CSE 311: Foundations of Computing

Lecture 23 – Undecidability

š

DEFINE DOES IT HALT (PROGRAM):

RETURN TRUE;

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM A set **S** is **countable** iff we can order the elements of **S** as $S = \{x_1, x_2, x_3, ...\}$

Countable sets:

- $\mathbb N$ the natural numbers
- $\ensuremath{\mathbb{Z}}$ the integers
- ${\mathbb Q}$ the rationals
- Σ^* the strings over any finite Σ
- The set of all Java programs

Shown by "dovetailing" **Theorem [Cantor]:**

The set of real numbers between 0 and 1 is not countable.

Proof using "diagonalization".

Interesting... maybe.

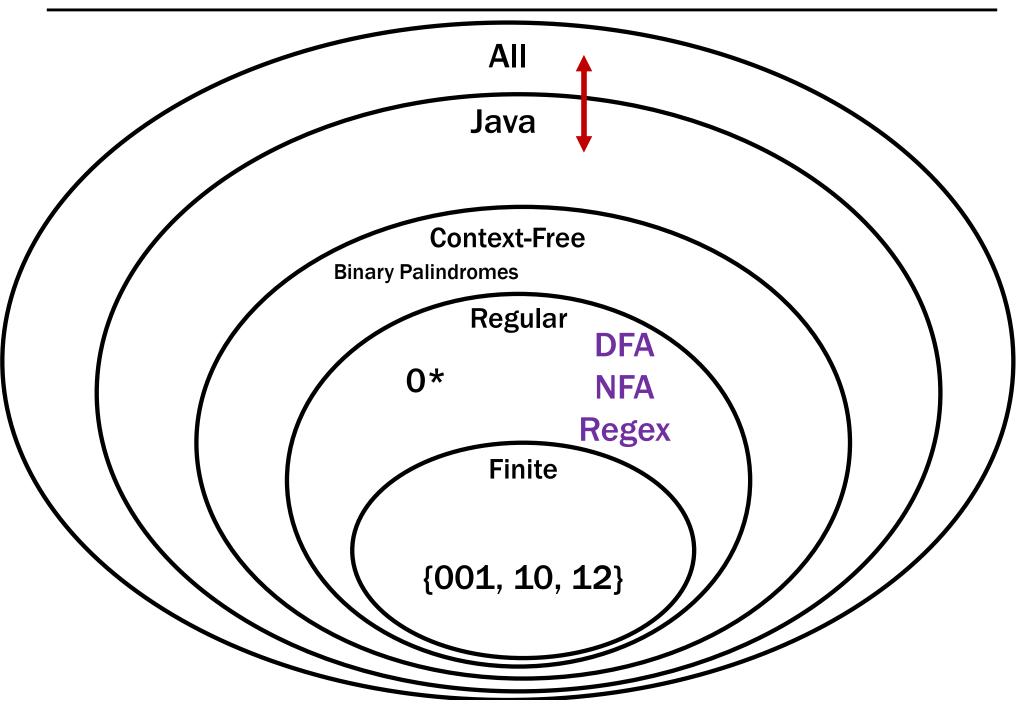
Can we come up with an explicit function that is uncomputable?

We have seen that:

- The set of all (Java) programs is countable
- The set of all functions $f : \mathbb{N} \rightarrow \{0, \dots, 9\}$ is not countable

So: There must be some function $f : \mathbb{N} \to \{0, ..., 9\}$ that is not computable by any program!

Recall our language picture



Interesting... maybe.

Can we produce an explicit function that is uncomputable?

```
11
public static void collatz(n) {
   if (n == 1) {
                                             34
      return 1;
                                             17
   }
                                             52
   if (n % 2 == 0) {
                                             26
      return collatz(n/2)
                                             13
   }
                                             40
   else {
                                             20
      return collatz(3*n + 1)
   }
                                             10
}
                                             5
                                             16
What does this program do?
                                             8
   ... on n=11?
                                             4
   2
                                             1
```

```
public static void collatz(n) {
    if (n == 1) {
        return 1;
    }
    if (n % 2 == 0) {
        return collatz(n/2)
    }
    else {
        return collatz(3*n + 1)
    }
}
```

Nobody knows whether or not this program halts on all inputs!

What does this program do?

- ... on n=11?

We're going to be talking about Java code.

CODE(P) will mean "the code of the program **P**"

So, consider the following function:
 public String P(String x) {
 return new String(Arrays.sort(x.toCharArray());
 }

What is **P(CODE(P))**?

"((((())))..;AACPSSaaabceeggghiiiiInnnnnooprrrrrrrrssstttttuuwxxyy{}"

Terminology

- With state machines, we say that a machine "recognizes" the language L iff
 - it accepts $x \in \Sigma^*$ if $x \in L$
 - it rejects $x \in \Sigma^*$ if $x \notin L$
- With Java programs / general computation, we say that the computer "decides" the language L iff
 - it halts with output 1 on input $x \in \Sigma^*$ if $x \in L$
 - it halts with output 0 on input $x \in \Sigma^*$ if $x \notin L$ (difference is the possibility that machine doesn't halt)
- If no machine decides L, then L is "undecidable"

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means "the code of the program **P**"

The Halting Problem

Given: - CODE(**P**) for any program **P** - input **x**

Output: true if P halts on input x false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Suppose that H is a Java program that solves the Halting problem.

Suppose that H is a Java program that solves the Halting problem.

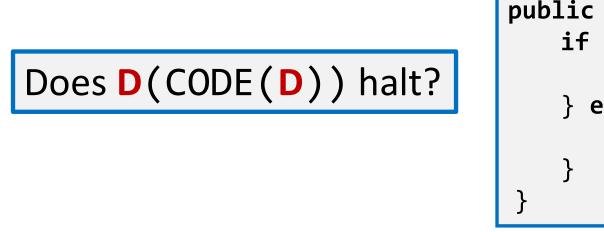
Then we can write this program:

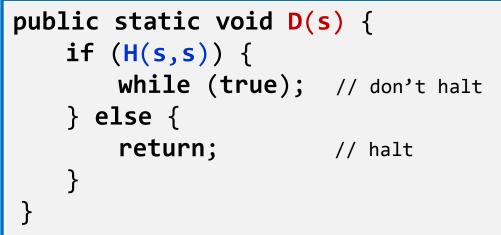
```
public static void D(String s) {
    if (H(s,s)) {
        while (true); // don't halt
        } else {
            return; // halt
        }
    }
public static bool H(String s, String x) { ... }
```

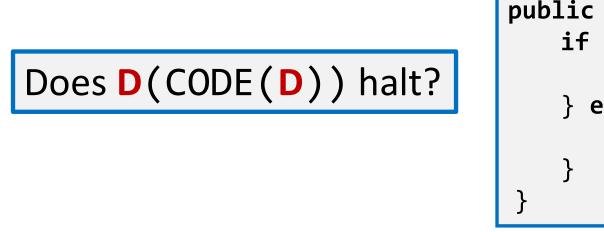
Does D(CODE(**D**)) halt?

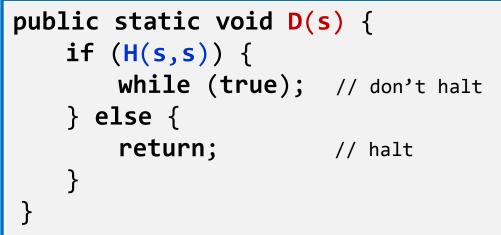
```
Does D(CODE(D)) halt?
```

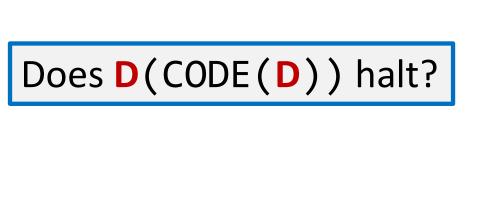
public static void D(s) { **if** (**H**(**s**,**s**)) { while (true); // don't halt } else { return; // halt }





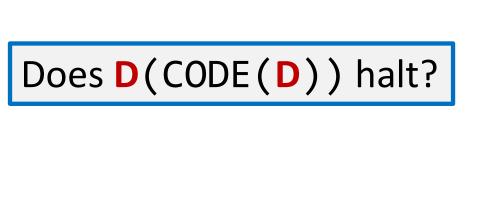






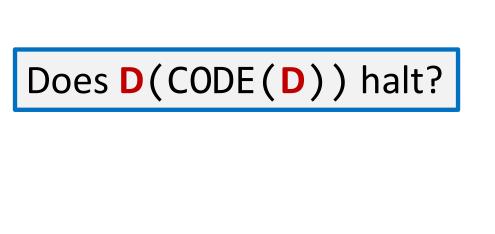
public static void D(s) { **if** (**H**(**s**,**s**)) { while (true); // don't halt } else { return; // halt }

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt



public static void D(s) { **if** (**H**(**s**,**s**)) { while (true); // don't halt } else { return; // halt }

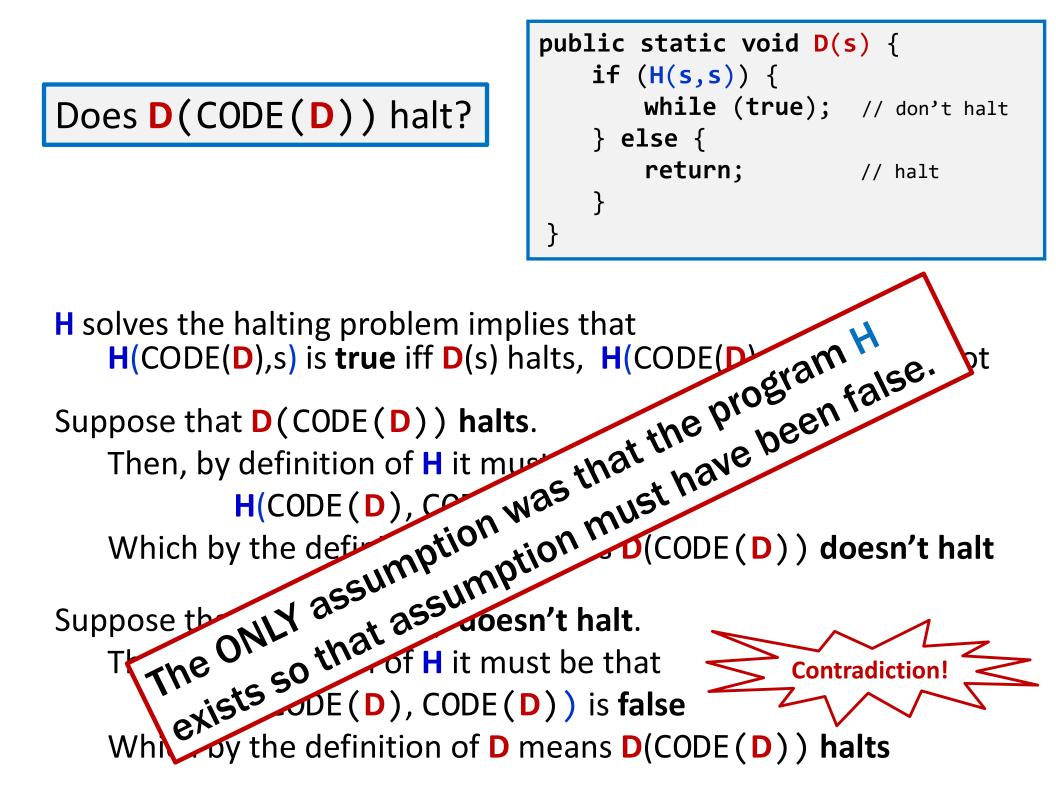
Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt



public static void D(s) { **if** (**H**(**s**,**s**)) { while (true); // don't halt } else { return; // halt }

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn't halt

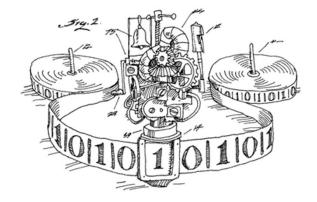
Suppose that D(CODE(D)) doesn't halt.
Then, by definition of H it must be that
H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts



Done

- We proved that there is no computer program that can solve the Halting Problem.
 - There was nothing special about Java*

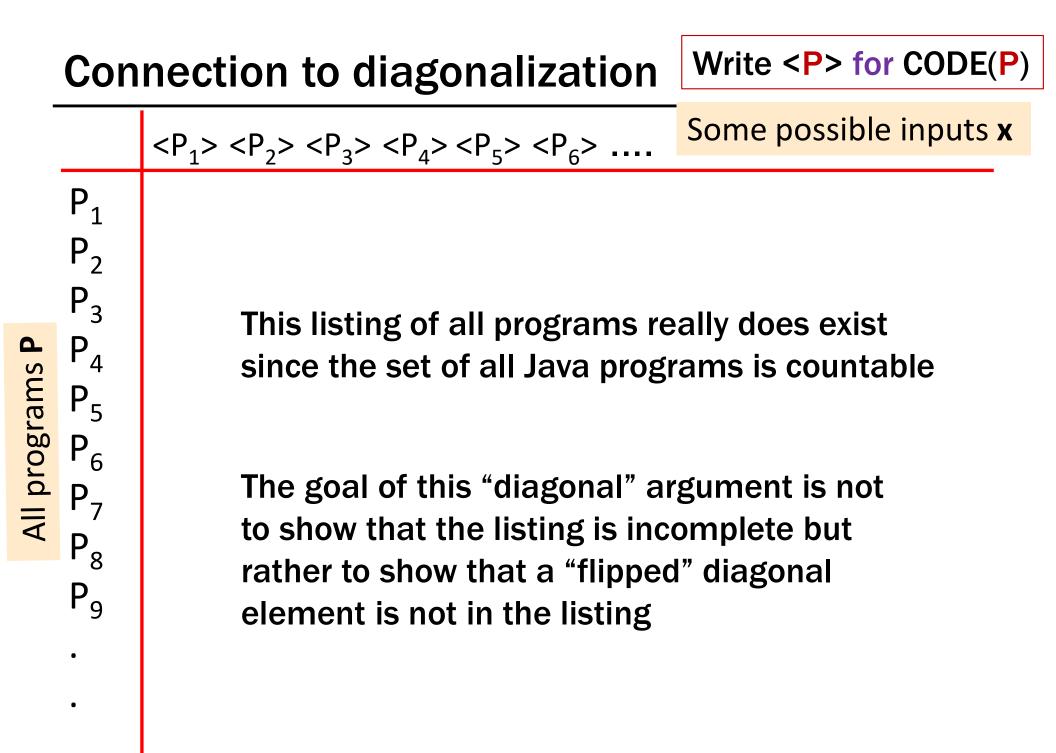
[Church-Turing thesis]



 This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

```
public static void D(s) {
    if (H(s,s) == true) {
        while (true); // don't halt
    } else {
        return; // halt
    }
}
```

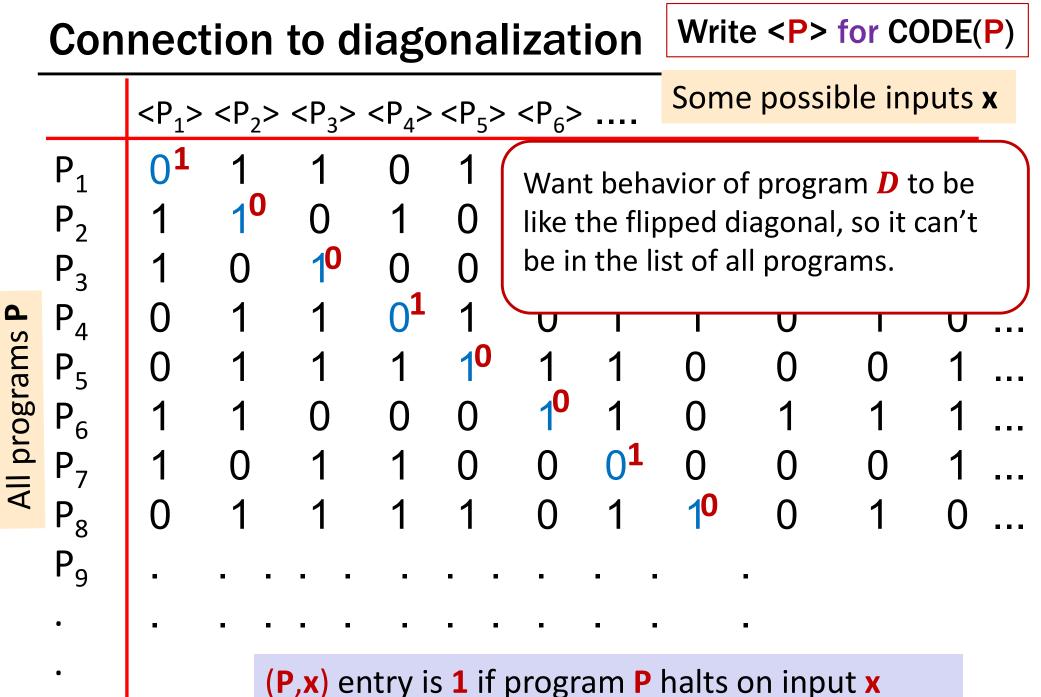
D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)



	Con	nect	ion	to di	iago	onali	zat	ion	Write	< P > f	or CO	DE(P)
-		<p<sub>1></p<sub>	<p<sub>2></p<sub>	<p<sub>3></p<sub>	<p<sub>4></p<sub>	<p<sub>5></p<sub>	<p<sub>6></p<sub>		Some	possik	ole inp	uts x
	P_1	0	1	1	0	1	1	1	0	0	0	1
	P_2	1	1	0	1	0	1	1	0	1	1	1
	P_3	1	0	1	0	0	0	0	0	0	0	1
S D	P_4	0	1	1	0	1	0	1	1	0	1	0
All programs	P_5	0	1	1	1	1	1	1	0	0	0	1
180.	P_6	1	1	0	0	0	1	1	0	1	1	1
Id II	P ₇	1	0	1	1	0	0	0	0	0	0	1
4	P ₈	0	1	1	1	1	0	1	1	0	1	0
	P ₉		• •		•		•					
	•	-	• •		-	• •	-					_

(P,x) entry is 1 if program P halts on input x and 0 if it runs forever

•



and **0** if it runs forever

```
public static void D(s) {
    if (H(s,s) == true) {
        while (true); /* don't halt */
     }
    else {
        return; /* halt */
     }
}
```

D halts on input code(P) iff H(code(P),code(P)) outputs false iff P doesn't halt on input code(P)

Therefore, for any program P, **D** differs from P on input code(P)

The Halting Problem isn't the only hard problem

- Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable
- **General method** (a "reduction"):

Prove that, if there were a program deciding B, then there would be a program deciding the Halting Problem.

- "B decidable → Halting Problem decidable" Contrapositive:
- "Halting Problem undecidable \rightarrow B undecidable" Therefore, B is undecidable

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

Gradelt, Practicelt, etc. need to grade these How do we write that grading program?

WE CAN'T: THIS IS IMPOSSIBLE!

Another undecidable problem

- CSE 142 Grading problem:
 - Input: CODE(Q)
 - Output:

True if **Q** outputs "HELLO" and exits **False** if **Q** does not do that

- Theorem: The CSE 142 Grading is undecidable.
- Proof idea: Show that, if there is a program T to decide CSE 142 grading, then there is a program H to decide the Halting Problem for code(P) and input x.

Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program **T** that decide CSE 142 grading problem. Then, there is a program **H** to decide the Halting Problem for code(P) and input x by

• transform P (with input x) into the following program Q

Another undecidable problem

```
public class Q {
    private static String x = "...";
```

```
public static void main(String[] args) {
```

PrintStream out = System.out;

System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));

System.setIn(new ReaderInputStream(new StringReader(x)));

P.main(args);

```
out.println("HELLO");
}
```

```
class P {
   public static void main(String[] args) { ... }
```

ļ

...

Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program **T** that decide CSE 142 grading problem. Then, there is a program **H** to decide the Halting Problem for code(P) and input x by

- transform P (with input x) into the following program Q
- run T on code(Q)
 - if it returns true, then P halted must halt in order to print "HELLO"
 - if it returns false, then P did not halt

program Q can't output anything other than "HELLO"

More Reductions

- Can use undecidability of these problems to show that other problems are undecidable.
- For instance:
 EQUIV(P,Q):
- True if P(x) and Q(x) have the same behavior for every input xFalse otherwise

Not every problem on programs is undecidable! Which of these is decidable?

Ð	Input CODE (P) and x
	Output: true	if P prints "ERROR" on input x
		after less than 100 steps
	false	otherwise
•	Input CODE (P) and x
•	- ``) and x if P prints "ERROR" on input x
	- ``	•

Rice's Theorem:

Any "non-trivial" property of the input-output behavior of Java programs is undecidable.

Not every problem on programs is undecidable! Which of these is decidable?

•	Input CODE(P) and x				
	Output: true if P prints "ERROR" on input x				
	after less than 100 steps				
	false otherwise				
•	Input CODE(P) and x				
	Output: true if P prints "ERROR" on input x				
	after more than 100 steps				
	false otherwise				

Rice's Theorem (a.k.a. Compilers ARE DIFFICULT Any "non-trivial" property of the input-output behavior of Java programs is undecidable. We know can answer almost any question about REs

• Do two RegExps recognize the same language?

But many problems about CFGs are undecidable!

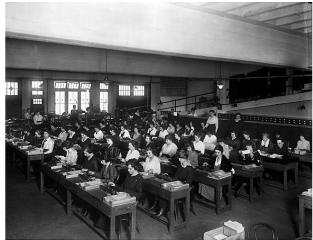
- Do two CFGs generate the same language?
- Is there any string that two CFGs both generate? — more general: "CFG intersection" problem
- Does a CFG generate every string?

Takeaway from undecidability

- You can't rely on the idea of improved compilers and programming languages to eliminate all programming errors
 - truly safe languages can't possibly do general computation
- Document your code
 - there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!

Computers and algorithms

- Does Java (or any programming language) cover all possible computation? Every possible algorithm?
- There was a time when computers were people who did calculations on sheets paper to solve computational problems



• Computers as we known them arose from trying to understand everything these people could do.

1930's:

How can we formalize what algorithms are possible?

- **Turing machines** (Turing, Post)
 - basis of modern computers
- Lambda Calculus (Church)
 - basis for functional programming, LISP
- μ-recursive functions (Kleene)
 - alternative functional programming basis

Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs
- TM can simulate the physics of any machine that we could build (even quantum computers)

Finite Control

- Brain/CPU that has only a finite # of possible "states of mind"
- Recording medium
 - An unlimited supply of blank "scratch paper" on which to write & read symbols, each chosen from a finite set of possibilities
 - Input also supplied on the scratch paper

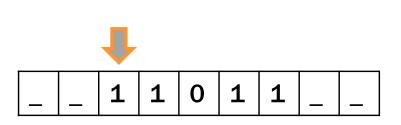
Focus of attention

- Finite control can only focus on a small portion of the recording medium at once
- Focus of attention can only shift a small amount at a time

Recording medium

- An infinite read/write "tape" marked off into cells
- Each cell can store one symbol or be "blank"
- Tape is initially all blank except a few cells of the tape containing the input string
- Read/write head can scan one cell of the tape starts on input
- In each step, a Turing machine
 - 1. Reads the currently scanned cell
 - 2. Based on current state and scanned symbol
 - i. Overwrites symbol in scanned cell
 - ii. Moves read/write head left or right one cell
 - iii. Changes to a new state
- Each Turing Machine is specified by its finite set of rules

	_	0	1
s ₁	(1, L, s ₃)	(1, L, s ₄)	(0, R, s ₂)
s ₂	(0, R, s ₁)	(1, R, s ₁)	(0, R, s ₁)
s ₃			
s ₄			



UW CSE's Steam-Powered Turing Machine

Original in Sieg Hall stairwell

Ideal Java/C programs:

- Just like the Java/C you're used to programming with, except you never run out of memory
 - no OutOfMemoryError

Equivalent to Turing machines but easier to program:

- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs

Original Turing machine definition:

- A different "machine" M for each task
- Each machine M is defined by a finite set of possible operations on finite set of symbols
- So... M has a finite description as a sequence of symbols, its "code", which we denote <M>

You already are used to this idea with the notion of the program code, but this was a new idea in Turing's time.

- A Turing machine interpreter U
 - On input <M> and its input x,
 - U outputs the same thing as M does on input x
 - At each step it decodes which operation M would have performed and simulates it.
- One Turing machine is enough
 - Basis for modern stored-program computer
 Von Neumann studied Turing's UTM design

