
CSE 311: Foundations of Computing

Lecture 22 – Uncountability 



Last time: Languages and Representations

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

{001, 10, 12}

e.g. palindromes, balanced parens, {0n1n:n≥0}

?



Computers from Thought

Computers as we know them grew out of a desire to avoid bugs in 
mathematical reasoning.

Hilbert in a famous speech at the International Congress of Mathematicians in 
1900 set out the goal to mechanize all of mathematics.

In the 1930s, work of Gödel and Turing showed that Hilbert’s program is 
impossible.

Gödel’s Incompleteness Theorem
Undecidability of the Halting Problem

Both of these employ an idea we will see called diagonalization.

The ideas are simple but so revolutionary that their inventor Georg Cantor
was initially shunned by the mathematical leaders of the time:

Poincaré referred to them as a “grave disease infecting mathematics.”

Kronecker fought to keep Cantor’s papers out of his journals.

Full employment for mathematicians 
and computer scientists!!



Cardinality

What does it mean that two sets have the same size?



Cardinality

What does it mean that two sets have the same size?



1-1 and onto

A function is one-to-one (1-1) if every output 
corresponds to at most one input;                                                 
i.e. for all 

A function is onto if every output gets hit;                    
i.e. for every , there exists such that .

a

b

c

d

e

1

2

3

4

5

6

1-1 but not onto



Cardinality

Definition: Two sets and have the same cardinality if there is a 
one-to-one correspondence between the elements of and those 
of . More precisely, if there is a 1-1 and onto function .

a

b

c

d

e

1

2

3

4

5

6f

The definition also makes sense for infinite sets!

1-1 proves ≤
onto proves ≥



Cardinality

Do the natural numbers and the even natural numbers have 
the same cardinality?

Yes!

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

0 2    4 6 8 10 12 14 16 18 20 22 24 26 28 ...

What’s the map ?



Countable sets

Definition:  A set is countable iff it has the same cardinality as 
some subset of .

Equivalent:  A set is countable iff there is an onto
function

Equivalent:  A set is countable iff we can order the elements



The set of all integers



The set of all integers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ...

0 1   -1 2   -2 3 -3    4  -4 5 -5 6 -6 7 -7 ...



The set of rational numbers

We can’t do the same thing we did for the integers.

Between any two rational numbers there are an infinite number 
of others.



The set of positive rational numbers

...1/81/71/61/51/41/31/21/1

...2/82/72/62/52/42/32/22/1

...3/83/73/63/53/43/33/23/1

...4/84/74/64/54/44/34/24/1

...5/75/65/55/45/35/25/1

...6/66/56/46/36/26/1

....7/57/47/37/27/1

...............



The set of positive rational numbers

The set of all positive rational numbers is countable.

ା

1/1, 2/1, 1/2, 3/1, 2/2,1/3, 4/1, 2/3, 3/2, 1/4, 5/1, 4/2, 3/3, 2/4, 1/5, 

List elements in order of numerator+denominator, breaking ties 
according to denominator. 

Only numbers have total of sum of , so every positive 
rational number comes up some point.

The technique is called “dovetailing.”

More generally:
• Put all elements into finite groups
• Order the groups
• List elements in order by group (arbitrary order within each group)



The set of positive rational numbers

...1/81/71/61/51/41/31/21/1

...2/82/72/62/52/42/32/22/1

...3/83/73/63/53/43/33/23/1

...4/84/74/64/54/44/34/24/1

...5/75/65/55/45/35/25/1

...6/66/56/46/36/26/1

....7/57/47/37/27/1

...............



Claim:  is countable for every finite 

Dictionary/Alphabetical/Lexicographical order is bad

– Never get past the A’s

– A, AA, AAA, AAAA, AAAAA, AAAAAA, .... 



Claim:  is countable for every finite 

Dictionary/Alphabetical/Lexicographical order is bad

– Never get past the A’s

– A, AA, AAA, AAAA, AAAAA, AAAAAA, .... 

Instead, use same “dovetailing” idea, except that we group 
based on length: only strings of length .

e.g. {0,1}* is countable:

{ε, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, ... }



The set of all Java programs is countable

Java programs are just strings in where is the 
alphabet of ASCII characters.

Since is countable, so is the set of all Java programs.

More generally, any subset of a countable set is countable:
it has same cardinality as an (even smaller) subset of 



OK OK... Is Everything Countable ?!!



Are the real numbers countable?

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof will be by contradiction.
Uses a new method called diagonalization.



Real numbers between and :  

Every number between 0 and 1 has an infinite decimal 
expansion:

1/2 =  0.50000000000000000000000...
1/3 =  0.33333333333333333333333...
1/7 =  0.14285714285714285714285...

-3 =  0.14159265358979323846264...
1/5 =  0.19999999999999999999999...

=  0.20000000000000000000000...

Representation is unique except for the cases that 
the decimal expansion ends in all 0’s or all 9’s.        
We will never use the all 9’s representation.



r1          0.50000000…

r2    0.33333333…

r3          0.14285714…

r4          0.14159265…

r5          0.12122122…

r6          0.25000000…

r7          0.71828182…

r8           0.61803394…
... ...

Proof that is not countable

Suppose, for a contradiction, that there is a list of them:



Proof that is not countable

Suppose, for a contradiction, that there is a list of them:

...987654321

......000000050.r1

......333333330.r2

......417582410.r3

......562951410.r4

......221221210.r5

......000000520.r6

......281828170.r7

......493308160.r8

....................................



Proof that is not countable

Suppose, for a contradiction, that there is a list of them:

...987654321

......000000050.r1

......333333330.r2

......417582410.r3

......562951410.r4

......221221210.r5

......000000520.r6

......281828170.r7

......493308160.r8

....................................



Proof that is not countable

Suppose, for a contradiction, that there is a list of them:

...987654321

......000000050.r1

......333333330.r2

......417582410.r3

......562951410.r4

......221221210.r5

......000000520.r6

......281828170.r7

......493308160.r8

....................................

Flipping rule:
Only if the other driver deserves it.



Proof that is not countable

Suppose, for a contradiction, that there is a list of them:

...987654321

......000000050.r1

......333333330.r2

......417582410.r3

......562951410.r4

......221221210.r5

......000000520.r6

......281828170.r7

......493308160.r8

....................................

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.

1

5

5

5

5

5

1

5



Proof that is not countable

Suppose, for a contradiction, that there is a list of them:

...987654321

......000000050.r1

......333333330.r2

......417582410.r3

......562951410.r4

......221221210.r5

......000000520.r6

......281828170.r7

......493308160.r8

....................................

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

If diagonal element is then let’s call the flipped 
number 

It cannot appear anywhere on the list!



Proof that is not countable

Suppose, for a contradiction, that there is a list of them:

...987654321

......000000050.r1

......333333330.r2

......417582410.r3

......562951410.r4

......221221210.r5

......000000520.r6

......281828170.r7

......493308160.r8

....................................

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

If diagonal element is then let’s call the flipped 
number 

It cannot appear anywhere on the list!

For every :

because the numbers differ on
the -th digit!



Proof that is not countable

Suppose, for a contradiction, that there is a list of them:

...987654321

......000000050.r1

......333333330.r2

......417582410.r3

......562951410.r4

......221221210.r5

......000000520.r6

......281828170.r7

......493308160.r8

....................................

Flipping rule:
If digit is 5, make it 1.
If digit is not 5, make it 5.

1

5

5

5

5

5

1

5

So the list is incomplete, which is a contradiction.
Thus the real numbers between 0 and 1 are not countable: “uncountable”

For every :

because the numbers differ on
the -th digit!



The set of all functions is uncountable



...987654321

......000000050.f1

......333333330.f2

......417582410.f3

......562951410.f4

......221221210.f5

......000000520.f6

......281828170.f7

......493308160.f8

....................................

Supposed listing of all the functions:

The set of all functions is uncountable



...987654321

......000000050.f1

......333333330.f2

......417582410.f3

......562951410.f4

......221221210.f5

......000000520.f6

......281828170.f7

......493308160.f8

....................................

Flipping rule:
If , set 
If , set 

1

5

5

5

5

5

1

5

The set of all functions is uncountable

Supposed listing of all the functions:



The set of all functions is uncountable

...987654321

......000000050.f1

......333333330.f2

......417582410.f3

......562951410.f4

......221221210.f5

......000000520.f6

......281828170.f7

......493308160.f8

....................................

1

5

5

5

5

5

1

5

For all , we have .  Therefore for any and the 
list is incomplete!      is not countable

Supposed listing of all the functions:

Flipping rule:
If , set 
If , set 



A note on this proof

• The set of rational numbers in [0,1) also have 
decimal representations like this
– The only difference is that rational numbers always 

have repeating decimals in their expansions 0.33333... 
or .25000000...

• So why wouldn’t the same proof show that this set 
of rational numbers is uncountable?
– Given any listing we could create the flipped diagonal 

number as before

– However, would not have a repeating decimal 
expansion and so wouldn’t be a rational #

It would not be a “missing” number, so no contradiction. 



Uncomputable functions

We have seen that:
– The set of all (Java) programs is countable
– The set of all functions is not countable

So:  There must be some function that is not
computable by any program!



Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

Binary Palindromes

{001, 10, 12}

Java



Uncomputable functions

Interesting… maybe.

Can we come up with an explicit function that is 
uncomputable? 



Last time:  Countable sets

A set is countable iff we can order the elements of as

Countable sets:
- the natural numbers
- the integers
- the rationals
- the strings over any finite 

The set of all Java programs

Shown
by
“dovetailing”



Last time: Not every set is countable

Theorem [Cantor]:
The set of real numbers between 0 and 1 is not countable.

Proof using “diagonalization”.



Uncomputable functions

We have seen that:
– The set of all (Java) programs is countable
– The set of all functions is not countable

So:  There must be some function that is not
computable by any program!



Recall our language picture

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

Binary Palindromes

{001, 10, 12}

Java



Uncomputable functions

Interesting… maybe.

Can we produce an explicit function that is uncomputable? 



A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

11
34
17
52
26
13
40
20
10
5
16
8
4
2
1



A “Simple” Program

public static void collatz(n) {
if (n == 1) {

return 1;
}
if (n % 2 == 0) {

return collatz(n/2)
}
else {

return collatz(3*n + 1)
}

}

What does this program do?
… on n=11?
… on n=10000000000000000001?

Nobody knows whether or not 
this program halts on all inputs!



Some Notation

We’re going to be talking about Java code. 

CODE(P) will mean “the code of the program P”

So, consider the following function:
public String P(String x) {

return new String(Arrays.sort(x.toCharArray());
}

What is P(CODE(P))?

“(((())))..;AACPSSaaabceeggghiiiilnnnnnooprrrrrrrrrrrsssttttttuuwxxyy{}”



The Halting Problem

CODE(P) means “the code of the program P”

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



Undecidability of the Halting Problem

CODE(P) means “the code of the program P”

Theorem [Turing]:   There is no program that solves 
the Halting Problem

The Halting Problem

Given: - CODE(P) for any program P
- input x

Output: true if P halts on input x
false if P does not halt on input x



Proof by contradiction

Suppose that H is a Java program that solves the 
Halting problem.

x



Proof by contradiction

Suppose that H is a Java program that solves the 
Halting problem.

Then we can write this program:
public static void D(String s) {

if (H(s,s)) {
while (true);  // don’t halt

} else {
return;        // halt

}
}

public static bool H(String s, String x) { ... }

Does D(CODE(D)) halt?



Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true);  // don’t halt
} else {

return; // halt

}
}



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true);  // don’t halt
} else {

return; // halt

}
}



Does D(CODE(D)) halt?

H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s)) {

while (true);  // don’t halt
} else {

return; // halt

}
}



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true);  // don’t halt
} else {

return; // halt

}
}



Does D(CODE(D)) halt?

H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

public static void D(s) {
if (H(s,s)) {

while (true);  // don’t halt
} else {

return; // halt

}
}



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

public static void D(s) {
if (H(s,s)) {

while (true);  // don’t halt
} else {

return; // halt

}
}



H solves the halting problem implies that                              
H(CODE(D),s) is true iff D(s) halts,  H(CODE(D),s) is false iff not

Suppose that D(CODE(D)) halts.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is true
Which by the definition of D means D(CODE(D)) doesn’t halt

Suppose that D(CODE(D)) doesn’t halt.
Then, by definition of H it must be that

H(CODE(D), CODE(D)) is false
Which by the definition of D means D(CODE(D)) halts

Does D(CODE(D)) halt?

Contradiction!

public static void D(s) {
if (H(s,s)) {

while (true);  // don’t halt
} else {

return; // halt

}
}



Done

• We proved that there is no computer 
program that can solve the Halting Problem.
– There was nothing special about Java*        

[Church-Turing thesis]

• This tells us that there is no compiler that can check our 
programs and guarantee to find any infinite loops they 
might have.



Terminology

• With state machines, we say that a machine 
“recognizes” the language L iff
– it accepts x Σ* if  x L

– it rejects x Σ* if  x L

• With Java programs / general computation, we 
say that the computer “decides” the language L iff
– it halts with output 1 on input x Σ* if  x L

– it halts with output 0 on input x Σ* if  x L
(difference is the possibility that machine doesn’t halt)

• If no machine decides L, then L is “undecidable”



Where did the idea for creating D come from?

D halts on input code(P)  iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

public static void D(s) {
if (H(s,s) == true) {

while (true);  // don’t halt
} else {

return; // halt

}
}



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

Write <P> for CODE(P)

This listing of all programs really does exist 
since the set of all Java programs is countable

The goal of this “diagonal” argument is not 
to show that the listing is incomplete but 
rather to show that a “flipped” diagonal 
element is not in the listing



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

0     1     1     0    1     1    1     0      0      0     1  ...
1     1     0     1    0     1    1     0      1      1     1  ...
1     0     1     0    0     0    0     0      0      0     1  ...
0     1     1     0    1     0    1     1      0      1     0  ...
0     1     1     1    1     1    1     0      0      0     1  ...
1     1     0     0    0     1    1     0      1      1     1  ...
1     0     1     1    0     0    0     0      0      0     1  ...
0     1     1     1    1     0    1     1      0      1     0  ...
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

Write <P> for CODE(P)



Connection to diagonalization

<P1> <P2> <P3> <P4> <P5> <P6> .... Some possible inputs x

P1
P2
P3
P4
P5
P6
P7
P8
P9
.
.

0 1     1     0    1     1    1     0      0      0     1  ...
1     1 0     1    0     1    1     0      1      1     1  ...
1     0     1 0    0     0    0     0      0      0     1  ...
0     1     1     0 1     0    1     1      0      1     0  ...
0     1     1     1    1 1    1     0      0      0     1  ...
1     1     0     0    0     1 1     0      1      1     1  ...
1     0     1     1    0     0    0 0      0      0     1  ...
0     1     1     1    1     0    1     1 0      1     0  ...
.     .   .  .   .    .   .   .   .    .    .       .  
.     .   .  .   .    .   .   .   .    .    .       .  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever

1
0

0
1

0
0

1
0

Write <P> for CODE(P)

Want behavior of program to be 
like the flipped diagonal, so it can’t 
be in the list of all programs.  

(P,x) entry is 1 if program P halts on input x
and 0 if it runs forever



Where did the idea for creating D come from?

public static void D(s) {
if (H(s,s) == true) {

while (true); /* don’t halt */
}
else {

return; /*    halt    */

}
}

D halts on input code(P)  iff H(code(P),code(P)) outputs false
iff P doesn’t halt on input code(P)

Therefore, for any program P,  D differs from P on input code(P)



The Halting Problem isn’t the only hard problem

• Can use the fact that the Halting Problem is 
undecidable to show that other problems are 
undecidable

General method (a “reduction”):
Prove that, if there were a program deciding B, then
there would be a program deciding the Halting Problem. 

“B decidable  Halting Problem decidable”
Contrapositive:

“Halting Problem undecidable B undecidable” 
Therefore, B is undecidable



A CSE 142 assignment

Students should write a Java program that:
– Prints “Hello” to the console

– Eventually exits

GradeIt, PracticeIt, etc. need to grade these

How do we write that grading program?

We can’T:  THIS IS IMPOSSIBLe!



Another undecidable problem

• CSE 142 Grading problem: 

– Input:  CODE(Q)

– Output: 
True if Q outputs “HELLO” and exits
False if Q does not do that

• Theorem: The CSE 142 Grading is undecidable.

• Proof idea:  Show that, if there is a program T to decide 
CSE 142 grading, then there is a program H to decide the 
Halting Problem for code(P) and input x.   



Another undecidable problem

Theorem: The CSE 142 Grading is undecidable.

Proof:  Suppose there is a program T that decide CSE 142 
grading problem. Then, there is a program H to decide the 
Halting Problem for code(P) and input x by

• transform P (with input x) into the following program Q



Another undecidable problem
public class Q {
private static String x = “...”;

public static void main(String[] args) {
PrintStream out = System.out;
System.setOut(new PrintStream(

new WriterOutputStream(new StringWriter()));
System.setIn(new ReaderInputStream(new StringReader(x)));

P.main(args);

out.println(“HELLO”);
}

}

class P {
public static void main(String[] args) { ... }
...

}



Another undecidable problem

Theorem: The CSE 142 Grading is undecidable.

Proof:  Suppose there is a program T that decide CSE 142 
grading problem. Then, there is a program H to decide the 
Halting Problem for code(P) and input x by

• transform P (with input x) into the following program Q

• run T on code(Q)
– if it returns true, then P halted

must halt in order to print “HELLO”

– if it returns false, then P did not halt
program Q can’t output anything other than “HELLO”



More Reductions

- Can use undecidability of these problems to show that 
other problems are undecidable.

- For instance:
: True if and have the same 

behavior for every input 
False otherwise



Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x
Output: true if P prints “ERROR” on input x

after less than 100 steps
false otherwise

• Input CODE(P) and x
Output: true    if P prints “ERROR” on input x

after more than 100 steps
false otherwise

Rice’s Theorem:
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.



Rice’s theorem

Not every problem on programs is undecidable!

Which of these is decidable?

• Input CODE(P) and x
Output: true if P prints “ERROR” on input x

after less than 100 steps
false otherwise

• Input CODE(P) and x
Output: true    if P prints “ERROR” on input x

after more than 100 steps
false otherwise

Rice’s Theorem (a.k.a. Compilers Suck Theorem - informal):
Any “non-trivial” property of the input-output behavior of
Java programs is undecidable.

ARE DIFFICULT



CFGs are complicated

We know can answer almost any question about REs
• Do two RegExps recognize the same language?

But many problems about CFGs are undecidable!
• Do two CFGs generate the same language?

• Is there any string that two CFGs both generate?
– more general: “CFG intersection” problem

• Does a CFG generate every string?



Takeaway from undecidability

• You can’t rely on the idea of improved 
compilers and programming languages to 
eliminate all programming errors
– truly safe languages can’t possibly do general 

computation

• Document your code
– there is no way you can expect someone else 

to figure out what your program does with just 
your code; since in general it is provably 
impossible to do this!



Computers and algorithms

• Does Java (or any programming language) cover all possible 
computation? Every possible algorithm?

• There was a time when computers were people who did 
calculations on sheets paper to solve computational 
problems

• Computers as we known them arose from trying to 
understand everything these people could do.



Before Java

1930’s:
How can we formalize what algorithms are possible?

• Turing machines (Turing, Post)
– basis of modern computers

• Lambda Calculus (Church)
– basis for functional programming, LISP

• -recursive functions (Kleene)
– alternative functional programming basis



Turing machines

Church-Turing Thesis:

Any reasonable model of computation that includes all 
possible algorithms is equivalent in power to a Turing 
machine

Evidence

– Huge numbers of models based on radically 
different ideas turned out to be equivalent to TMs

– TM can simulate the physics of any machine that 
we could build (even quantum computers)



Turing machines

• Finite Control
– Brain/CPU  that has only a finite # of possible “states 

of mind”
• Recording medium

– An unlimited supply of blank “scratch paper” on 
which to write & read symbols, each chosen from a
finite set of possibilities

– Input also supplied on the scratch paper
• Focus of attention

– Finite control can only focus on a small portion of the 
recording medium at once

– Focus of attention can only shift a small amount at a 
time



Turing machines

• Recording medium
– An infinite read/write “tape” marked off into cells
– Each cell can store one symbol or be “blank”
– Tape is initially all blank except a few cells of the tape 

containing the input string
– Read/write head can scan one cell of the tape - starts on 

input

• In each step, a Turing machine
1. Reads the currently scanned cell
2. Based on current state and scanned symbol 

i. Overwrites symbol in scanned cell
ii. Moves read/write head left or right one cell
iii. Changes to a new state

• Each Turing Machine is specified by its finite set of rules



Turing machines

__11011__

10_

(0, R, s2)(1, L, s4)(1, L, s3)s1

(0, R, s1)(1, R, s1)(0, R, s1)s2

s3

s4



UW CSE’s Steam-Powered Turing Machine

Original in Sieg Hall stairwell



Turing machines

Ideal Java/C programs:
– Just like the Java/C you’re used to programming 

with, except you never run out of memory
• no OutOfMemoryError

Equivalent to Turing machines but easier to program:
– Turing machine definition is useful for breaking 

computation down into simplest steps
– We only care about high level so we use programs



Turing’s big idea part 1:  Machines as data

Original Turing machine definition:
– A different “machine” M for each task
– Each machine M is defined by a finite set of 

possible operations on finite set of symbols
– So... M has a finite description as a sequence of 

symbols, its “code”, which we denote <M>

You already are used to this idea with the notion of the 
program code, but this was a new idea in Turing’s time.



Turing’s big idea part 2:  A Universal TM

• A Turing machine interpreter U
– On input <M> and its input x,                                                    

U outputs the same thing as M does on input x
– At each step it decodes which operation M would have 

performed and simulates it.

• One Turing machine is enough
– Basis for modern stored-program computer

Von Neumann studied Turing’s UTM design

M
input

x
output
M(x) U

x output
M(x)M


