitrary simple binary trees L, R.

Inductive Step: Let $t = (L, \bullet, R)$. We will show $P(t)$.

$$
sum(t) = degree(t) + sum(L) + sum(R)
$$

= 3 + sum(L) + sum(R)
= 3 + 2 · edges(L) + 1 + 2 · edges(R) + 1 by IH
= 5 + 2 · edges(L) + 2 · edges(R)
= 1 + 2(2) + 2 · edges(L) + 2 · edges(R)
= 1 + 2(2 + edges(L) + edges(R))
= 1 + 2 · edges(t)

This proves $P(t)$.

Conclusion: Therefore, $P(t)$ holds for all $t \in B$ by structural induction.

3. A Set Theory Interlude

(a) Prove or disprove: For all sets A, B, C if $A \cap C = B \cap C$ then $A = B$.

Solution:

This claim is false. Consider $A = \{1\}$, $B = \{2\}$, and $C = \emptyset$. Then $A \cap C = \emptyset = B \cap C$, but $A \neq B$.

(b) Prove or disprove: For all sets A, B, C if $A \cup C = B \cup C$ then $A = B$.

Solution:

This claim is false. Consider $A = \{1\}$, $B = \{2\}$, and $C = \{1, 2\}$. Then $A \cup C = \{1, 2\} = B \cup C$, but $A \neq B$.

(c) Prove or disprove: For all sets A, B, C if $A \cup C = B \cup C$ and $A \cap C = B \cap C$ then $A = B$.

Solution:

This claim is true. Let sets A, B, C be arbitrary, and suppose that $A \cup C = B \cup C$ and $A \cap C = B \cap C$. We prove by two subset proofs.

⊆: We aim to show that $A ⊆ B$. Let $x ∈ A$ be arbitrary. **Case 1:** $x \in A$ and $x \in C$. Then by definition of intersection, $x \in A \cap C$. Since $A \cap C = B \cap C$, $x \in B \cap C$. Then by definition of intersection, $x \in B$ and $x \in C$. So $x \in B$. Since x was arbitrary, $A \subseteq B$. **Case 2:** $x \in A$ and $x \notin C$. Since $x \in A$, by definition of union, $x \in A \cup C$. Since $A \cup C = B \cup C$, $x \in B \cup C$. Then by definition of union, $x \in B$ or $x \in C$. But since $x \notin C$, we have $x \in B$. Since x was arbitrary, $A \subseteq B$. Thus in all cases $A \subseteq B$.

 $≥$: Now we aim to show that $B ⊆ A$. This argument follows similarly to the previous, since the setup is symmetric.

Thus we have shown that $A \subseteq B$ and $B \subseteq A$, so $A = B$, as desired. Since A, B, C were arbitrary, the claim holds.

4. Geometric Sum

Suppose that a and r are real numbers with $r \neq 1$. Prove by induction that for all $n \in \mathbb{N}$:

$$
a + ar + ar2 + ... + arn = \frac{a \cdot r^{n+1} - a}{r - 1}
$$

Solution:

Let $P(n)$ be " $a + ar + ar^2 + ... + ar^n = \frac{a \cdot r^{n+1} - a}{r-1}$ ". We will prove $P(n)$ for all $n \in \mathbb{N}$ by induction.

Base Case. The LHS simplifies to $a \cdot r^0 = a$. The RHS simplifies to $\frac{a \cdot r^{0+1}-a}{r-1} = \frac{ar-a}{r-1} = \frac{a(r-1)}{r-1} = a$. Since $a = a$, the base case holds.

Inductive Hypothesis. Assume that P(k) holds true for some arbitrary $k \ge 0$. Then $a + ar + ar^2 + ... + ar^k =$ $\frac{a \cdot r^{k+1}-a}{r-1}.$

Inductive Step
\n**God:** Show
$$
a + ar + ar^2 + ... + ar^{k+1} = \frac{a \cdot r^{k+2} - a}{r - 1}
$$

\n
$$
a + ar + ar^2 + ... + ar^{k+1} = a + ar + ar^2 + ... + ar^k + ar^{k+1}
$$
\n[Show another term inside "..."]
\n
$$
= \frac{ar^{k+1} - a}{r - 1} + ar^{k+1}
$$
\n[Inductive Hypothesis]
\n
$$
= \frac{ar^{k+1} - a}{r - 1} + \frac{ar^{k+1}(r - 1)}{r - 1}
$$
\n[Finding Common Denominator]
\n
$$
= \frac{ar^{k+1} - a + ar^{k+1}r - ar^{k+1}}{r - 1}
$$
\n[Algebra]
\n
$$
= \frac{ar^{k+2} - a}{r - 1}
$$
\n[Algebra]

Therefore $\mathrm{P}(k+1)$ holds.

Conclusion. $P(n)$ holds for all $n \in \mathbb{N}$ by induction.