

Final Exam Review

CSE 311: Foundations of Computing I Lecture 24

Translations

• All dogs are cute

• There is only one dog who is the best dog

Translations

• All dogs are cute

 $\forall x(dog(x) \rightarrow cute(x))$

• There is only one dog who is the best dog

 $\exists x (dog(x) \land best(x) \land \forall y ((dog(y) \land best(y)) \rightarrow x = y))$

Set Theory

• Prove that $(A \cap B) \cup (A \setminus C) \subseteq A$.

Set Theory

• Prove that $(A \cap B) \cup (A \setminus C) \subseteq A$.

Let $x \in (A \cap B) \cup (A \setminus C)$ be arbitrary. By definition of union, $x \in (A \cap B)$ or $x \in (A \setminus C)$. We will use cases:

1. If $x \in (A \cap B)$, then $x \in A$ by definition of intersection.

2. If $x \in (A \setminus C)$, then $x \in A$ and $x \notin C$, so clearly $x \in A$ In both cases $x \in A$, thus if $x \in (A \cap B) \cup (A \setminus C)$, $x \in A$. Since x was arbitrary, $(A \cap B) \cup (A \setminus C) \subseteq A$

Number Theory

Let p be a prime number > 3. Show that $p \equiv_6 1$ or $p \equiv_6 5$

Number Theory

Let p be a prime number > 3. Show that $p \equiv_6 1$ or $p \equiv_6 5$

Let p be arbitrary. We know that by the division theorem, p = 6q + r for some q and r. this means that $p \equiv_6 r$. Consider the following cases:

- $p \equiv_6 0$: This means that 6|p, making p not prime
- $p \equiv_6 2$: This means that p is even, and since p>3, it must be not prime
- $p \equiv_6 3$: This means 3|p, making p not prime
- $p \equiv_6 4$: This means that p is even and not prime

Therefore, r = 1 or 5, so
$$p \equiv_6 1$$
 or $p \equiv_6 5$

Since p was arbitrary, the claim holds

Structural Induction

We define the set **Trees** as follows: **Basis Elements**: for any $x \in \mathbb{Z}$, Leaf $(x) \in$ **Trees**. **Recursive Step**: for any $x \in \mathbb{Z}$, if $L, R \in$ **Trees**, then Branch $(x, L, R) \in$ **Trees**. This defines a set of *binary trees* just like those defined in lecture except that we now include data in the nodes. The following functions count the number of each type of node in the tree:

Prove that, for any $T \in$ **Trees**, we have leaves(T) =branches(T) + 1.

Structural Induction

Let P(t) mean that "leaves(t) = branches(t) + 1". We will prove this by structural induction for all $t \in T$.

Base Case: Leaf(x). Leaves(leaf(x)) = 1, and branches(leaf(x)) + 1 = 1, so P(leaf(x)) holds.

Inductive Hypothisis: Suppose P(L), P(R) for arbitrary L, $R \in T$.

Inductive Step: let x be an arbitrary integer

Leaves(branch(x, L, R)) = Leaves(L) + Leaves(R)

= Branches(L) + Branches(R)+1 + 1 (by IH)

= Branches(Branch(x, L, R)) + 1

Which shows P(branch(x, L, R))

Therefore we have shown P(t) for all $t \in T$ by structural induction.

Regex

• Binary Strings with an even number of 1s

• Binary strings with an odd number of 1s

Regex

• Binary Strings with an even number of 1s (0*10*10*)*0*

Binary strings with an odd number of 1s
(0*10*10*)*0*1(0*10*10*)*0*

DFA, NFA

• Binary Strings where every occurrence of a 1 is followed by 00

• NFA: Binary Strings with at least 3 1s and ends with 000

DFA, NFA

• Binary Strings where every occurrence of a 1 is followed by 00

• NFA: Binary Strings with at least 3 1s and ends with 000

NFA to DFA

Convert the NFA below, which we get by applying the construction described in class¹ to the regular expression $(\varepsilon \cup 0)(1 \cup 00)^*$:

NFA to DFA

Irregularity

• Prove that the language $1^a 01^a$ is irregular

Irregularity

• Prove that the language $L = 1^a 01^a$ is irregular

Suppose there is some DFA called M that accepts L. Consider $S = \{1^a 0\}$. Since there are finitely many states in M and infinitely many strings in S, we know there exists strings $0^a 1$ and $0^b 1$ that go to the same state in M where a != b. Now consider appending 0^a onto both strings. Since $0^a 1$ and $0^b 1$ end in the same state, $0^a 10^a$ and $0^a 10^b$ go to the same state let's call q. q needs to be accepting since $0^a 10^a \in L$, but it needs to also be rejecting since $0^a 10^b \notin L$ since a != b. This is a contradiction.

Thus no DFA recognizes L