CSE 311: Foundations of Computing CSE 311: Foundations of Comput
Lecture 23 - Undecidability

DEFINE DOESITHALT (PROGRAM):

RETURN TRUE;

THE BIG PICTURE SOLUTION TO THE HALTING PROBLEM

A set S is countable sets
A set S is countable iff we can order the elements of S as
 $S = \{x_1, x_2, x_3, ...\}$

Countable sets:

- N the natural numbers
- $\mathbb Z$ the integers
- $\mathbb Q$ the rationals
- **EXAMPLE SETT:**
 $\begin{array}{r} \mathbf{e} \text{ } \mathbf{set} \text{ } \mathbf{set}$

The set of all Java programs

Shown by the contract of \mathbf{b} "dovetailing"

Theorem [Cantor]: The set of real numbers between 0 and 1 is not countable.

Proof using "diagonalization".

Interesting… maybe.

Can we come up with an explicit function that is uncomputable?

We have seen that:

- The set of all (Java) programs is countable
- The set of all functions $f : \mathbb{N} \to \{0, ..., 9\}$ is not countable

So: There must be some function $f : \mathbb{N} \to \{0, \dots, 9\}$ that is not computable by any program!

Recall our language picture

Interesting… maybe.

Can we produce an explicit function that is uncomputable?

```
11
public static void collatz(n) {
                                        34
  if (n == 1) {
     return 1; 17
   }
                                        52
  if (n % 2 == 0) {
                                        26
     return collatz(n/2) 13
   }
                                        40
  else {
                                        20
     return collatz(3*n + 1) 10<br>5
   } }
                                         16<br>8<br>4<br>2<br>1
                                        16
What does this program do?
                                        8
  … on n=11?
                                        4
  … on n=10000000000000000001?
                                         1
```

```
public static void collatz(n) {
  if (n == 1) {
    return 1;
  }
  if (n % 2 == 0) {
    return collatz(n/2)
  }
  else {
    return collatz(3*n + 1)
  }
}
```
Nobody knows whether or not this program halts on all inputs!

What does this program do?

- … on n=11?
- … on n=10000000000000000001?

We're going to be talking about *Java* code.

e Notation
"e going to be talking about *Java code.*
CODE(P) will mean "the code of the program P"
"nsider the following function: So, consider the following function: public String P(String x) { return new String(Arrays.sort(x.toCharArray()); }

What is $P(CODE(P))$?

"(((())))...;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}"

Terminology

- With state machines, we say that a machine "recognizes" the language L iff – it rejects x Σ* if x ^L
	- it accepts $x \in \Sigma^*$ if $x \in L$
	-
- With Java programs / general computation, we say that the computer "decides" the language L iff
	- it halts with output 1 on input $x \in \Sigma^*$ if $x \in L$
	- it halts with output 0 on input $x \in \Sigma^*$ if $x \notin L$ (difference is the possibility that machine doesn't halt)
- If no machine decides L, then L is "undecidable"

The Halting Problem

CODE(P) means "the code of the program P"

The Halting Problem

The Halting Problem

ing Problem

means "the code of the program P"

The Halting Problem

Given: - CODE(P) for any program P

- input x - input x

Output: true if P halts on input x false if P does not halt on input x

Undecidability of the Halting Problem

CODE(P) means "the code of the program P" Undecidability of the Halting Problem
CODE(P) means "the code of the program P"
The Halting Problem

The Halting Problem

**ability of the Halting Problem

means "the code of the program P"

The Halting Problem

Given: - CODE(P) for any program P

- input x** - input x

Output: true if P halts on input x false if P does not halt on input x

Theorem [Turing]: There is no program that solves the Halting Problem

Suppose that H is a Java program that solves the Halting problem.

Suppose that H is a Java program that solves the Halting problem.

Then we can write this program:

```
F by contradiction<br>
bse that H is a Java program that solves the<br>
g problem.<br>
we can write this program:<br>
public static void D(String s) {<br>
if (H(s,s)) {<br>
while (true); // don't halt
       if (H(s,s)) {
             while (true); // don't halt
       } else {
             return; // halt
       }
}
public static void D(String s) {<br>
if (H(s,s)) {<br>
while (true); // don't halt<br>
} else {<br>
return; // halt<br>
}<br>
public static bool H(String s, String x) { ... }<br>
D(CODE(D)) halt?
```
Does D (CODE(D)) halt?

```
Does D(CODE(D)) halt?
```
public static void D(s) {
if $(H(s,s))$ {
while (true); // don't halt
} else { if $(H(s,s))$ { while (true); // don't halt } else { return; // halt } }

public static void D(s) {
if $(H(s,s))$ {
while (true); // don't halt
} else { if $(H(s,s))$ { while (true); // don't halt return; // halt }

H solves the halting problem implies that $H(CODE(D),s)$ is true iff $D(s)$ halts, $H(CODE(D),s)$ is false iff not

public static void D(s) {
if $(H(s,s))$ {
while (true); // don't halt
} else { if $(H(s,s))$ { while (true); // don't halt return; // halt }

H solves the halting problem implies that $H(CODE(D),s)$ is true iff $D(s)$ halts, $H(CODE(D),s)$ is false iff not

public static void D(s) {
if $(H(s,s))$ {
while (true); // don't halt
} else { if $(H(s,s))$ { while (true); // don't halt } else { return; // halt } }

H solves the halting problem implies that H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that $D(CODE(D))$ halts. Then, by definition of H it must be that H(CODE(D), CODE(D)) is true Which by the definition of D means $D(CODE(D))$ doesn't halt

public static void D(s) {
if $(H(s,s))$ {
while (true); // don't halt
} else { if $(H(s,s))$ { while (true); // don't halt } else { return; // halt } }

H solves the halting problem implies that H(CODE(D),s) is true iff D(s) halts, H(CODE(D),s) is false iff not

Suppose that $D(CODE(D))$ halts. Then, by definition of H it must be that H(CODE(D), CODE(D)) is true Which by the definition of D means $D(CODE(D))$ doesn't halt

public static void D(s) {
if $(H(s,s))$ {
while (true); // don't halt
} else { if $(H(s,s))$ { while (true); // don't halt } else { return; // halt } }

H solves the halting problem implies that $H(CODE(D),s)$ is true iff $D(s)$ halts, $H(CODE(D),s)$ is false iff not

Suppose that $D(CODE(D))$ halts. Then, by definition of H it must be that H(CODE(D), CODE(D)) is true Which by the definition of **D** means $D(CODE(D))$ doesn't halt

Suppose that $D(CODE(D))$ doesn't halt. Then, by definition of H it must be that H(CODE(D), CODE(D)) is false Which by the definition of **D** means $D(CODE(D))$ halts

Done

- We proved that there is no computer program that can solve the Halting Problem.
	- $-$ There was nothing special about Java*

[Church-Turing thesis]

• This tells us that there is no compiler that can check our programs and guarantee to find any infinite loops they might have.

```
iff P doesn't halt on input code(P)<br>
iff P doesn't halt on input code(P)
the idea for creating D come fro<br>
public static void D(s) {<br>
if (H(s, s) == true) {<br>
while (true); // don't halt<br>
} else {
     if (H(s,s) == true) {
          while (true); // don't halt
     } else {
           return; // halt
     }
}
```
D halts on input code(P) iff H (code(P),code(P)) outputs false

(P,x) entry is 1 if program P halts on input x and **0** if it runs forever

. |
|

 (P, x) entry is 1 if program P halts on input x and 0 if it runs forever

```
public static void D(s) {
   if (H(s,s) == true) {
       while (true); /* don't halt */
    }
   else {
       return; /* halt */
    }
}
                of the proof of the text<br>
iff H(code(P), code(P)) outputs false<br>
iff P doesn't halt on input code(P)
```
D halts on input code(P) iff H (code(P),code(P)) outputs false

Therefore, for any program P, D differs from P on input code(P)

The Halting Problem isn't the only hard problem

- Can use the fact that the Halting Problem is undecidable to show that other problems are undecidable
- General method (a "reduction"):

Prove that, if there were a program deciding B, then there would be a program deciding the Halting Problem.

- "B decidable \rightarrow Halting Problem decidable" Contrapositive:
- "Halting Problem undecidable \rightarrow B undecidable" Therefore, B is undecidable

Students should write a Java program that:

- Prints "Hello" to the console
- Eventually exits

GradeIt, PracticeIt, etc. need to grade these How do we write that grading program?

WE CAN'T: THIS IS IMPOSSIBLE!

Another undecidable problem

- CSE 142 Grading problem:
	- Input: CODE(Q)
	- Output:

True if Q outputs "HELLO" and exits False if Q does not do that

- Theorem: The CSE 142 Grading is undecidable.
- Proof idea: Show that, if there is a program T to decide CSE 142 grading, then there is a program H to decide the Halting Problem for code(P) and input x.

Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program T that decide CSE 142 grading problem. Then, there is a program H to decide the Halting Problem for code(P) and input x by

• transform P (with input x) into the following program Q

Another undecidable problem **Another undecidable probler**
 Another undecidable probler
 **Indic class Q {

printStream out = System.out;

PrintStream out = System.out;

System.setOut(new PrintStream(new StringWriter()));

System setIn(new BeaderInp**

public class Q {

```
private static String x = "...";
```

```
public static void main(String[] args) {
```
System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));

System.setIn(new ReaderInputStream(new StringReader(x)));

P.main(args);

}

```
out.println("HELLO");
}
}
```

```
class P {
 public static void main(String[] args) { ... }
 ...
```
Theorem: The CSE 142 Grading is undecidable.

Proof: Suppose there is a program T that decide CSE 142 grading problem. Then, there is a program H to decide the Halting Problem for code(P) and input x by

- transform P (with input x) into the following program Q
- run $\mathsf T$ on code(Q)
	- if it returns true, then P halted must halt in order to print "HELLO"
	- if it returns false, then P did not halt

program Q can't output anything other than "HELLO"

More Reductions

- More Reductions
- Can use undecidability of these problems to show that
other problems are undecidable. other problems are undecidable. **More Reductions**

- Can use undecidability of the

other problems are undecida

- For instance:
 $EQUIV(P, Q)$: True if P

beh
- - EQUIV(P, Q): True if $P(x)$ and $Q(x)$ have the same behavior for every input x False otherwise

Not every problem on programs is undecidable! Which of these is decidable?

Rice's Theorem:

Any "non-trivial" property of the input-output behavior of Java programs is undecidable.

Rice's theorem

Not every problem on programs is undecidable! Which of these is decidable?

Any "non-trivial" property of the input-output behavior of Java programs is undecidable. ARE DIFFICULT

We know can answer almost any question about REs **CFGs are complicated

We know can answer almost any question about REs**

• Do two RegExps recognize the same language?

-

But many problems about CFGs are undecidable!

- Do two CFGs generate the same language?
- Is there any string that two CFGs both generate? – more general: "CFG intersection" problem
- Does a CFG generate every string?

Takeaway from undecidability

- You can't rely on the idea of improved compilers and programming languages to eliminate all programming errors
	- truly safe languages can't possibly do general computation
- Document your code
	- there is no way you can expect someone else to figure out what your program does with just your code; since in general it is provably impossible to do this!

Computers and algorithms

- Does Java (or any programming language) cover all possible computation? Every possible algorithm?
- There was a time when computers were people who did calculations on sheets paper to solve computational problems

• Computers as we known them arose from trying to understand everything these people could do.

1930's:

How can we formalize what algorithms are possible?

- Turing machines (Turing, Post)
	- basis of modern computers
- Lambda Calculus (Church)
	- basis for functional programming, LISP
- \cdot μ -recursive functions (Kleene)
	- alternative functional programming basis

Church-Turing Thesis:

Any reasonable model of computation that includes all possible algorithms is equivalent in power to a Turing machine

Evidence

- Huge numbers of models based on radically different ideas turned out to be equivalent to TMs
- TM can simulate the physics of any machine that we could build (even quantum computers)

Turing machines

• Finite Control

- Brain/CPU that has only a finite # of possible "states of mind"
- Recording medium
	- An unlimited supply of blank "scratch paper" on which to write & read symbols, each chosen from a finite set of possibilities
	- Input also supplied on the scratch paper

• Focus of attention

- Finite control can only focus on a small portion of the recording medium at once
- Focus of attention can only shift a small amount at a time

Turing machines

• Recording medium

- An infinite read/write "tape" marked off into cells
- Each cell can store one symbol or be "blank"
- Tape is initially all blank except a few cells of the tape containing the input string (ecording medium

- An infinite read/write "tape" marked off in

- Each cell can store one symbol or be "blan

- Tape is initially all blank except a few cells

containing the input string

- Read/write head can scan one c - An infinite read/write "tape" marked off into cells

- Each cell can store one symbol or be "blank"

- Tape is initially all blank except a few cells of the tape

containing the input string

- Read/write head can scan o Each cell can store one symbol or be "blank"
Tape is initially all blank except a few cells of
containing the input string
Read/write head can scan one cell of the tap
input
each step, a Turing machine
Reads the currently
- Read/write head can scan one cell of the tape starts on input Tape is initially all blank except a few cells of the tape
containing the input string
Read/write head can scan one cell of the tape - starts
input
each step, a Turing machine
Reads the currently scanned cell
Based on curr containing the mput string

Read/write head can scan one cell of the t

input

each step, a Turing machine

. Reads the currently scanned cell

. Based on current state and scanned sym

i. Overwrites symbol in scanned cell
- In each step, a Turing machine
	-
	- -
		-
		-
- Each Turing Machine is specified by its finite set of rules

Turing machines

UW CSE's Steam-Powered Turing Machine

Ideal Java/C programs:

- Just like the Java/C you're used to programming with, except you never run out of memory
	- no OutOfMemoryError

Equivalent to Turing machines but easier to program:

- Turing machine definition is useful for breaking computation down into simplest steps
- We only care about high level so we use programs

Original Turing machine definition:

- A different "machine" M for each task
- $-$ Each machine **M** is defined by a finite set of possible operations on finite set of symbols
- So... M has a finite description as a sequence of symbols, its "code", which we denote <M>

You already are used to this idea with the notion of the program code, but this was a new idea in Turing's time.

- A Turing machine interpreter U
	- $-$ On input $\langle M \rangle$ and its input **x**,
		- U outputs the same thing as M does on input x
	- $-$ At each step it decodes which operation **M** would have performed and simulates it.
- One Turing machine is enough
	- Basis for modern stored-program computer

Von Neumann studied Turing's UTM design

