
Section 04: Solutions

1. It’s Prime Time

Prove for all prime numbers p > 2, either p ≡ 3 (mod 4) or p ≡ 1 (mod 4).

Solution:

Let p be an arbitrary prime greater than two, and suppose for the sake of contradiction that it does not satisfy
either p ≡ 3 (mod 4) or p ≡ 1 (mod 4). We proceed by case analysis on the remaining values of p (mod 4):

(a) Case p ≡ 0 (mod 4). Then by definition of modular equivalence, 4|p and so p cannot be prime which is a
contradiction.

(b) Case p ≡ 2 (mod 4). Then by definition of modular equivalence, 4|p − 2, and by definition of divides,
there exists an integer k so that p− 2 = 4k. But then rearranging we see,

p = 4k + 2 = 2(2k + 1).

Since 2k + 1 is an integer, we have 2|p, and since p > 2, this means p cannot be prime which is a contra-
diction.

Since these cases were exhaustive and in both cases we found a contradiction, it must be that the contradiction
assumption is false and so the original claim must hold.

2. A Visit to Primes Square

Prove that for all positive integers a and b which have gcd(a, b) = 1, that gcd(a, b2) = 1.

Solution:

Let g = gcd(a, b2). We want to show g = 1. By Bezout’s theorem, there must exist integers s, t such that

1 = gcd(a, b) = sa+ tb.

Multiplying both sides by b, we get that
b = sba+ tb2.

By definition of gcd, g|a and g|b2, so there exist integers k, j such that

a = gk and b2 = gj.

Then we can combine these facts to get,

b = sb(gk) + tgj = g(sbk + tj).

This shows that g|b, since sbk+ tj is an integer. Then since g|b and g|a, by definition of gcd(a, b), g ≤ gcd(a, b).
But since its given that gcd(a, b) = 1, and gcd(·, ·) ≥ 1, it must be that g = 1, which completes the proof.

3. How many?

In each problem, count the number of elements in each set. If the set has infinitely many elements, say so.

(a) A = {1, 2, 3, 2}

(b) B = {{}, {{}}, {{}, {}}, {{}, {}, {}}, . . . }
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(c) C = ∅

(d) D = {∅}

(e) E = P({∅})

Solution:

(a) 3

(b) 2 It may seem at first like there are ∞, but the third elements onwards are all just {∅}, so they are not
distinct elements.

(c) 0

(d) 1

(e) 2

4. Set Equality

Let U be the universal set. Prove that A ∩ (A ∪B) = A for all sets A and B. Solution:

We need to prove two directions. First we prove A ∩ (A ∪B) ⊆ A.

Proof. Let x ∈ A ∩ (A ∪ B) be arbitrary. We want to show x ∈ A. By definition of ∩, x ∈ A ∧ x ∈ (A ∪ B), so
x ∈ A and we are done. Since x was arbitrary, this shows A ∩ (A ∪B) ⊆ A.

Now we prove the other direction.

Proof. Let x ∈ A be arbitrary. We want to show x ∈ A ∩ (A ∪ B). By definition of ∪, x ∈ A ∪ B, since clearly
x ∈ A ∨ x ∈ B. Then since we know x ∈ A and x ∈ A ∪B, by definition of ∩, we conclude x ∈ A ∩ (A ∪B), so
we are done. Since x was arbitrary, this shows A ⊆ A ∪B.

Since we proved both A ∩ (A ∪B) ⊆ A and A ⊆ A ∩ (A ∪B), we have shown A = A ∩ (A ∪B).

5. Tricky Set Equality

This problem should only be covered in section if there is extra time. Prove that for any setX and setA ∈ P(X),
there exists a set B such that the following conditions are both true:

• A ∩B = ∅

• A ∪B = X

Solution:

Proof. To show such a B exists, we explicitly construct it: define B ∈ P(B) as the set

B := X \A.

B ∈ P(B) since clearly X \A ⊆ X (can you prove why?). Now it remains to show that this choice of B satisfies
both conditions. We prove the first condition:

Proof. Suppose for contradiction that A ∩ B is non-empty. Then there exists some x ∈ A ∩ B. By choice of B,
x ∈ A ∩ (X \ A), and by definition of ∩, then x ∈ A and x ∈ (X \ A). But x ∈ (X \ A) means that x ∈ X and
x /∈ A, but we already showed x ∈ A which is a contradiction. Thus A ∩B = ∅.
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And the second:

Proof. Since A,B ∈ P(X), it is sufficient to prove that A ∪ B ⊇ X (can you prove the other direction?). Let
x ∈ X be arbitrary. There are two cases:

Case 1. If x ∈ A then we are already done, since by definition of ∪, x ∈ A ∪B.

Case 2. If x /∈ A, then by definition of \, since also x ∈ X, x ∈ X \A. But this means x ∈ B and so x ∈ A ∪B.

Thus we have shown x ∈ A ∪B in all cases. Since x was arbitrary this shows X ⊆ A ∪B.

Then we have shown that this choice of B satisfies all the required conditions.

6. No number is...

Note: only parts (a) and (b) are necessary, c-e are bonus material although they are good practice. In this
problem we will walk through how to prove the following claim about numbers: No integer n which satisfies n ≡ 3
(mod 4) is the sum of two squares. That is to say, there do not exist integers a, b such that n = a2 + b2.

(a) Translate the claim into logic, using quantifiers as necessary. You may assume the domain of discourse is
positive integers. Then, using DeMorgan’s law for quantifiers, remove any ¬∃ so that all quantifiers are ∀.

Solution:

¬∃n(n ≡ 3 (mod 4)) ∧ ∃a∃b(n = a2 + b2).

∀n((n ≡ 3 (mod 4)) → ∀a∀b(n 6= a2 + b2)).

(b) Prove the following (slightly) easier claim: Every integer c has either c2 ≡ 0 (mod 4) or c2 ≡ 1 (mod 4). Hint:
Prove it for two cases, one when c is odd and one when c is even.

Solution:

Proof. There are two cases: either c is odd or c is even.

Case 1. If c is odd then c = 2k + 1 for some integer k. Then,

c2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1.

Which means c2 − 1 = 4(k2 + k). Since k2 + k is an integer, 4|c2 − 1 and by the definition of modular
equivalence, we have c2 ≡ 1 (mod 4). Thus the claim holds for this case.

Case 2. If c is even then c = 2k for some integer k. Then,

c2 = (2k)2 = 4k2.

Which means c2 − 0 = 4(k2). Since k2 is an integer, 4|c2 and by the definition of modular equivalence, we
have c2 ≡ 0 (mod 4). Thus the claim holds for this case.

Since the claim holds in both cases and the cases are exhaustive the proof is complete.

(c) Let S be the set of values which (a2 + b2)% 4 may take on for integers a, b. Write a definition for S in set
builder notation.

Solution:

S := {(a2 + b2)% 4 : a, b ∈ Z}.

(d) Using what you proved in part(b), prove that S = {0, 1, 2}.
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Solution:

We need to prove two things. First we prove S ⊆ {0, 1, 2} :

Proof. Let s ∈ S be arbitrary. Then s = (a2 + b2)% 4 for some integers a, b. We want to show that
s ∈ {0, 1, 2}.

From part (b) we proved that a2 ≡ 0 (mod 4) or a2 ≡ 1 (mod 4), and the same for b2. Then using the
equivalence of mod % proved in class, we know a2 % 4 ≤ 1 and b2 % 4 ≤ 1 and so (a2 % 4) + (b2 % 4) ≤ 2.
Then Using the properties of %, this means s = (a2+b2)% 4 ≤ 2, but by definition of %, s is a non-negative
integer so 0 ≤ s ≤ 2 and we have s ∈ {0, 1, 2}. Since s was arbitrary, this shows S ⊆ {0, 1, 2}.

Now we prove the other direction, S ⊇ {0, 1, 2}:

Proof. Let s ∈ {0, 1, 2} be arbitrary. There are three cases.

Case 0. If s = 0, then observe that by choosing a = 2 and b = 4, we have (a2 + b2)% 4 = (4 + 16)% 4 =
20% 4 = 0, so there exist a, b ∈ Z such that 0 = s = a2 + b2 % 4, showing s ∈ S.

Case 1. If s = 1, then choose a = 1 and b = 2, we have (a2 + b2)% 4 = (1 + 4)% 4 = 5% 4 = 1, so there
exist a, b ∈ Z such that 1 = s = a2 + b2 % 4, showing s ∈ S.

Case 2. If s = 2, then choose a = 1 and b = 3, we have (a2 + b2)% 4 = (1 + 9)% 4 = 10% 4 = 2, so there
exist a, b ∈ Z such that 2 = s = a2 + b2 % 4, showing s ∈ S.

Since s ∈ S in all three cases and the cases were exhaustive, we conclude S ⊇ {0, 1, 2}.

Since we have proved both directions, we conclude S = {0, 1, 2}.

(e) Prove the claim from the beginning of the problem. This should be very short since you can cite what you
have proved in any above part.

Solution:

Let n be an arbitrary integer which satisfies n ≡ 3 (mod 4) and let a, b be arbitrary integers. By part (d),
and the equivalence of % and mod, a2 + b2 % 4 ∈ {0, 1, 2}, but this means a2 + b2 % 4 6= 3 and so by
equivalence of mod and %, a2 + b2 6≡ 3 (mod 4), but this means that n 6= a2 + b2. Thus we have proved
the second expression in part (a), which is equivalent to the desired claim.

Note: There are lots of ways to do this, it may make sense to show how to make this proof by contradiction
using the non-DeMorgan’s law’d expression in (a).
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