Section 04: Solutions

1. It’s Prime Time

Prove for all prime numbers p > 2, either p =3 (mod 4) or p =1 (mod 4).

Solution:

Let p be an arbitrary prime greater than two, and suppose for the sake of contradiction that it does not satisfy
either p =3 (mod 4) or p =1 (mod 4). We proceed by case analysis on the remaining values of p (mod 4):

(a) Case p =0 (mod 4). Then by definition of modular equivalence, 4|p and so p cannot be prime which is a
contradiction.

(b) Case p = 2 (mod 4). Then by definition of modular equivalence, 4|p — 2, and by definition of divides,
there exists an integer & so that p — 2 = 4k. But then rearranging we see,
p=4dk+2=202k+1).
Since 2k + 1 is an integer, we have 2|p, and since p > 2, this means p cannot be prime which is a contra-
diction.

Since these cases were exhaustive and in both cases we found a contradiction, it must be that the contradiction
assumption is false and so the original claim must hold.

2. A Visit to Primes Square

Prove that for all positive integers a and b which have ged(a,b) = 1, that ged(a, b?) = 1.

Solution:

Let g = ged(a, b?). We want to show g = 1. By Bezout’s theorem, there must exist integers s, t such that
1 = gecd(a,b) = sa + tb.

Multiplying both sides by b, we get that
b = sba + tb.

By definition of ged, gla and g|b?, so there exist integers k, j such that
a=gk and b= gj.
Then we can combine these facts to get,
b = sb(gk) + tgj = g(sbk + tj).

This shows that g|b, since sbk + ¢j is an integer. Then since g|b and g|a, by definition of ged(a,b), g < ged(a, b).
But since its given that ged(a,b) = 1, and ged(-, -) > 1, it must be that g = 1, which completes the proof.

3. How many?

In each problem, count the number of elements in each set. If the set has infinitely many elements, say so.
(@) A=1{1,2,3,2}
®) B={{:{H{{H OGO



() C=0
) D = {0}
(&) E="P{0})

Solution:

(a) 3

(b) 2 It may seem at first like there are co, but the third elements onwards are all just {(}, so they are not
distinct elements.

(00
@1
(e) 2

4. Set Equality

Let U be the universal set. Prove that AN (AU B) = A for all sets A and B. Solution:

We need to prove two directions. First we prove AN (AU B) C A.

Proof. Let x € AN (AU B) be arbitrary. We want to show = € A. By definitionof N,z € AAx € (AU B), so
x € A and we are done. Since = was arbitrary, this shows AN (AU B) C A. O

Now we prove the other direction.
Proof. Let x € A be arbitrary. We want to show ¢ € AN (A U B). By definition of U, x € A U B, since clearly
x € AV z € B. Then since we know 2 € A and « € AU B, by definition of N, we conclude z € AN (A U B), so

we are done. Since x was arbitrary, this shows A C AU B. O

Since we proved both AN (AUB) C Aand A C AN (AU B), we have shown A = AN (AU B).

5. Tricky Set Equality

This problem should only be covered in section if there is extra time. Prove that for any set X and set A € P(
there exists a set B such that the following conditions are both true:

e ANB=10
e AUB=X
Solution:

X

Proof. To show such a B exists, we explicitly construct it: define B € P(B) as the set
B:=X\ A

B € P(B) since clearly X \ A C X (can you prove why?). Now it remains to show that this choice of B satisfies
both conditions. We prove the first condition:

Proof. Suppose for contradiction that A N B is non-empty. Then there exists some x € AN B. By choice of B,
x € AN (X \ A), and by definition of N, then x € A and z € (X \ A). But x € (X \ A) means that z € X and
x ¢ A, but we already showed = € A which is a contradiction. Thus AN B = 0. O




And the second:

Proof. Since A, B € P(X), it is sufficient to prove that A U B O X (can you prove the other direction?). Let
x € X be arbitrary. There are two cases:

Case 1. If z € A then we are already done, since by definition of U, x € AU B.

Case 2. If © ¢ A, then by definition of \, since also z € X, z € X \ A. But this meansz € Bandsoz € AU B.

Thus we have shown = € AU B in all cases. Since x was arbitrary this shows X C AU B. O

Then we have shown that this choice of B satisfies all the required conditions. O

6. No number is...

Note: only parts (a) and (b) are necessary, c-e are bonus material although they are good practice. In this
problem we will walk through how to prove the following claim about numbers: No integer n which satisfies n = 3
(mod 4) is the sum of two squares. That is to say, there do not exist integers a, b such that n = a? + b2,

(a) Translate the claim into logic, using quantifiers as necessary. You may assume the domain of discourse is
positive integers. Then, using DeMorgan’s law for quantifiers, remove any —3 so that all quantifiers are V.

Solution:
-3In(n=3 (mod 4)) A a3b(n = a® + b?).
Yn((n=3 (mod 4)) — YaVb(n # a® + b*)).
(b) Prove the following (slightly) easier claim: Every integer c has either ¢> = 0 (mod 4) or ¢ = 1 (mod 4). Hint:

Prove it for two cases, one when c is odd and one when c is even.

Solution:

Proof. There are two cases: either c is odd or ¢ is even.

Case 1. If c is odd then ¢ = 2k + 1 for some integer k. Then,
=2k +1)? =4k* + 4k + 1 =4(k* + k) + 1.

Which means ¢ — 1 = 4(k? + k). Since k* + k is an integer, 4|c> — 1 and by the definition of modular
equivalence, we have ¢ = 1 (mod 4). Thus the claim holds for this case.

Case 2. If ¢ is even then ¢ = 2k for some integer k. Then,
c? = (2k)? = 4k%.

Which means ¢? — 0 = 4(k?). Since k2 is an integer, 4|c? and by the definition of modular equivalence, we
have ¢ = 0 (mod 4). Thus the claim holds for this case.

Since the claim holds in both cases and the cases are exhaustive the proof is complete. O

(c) Let S be the set of values which (a? + b?) %4 may take on for integers a,b. Write a definition for S in set
builder notation.

Solution:

S = {(a®> +b*)%4:a,bc Z}.

(d) Using what you proved in part(b), prove that S = {0, 1, 2}.



Solution:

We need to prove two things. First we prove S C {0, 1,2} :
Proof. Let s € S be arbitrary. Then s = (a? + b*) %4 for some integers a,b. We want to show that
s €{0,1,2}.

2 _ 2 _

From part (b) we proved that a (mod 4) or a (mod 4), and the same for b2. Then using the
equivalence of mod % proved in class, we know a2 %4 < 1 and b*%4 < 1 and so (a® %4) + (b>%4) < 2.
Then Using the properties of %, this means s = (a?+b?) % 4 < 2, but by definition of %, s is a non-negative
integer so 0 < s < 2 and we have s € {0, 1, 2}. Since s was arbitrary, this shows S C {0, 1, 2}. O

Now we prove the other direction, S 2 {0, 1, 2}:
Proof. Let s € {0,1,2} be arbitrary. There are three cases.

Case 0. If s = 0, then observe that by choosing a = 2 and b = 4, we have (a® + %)% 4 = (4 + 16) %4 =
20%4 = 0, so there exist a, b € Z such that 0 = s = a? + b*> %4, showing s € S.

Case 1. If s = 1, then choose @ = 1 and b = 2, we have (a® + b?) %4 = (1 +4)%4 = 5%4 = 1, so there
exist a,b € Z such that 1 = s = a® + b> %4, showing s € S.

Case 2. If s = 2, then choose a = 1 and b = 3, we have (a? + b?) %4 = (1+9) %4 = 10%4 = 2, so there
exist a, b € Z such that 2 = s = a® + b> %4, showing s € S.

Since s € S in all three cases and the cases were exhaustive, we conclude S 2 {0, 1, 2}. O

Since we have proved both directions, we conclude S = {0, 1, 2}.

(e) Prove the claim from the beginning of the problem. This should be very short since you can cite what you
have proved in any above part.

Solution:

Let n be an arbitrary integer which satisfies n = 3 (mod 4) and let a, b be arbitrary integers. By part (d),
and the equivalence of % and mod, a* + %4 € {0,1,2}, but this means a® + b*%4 # 3 and so by
equivalence of mod and %, a® + b? # 3 (mod 4), but this means that n # a® + b2. Thus we have proved
the second expression in part (a), which is equivalent to the desired claim.

Note: There are lots of ways to do this, it may make sense to show how to make this proof by contradiction
using the non-DeMorgan’s law’d expression in (a).
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