Section 04: Solutions

1. It's Prime Time

Prove for all prime numbers $p>2$, either $p \equiv 3(\bmod 4)$ or $p \equiv 1(\bmod 4)$.

Solution:

Let p be an arbitrary prime greater than two, and suppose for the sake of contradiction that it does not satisfy either $p \equiv 3(\bmod 4)$ or $p \equiv 1(\bmod 4)$. We proceed by case analysis on the remaining values of $p(\bmod 4)$:
(a) Case $p \equiv 0(\bmod 4)$. Then by definition of modular equivalence, $4 \mid p$ and so p cannot be prime which is a contradiction.
(b) Case $p \equiv 2(\bmod 4)$. Then by definition of modular equivalence, $4 \mid p-2$, and by definition of divides, there exists an integer k so that $p-2=4 k$. But then rearranging we see,

$$
p=4 k+2=2(2 k+1)
$$

Since $2 k+1$ is an integer, we have $2 \mid p$, and since $p>2$, this means p cannot be prime which is a contradiction.

Since these cases were exhaustive and in both cases we found a contradiction, it must be that the contradiction assumption is false and so the original claim must hold.

2. A Visit to Primes Square

Prove that for all positive integers a and b which have $\operatorname{gcd}(a, b)=1$, that $\operatorname{gcd}\left(a, b^{2}\right)=1$.

Solution:

Let $g=\operatorname{gcd}\left(a, b^{2}\right)$. We want to show $g=1$. By Bezout's theorem, there must exist integers s, t such that

$$
1=\operatorname{gcd}(a, b)=s a+t b
$$

Multiplying both sides by b, we get that

$$
b=s b a+t b^{2}
$$

By definition of gcd, $g \mid a$ and $g \mid b^{2}$, so there exist integers k, j such that

$$
a=g k \quad \text { and } \quad b^{2}=g j .
$$

Then we can combine these facts to get,

$$
b=s b(g k)+t g j=g(s b k+t j)
$$

This shows that $g \mid b$, since $s b k+t j$ is an integer. Then since $g \mid b$ and $g \mid a$, by definition of $\operatorname{gcd}(a, b), g \leq \operatorname{gcd}(a, b)$. But since its given that $\operatorname{gcd}(a, b)=1$, and $\operatorname{gcd}(\cdot, \cdot) \geq 1$, it must be that $g=1$, which completes the proof.

3. How many?

In each problem, count the number of elements in each set. If the set has infinitely many elements, say so.
(a) $A=\{1,2,3,2\}$
(b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$
(c) $C=\emptyset$
(d) $D=\{\emptyset\}$
(e) $E=\mathcal{P}(\{\emptyset\})$

Solution:

(a) 3
(b) 2 It may seem at first like there are ∞, but the third elements onwards are all just $\{\emptyset\}$, so they are not distinct elements.
(c) 0
(d) 1
(e) 2

4. Set Equality

Let \mathcal{U} be the universal set. Prove that $A \cap(A \cup B)=A$ for all sets A and B. Solution:
We need to prove two directions. First we prove $A \cap(A \cup B) \subseteq A$.
Proof. Let $x \in A \cap(A \cup B)$ be arbitrary. We want to show $x \in A$. By definition of $\cap, x \in A \wedge x \in(A \cup B)$, so $x \in A$ and we are done. Since x was arbitrary, this shows $A \cap(A \cup B) \subseteq A$.

Now we prove the other direction.
Proof. Let $x \in A$ be arbitrary. We want to show $x \in A \cap(A \cup B)$. By definition of $\cup, x \in A \cup B$, since clearly $x \in A \vee x \in B$. Then since we know $x \in A$ and $x \in A \cup B$, by definition of \cap, we conclude $x \in A \cap(A \cup B)$, so we are done. Since x was arbitrary, this shows $A \subseteq A \cup B$.

Since we proved both $A \cap(A \cup B) \subseteq A$ and $A \subseteq A \cap(A \cup B)$, we have shown $A=A \cap(A \cup B)$.

5. Tricky Set Equality

This problem should only be covered in section if there is extra time. Prove that for any set X and set $A \in \mathcal{P}(X)$, there exists a set B such that the following conditions are both true:

- $A \cap B=\emptyset$
- $A \cup B=X$

Solution:

Proof. To show such a B exists, we explicitly construct it: define $B \in \mathcal{P}(B)$ as the set

$$
B:=X \backslash A .
$$

$B \in \mathcal{P}(B)$ since clearly $X \backslash A \subseteq X$ (can you prove why?). Now it remains to show that this choice of B satisfies both conditions. We prove the first condition:

Proof. Suppose for contradiction that $A \cap B$ is non-empty. Then there exists some $x \in A \cap B$. By choice of B, $x \in A \cap(X \backslash A)$, and by definition of \cap, then $x \in A$ and $x \in(X \backslash A)$. But $x \in(X \backslash A)$ means that $x \in X$ and $x \notin A$, but we already showed $x \in A$ which is a contradiction. Thus $A \cap B=\emptyset$.

And the second:

Proof. Since $A, B \in \mathcal{P}(X)$, it is sufficient to prove that $A \cup B \supseteq X$ (can you prove the other direction?). Let $x \in X$ be arbitrary. There are two cases:

Case 1. If $x \in A$ then we are already done, since by definition of $\cup, x \in A \cup B$.
Case 2. If $x \notin A$, then by definition of \backslash, since also $x \in X, x \in X \backslash A$. But this means $x \in B$ and so $x \in A \cup B$.
Thus we have shown $x \in A \cup B$ in all cases. Since x was arbitrary this shows $X \subseteq A \cup B$.
Then we have shown that this choice of B satisfies all the required conditions.

6. No number is...

Note: only parts (a) and (b) are necessary, c-e are bonus material although they are good practice. In this problem we will walk through how to prove the following claim about numbers: No integer n which satisfies $n \equiv 3$ $(\bmod 4)$ is the sum of two squares. That is to say, there do not exist integers a, b such that $n=a^{2}+b^{2}$.
(a) Translate the claim into logic, using quantifiers as necessary. You may assume the domain of discourse is positive integers. Then, using DeMorgan's law for quantifiers, remove any $\neg \exists$ so that all quantifiers are \forall.
Solution:

$$
\begin{gathered}
\neg \exists n(n \equiv 3 \quad(\bmod 4)) \wedge \exists a \exists b\left(n=a^{2}+b^{2}\right) . \\
\forall n\left((n \equiv 3 \quad(\bmod 4)) \rightarrow \forall a \forall b\left(n \neq a^{2}+b^{2}\right)\right)
\end{gathered}
$$

(b) Prove the following (slightly) easier claim: Every integer c has either $c^{2} \equiv 0(\bmod 4)$ or $c^{2} \equiv 1(\bmod 4)$. Hint: Prove it for two cases, one when c is odd and one when c is even.

Solution:

Proof. There are two cases: either c is odd or c is even.
Case 1. If c is odd then $c=2 k+1$ for some integer k. Then,

$$
c^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1 .
$$

Which means $c^{2}-1=4\left(k^{2}+k\right)$. Since $k^{2}+k$ is an integer, $4 \mid c^{2}-1$ and by the definition of modular equivalence, we have $c^{2} \equiv 1(\bmod 4)$. Thus the claim holds for this case.
Case 2. If c is even then $c=2 k$ for some integer k. Then,

$$
c^{2}=(2 k)^{2}=4 k^{2} .
$$

Which means $c^{2}-0=4\left(k^{2}\right)$. Since k^{2} is an integer, $4 \mid c^{2}$ and by the definition of modular equivalence, we have $c^{2} \equiv 0(\bmod 4)$. Thus the claim holds for this case.

Since the claim holds in both cases and the cases are exhaustive the proof is complete.
(c) Let S be the set of values which $\left(a^{2}+b^{2}\right) \% 4$ may take on for integers a, b. Write a definition for S in set builder notation.

Solution:

$$
S:=\left\{\left(a^{2}+b^{2}\right) \% 4: a, b \in \mathbb{Z}\right\}
$$

(d) Using what you proved in part(b), prove that $S=\{0,1,2\}$.

Solution:

We need to prove two things. First we prove $S \subseteq\{0,1,2\}$:
Proof. Let $s \in S$ be arbitrary. Then $s=\left(a^{2}+b^{2}\right) \% 4$ for some integers a, b. We want to show that $s \in\{0,1,2\}$.
From part (b) we proved that $a^{2} \equiv 0(\bmod 4)$ or $a^{2} \equiv 1(\bmod 4)$, and the same for b^{2}. Then using the equivalence of mod $\%$ proved in class, we know $a^{2} \% 4 \leq 1$ and $b^{2} \% 4 \leq 1$ and so $\left(a^{2} \% 4\right)+\left(b^{2} \% 4\right) \leq 2$. Then Using the properties of $\%$, this means $s=\left(a^{2}+b^{2}\right) \% 4 \leq 2$, but by definition of $\%$, s is a non-negative integer so $0 \leq s \leq 2$ and we have $s \in\{0,1,2\}$. Since s was arbitrary, this shows $S \subseteq\{0,1,2\}$.
Now we prove the other direction, $S \supseteq\{0,1,2\}$:
Proof. Let $s \in\{0,1,2\}$ be arbitrary. There are three cases.
Case 0. If $s=0$, then observe that by choosing $a=2$ and $b=4$, we have $\left(a^{2}+b^{2}\right) \% 4=(4+16) \% 4=$ $20 \% 4=0$, so there exist $a, b \in \mathbb{Z}$ such that $0=s=a^{2}+b^{2} \% 4$, showing $s \in S$.

Case 1. If $s=1$, then choose $a=1$ and $b=2$, we have $\left(a^{2}+b^{2}\right) \% 4=(1+4) \% 4=5 \% 4=1$, so there exist $a, b \in \mathbb{Z}$ such that $1=s=a^{2}+b^{2} \% 4$, showing $s \in S$.
Case 2. If $s=2$, then choose $a=1$ and $b=3$, we have $\left(a^{2}+b^{2}\right) \% 4=(1+9) \% 4=10 \% 4=2$, so there exist $a, b \in \mathbb{Z}$ such that $2=s=a^{2}+b^{2} \% 4$, showing $s \in S$.
Since $s \in S$ in all three cases and the cases were exhaustive, we conclude $S \supseteq\{0,1,2\}$.
Since we have proved both directions, we conclude $S=\{0,1,2\}$.
(e) Prove the claim from the beginning of the problem. This should be very short since you can cite what you have proved in any above part.

Solution:

Let n be an arbitrary integer which satisfies $n \equiv 3(\bmod 4)$ and let a, b be arbitrary integers. By part (d), and the equivalence of $\%$ and mod, $a^{2}+b^{2} \% 4 \in\{0,1,2\}$, but this means $a^{2}+b^{2} \% 4 \neq 3$ and so by equivalence of \bmod and $\%, a^{2}+b^{2} \not \equiv 3(\bmod 4)$, but this means that $n \neq a^{2}+b^{2}$. Thus we have proved the second expression in part (a), which is equivalent to the desired claim.

Note: There are lots of ways to do this, it may make sense to show how to make this proof by contradiction using the non-DeMorgan's law'd expression in (a).

