
CSE 311: Foundations of Computing

Lecture 23 – Undecidability

Last time: Countable sets

A set is countable iff we can order the elements of as

Countable sets:
- the natural numbers
- the integers
- the rationals
- the strings over any finite

The set of all Java programs

Shown
by
“dovetailing”

Last time: Not every set is countable

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.

Uncomputable functions

Interesting… maybe.

Can we come up with an explicit function that is
uncomputable?

Uncomputable functions

We have seen that:
– The set of all (Java) programs is countable
– The set of all functions is not countable

So: There must be some function that is not
computable by any program!

Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

Binary Palindromes

{001, 10, 12}

Java

Uncomputable functions

Interesting… maybe.

Can we produce an explicit function that is uncomputable?

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

11
34
17
52
26
13
40
20
10
5
16
8
4
2
1

A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

Nobody knows whether or not
this program halts on all inputs!

Some Notation

We’re going to be talking about Java code.

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());
}

What is P(CODE(P))?

“(((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”

Terminology

• With state machines, we say that a machine
“recognizes” the language L iff
– it accepts x Σ* if x L

– it rejects x Σ* if x L

• With Java programs / general computation, we
say that the computer “decides” the language L iff
– it halts with output 1 on input x Σ* if x L

– it halts with output 0 on input x Σ* if x L
(difference is the possibility that machine doesn’t halt)

• If no machine decides L, then L is “undecidable”

The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]: There is no program that solves
the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

x

Proof by contradiction

Suppose that H is a Java program that solves the
Halting problem.

Then we can write this program:
public static void D(String s) {

if (H(s,s)) {
while (true); // don’t halt

} else {
return; // halt

}
}

public static bool H(String s, String x) { ... }

Does D(CODE(D)) halt?

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt

}
}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt

}
}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt

}
}

Does D(CODE(D)) halt?

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt

}
}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt

}
}

H solves the halting problem implies that
H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

Contradiction!

public static void D(s) {
if (H(s,s)) {

while (true); // don’t halt
} else {

return; // halt

}
}

Done

• We proved that there is no computer
program that can solve the Halting Problem.
– There was nothing special about Java*

[Church-Turing thesis]

• This tells us that there is no compiler that can check our
programs and guarantee to find any infinite loops they
might have.

Where did the idea for creating D come from?

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

public static void D(s) {
if (H(s,s) == true) {

while (true); // don’t halt
} else {

return; // halt

}
}

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Write <P> for CODE(P)

This listing of all programs really does exist
since the set of all Java programs is countable

The goal of this “diagonal” argument is not
to show that the listing is incomplete but
rather to show that a “flipped” diagonal
element is not in the listing

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)

Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

0 1 1 0 1 1 1 0 0 0 1 ...
1 1 0 1 0 1 1 0 1 1 1 ...
1 0 1 0 0 0 0 0 0 0 1 ...
0 1 1 0 1 0 1 1 0 1 0 ...
0 1 1 1 1 1 1 0 0 0 1 ...
1 1 0 0 0 1 1 0 1 1 1 ...
1 0 1 1 0 0 0 0 0 0 1 ...
0 1 1 1 1 0 1 1 0 1 0 ...
.
.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1
0

0
1

0
0

1
0

Write <P> for CODE(P)

Want behavior of program to be
like the flipped diagonal, so it can’t
be in the list of all programs.

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /* halt */

}
}

D halts on input code(P) iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore, for any program P, D differs from P on input code(P)

The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is
undecidable to show that other problems are
undecidable

General method (a “reduction”):
Prove that, if there were a program deciding B, then
there would be a program deciding the Halting Problem.

“B decidable Halting Problem decidable”
Contrapositive:

“Halting Problem undecidable B undecidable”
Therefore, B is undecidable

A CSE 142 assignment

Students should write a Java program that:
– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade these

How do we write that grading program?

We can’T: THIS IS IMPOSSIBLe!

Another undecidable problem

• CSE 142 Grading problem:

– Input: CODE(Q)

– Output:
True if Q outputs “HELLO” and exits
False if Q does not do that

• Theorem: The CSE 142 Grading is undecidable.

• Proof idea: Show that, if there is a program T to decide
CSE 142 grading, then there is a program H to decide the
Halting Problem for code(P) and input x.

Another undecidable problem

Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program T that decide CSE 142
grading problem. Then, there is a program H to decide the
Halting Problem for code(P) and input x by

• transform P (with input x) into the following program Q

Another undecidable problem
public class Q {
private static String x = “...”;

public static void main(String[] args) {
PrintStream out = System.out;
System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));
System.setIn(new ReaderInputStream(new StringReader(x)));

P.main(args);

out.println(“HELLO”);
}

}

class P {
public static void main(String[] args) { ... }
...

}

Another undecidable problem

Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program T that decide CSE 142
grading problem. Then, there is a program H to decide the
Halting Problem for code(P) and input x by

• transform P (with input x) into the following program Q

• run T on code(Q)
– if it returns true, then P halted

must halt in order to print “HELLO”

– if it returns false, then P did not halt
program Q can’t output anything other than “HELLO”

More Reductions

- Can use undecidability of these problems to show that
other problems are undecidable.

- For instance:
: True if and have the same

behavior for every input
False otherwise

Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x
Output: true if P prints “ERROR” on input x

after less than 100 steps
false otherwise

• Input CODE(P) and x
Output: true if P prints “ERROR” on input x

after more than 100 steps
false otherwise

Rice’s Theorem:
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.

Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x
Output: true if P prints “ERROR” on input x

after less than 100 steps
false otherwise

• Input CODE(P) and x
Output: true if P prints “ERROR” on input x

after more than 100 steps
false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.

ARE DIFFICULT

CFGs are complicated

We know can answer almost any question about REs
• Do two RegExps recognize the same language?

But many problems about CFGs are undecidable!
• Do two CFGs generate the same language?

• Is there any string that two CFGs both generate?
– more general: “CFG intersection” problem

• Does a CFG generate every string?

Takeaway from undecidability

• You can’t rely on the idea of improved
compilers and programming languages to
eliminate all programming errors
– truly safe languages can’t possibly do general

computation

• Document your code
– there is no way you can expect someone else

to figure out what your program does with just
your code; since in general it is provably
impossible to do this!

Computers and algorithms

• Does Java (or any programming language) cover all possible
computation? Every possible algorithm?

• There was a time when computers were people who did
calculations on sheets paper to solve computational
problems

• Computers as we known them arose from trying to
understand everything these people could do.

Before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)
– basis of modern computers

• Lambda Calculus (Church)
– basis for functional programming, LISP

• -recursive functions (Kleene)
– alternative functional programming basis

Turing machines

Church-Turing Thesis:

Any reasonable model of computation that includes all
possible algorithms is equivalent in power to a Turing
machine

Evidence

– Huge numbers of models based on radically
different ideas turned out to be equivalent to TMs

– TM can simulate the physics of any machine that
we could build (even quantum computers)

Turing machines

• Finite Control
– Brain/CPU that has only a finite # of possible “states

of mind”
• Recording medium

– An unlimited supply of blank “scratch paper” on
which to write & read symbols, each chosen from a
finite set of possibilities

– Input also supplied on the scratch paper
• Focus of attention

– Finite control can only focus on a small portion of the
recording medium at once

– Focus of attention can only shift a small amount at a
time

Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape

containing the input string
– Read/write head can scan one cell of the tape - starts on

input

• In each step, a Turing machine
1. Reads the currently scanned cell
2. Based on current state and scanned symbol

i. Overwrites symbol in scanned cell
ii. Moves read/write head left or right one cell
iii. Changes to a new state

• Each Turing Machine is specified by its finite set of rules

Turing machines

__11011__

10_

(0, R, s2)(1, L, s4)(1, L, s3)s1

(0, R, s1)(1, R, s1)(0, R, s1)s2

s3

s4

UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell

Turing machines

Ideal Java/C programs:
– Just like the Java/C you’re used to programming

with, except you never run out of memory
• no OutOfMemoryError

Equivalent to Turing machines but easier to program:
– Turing machine definition is useful for breaking

computation down into simplest steps
– We only care about high level so we use programs

Turing’s big idea part 1: Machines as data

Original Turing machine definition:
– A different “machine” M for each task
– Each machine M is defined by a finite set of

possible operations on finite set of symbols
– So... M has a finite description as a sequence of

symbols, its “code”, which we denote <M>

You already are used to this idea with the notion of the
program code, but this was a new idea in Turing’s time.

Turing’s big idea part 2: A Universal TM

• A Turing machine interpreter U
– On input <M> and its input x,

U outputs the same thing as M does on input x
– At each step it decodes which operation M would have

performed and simulates it.

• One Turing machine is enough
– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input

x
output
M(x) U

x output
M(x)M

