CSE 311: Foundations of Computing

Topic 10:

How DO
BANK,

MACHINES
WORK 7

N, —

\

WELL LETS SAY You
WANT 25 DOLLARS. YOU
PUNCH IN THE AMOUNT...

Finite State Machines

"AND BLHIND TWE MACHINE | [sort of Like | ExacTLY. |
THERES A GUY WITH A THE GUY WHO _
PRINTING PRESS WHO LIVES UP IN 2
MAYES THE || CUR GARMGE |

| MONEY AND AND OPENS

STICKS \T THE DOOR?
QUT THIS N
SIOT, -
N vy
b o2
)\l o
ol

The story so far...

IN

REs CFGs

DFAs NFAs

Regular expressions © NFAs = DFAs

We have shown how to build an optimal DFA for every
regular expression

— Build NFA
— Convert NFA to DFA using subset construction
— Minimize resulting DFA

Thus, we could now implement a RegExp library
— most RegExp libraries actually simulate the NFA

— (even better: one can combine the two approaches:
apply DFA minimization lazily while simulating the
NFA)

The story so far...

REs - CFGs

DFAs

[
Z
—
>
n

Is this & really “=" or “¢"?

Regular expressions = NFAs = DFAs

Theorem: For any NFA, there is a regular

expression
that accepts the same language

Corollary: A language is recognized by a DFA (or
NFA) If and only if it has a regular
expression

You need to know these facts

— the construction for the Theorem is included in the
slides after this, but you will not be tested on it

New Machinery: Generalized NFAs

* Like NFAs but allow
— parallel edges

— regular expressions as edge labels
NFAs already have edges labeled € or a

 The label of a path is now the concatenation of
the regular expressions on those edges,
making it a regular expression

« Def: A string x is accepted by a generalized
NFA iff there is a path from start to final state
labeled by a regular expression whose
language contains x

Construction ldea

Add new start state and final state

€

®—<0 [=0

€

Then delete the original states one by
one, adding edges to keep the same
language,

until the graph looksg like:
- A 0

Starting from an NFA

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

5 A

O

Final graph has only one path to the accepting
state, which is labeled by A,

soitacceptsiffxisint

ne language of A

Thus, A is a regular expression with the same
language as the original NFA.

Only two simplification rules

* Rulel: For any two states q, and q, with
parallel edges (possibly q,=q,), replace
A

If the machine would have used the edge labeled
A by consuming an input x in the language of A, it
can instead use the edge labeled AUB.

Furthermore, this new edge does not allow
transitions for any strings other than those that
matched A or B

Only two simplification rules

* Rule 2: Eliminate non-start/accepting state q,
by creating direct edges that skip q,

becomes

B
@A)@ c)@ @AB*C

for every pair of states q,, q, (evenif q,=q,)

Any path from q, to q, would have to match AB"C
for some n (the number of times the self loop was
used), so the machine can use the new edge

iInstead. New edge only allows strings that were
allowed before.

Construction Overview

While the box contains some state s:
for all statesr, t with (r, s) and (s, t) in E:
create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

O A -0

A Is a regular expression with the same
language as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

— Accept strings from {0,1,2}* where the digits
mod 3 sum of the digitsis 0

Splicing out a state t,

Create direct edges between neighbors of t,
(so that we can delete it afterward)

Splicing out a state t,

Regular expressions to add to edges

t »t.—t : 10*2
t . 10*1

0
t : 20%2 <i>
: 20*1
1 1
2 2
» t
€

—t. —t

—t, —t

—t, —t

N N O O
N N — W ==
N O N O

t
0
2

1

Splicing out a state t,

Delete t1 now that it is redundant

t >t —t : 10*2
t . 10*1
t . 20%2
t . 20*1

—t. —t

—t, —t

N N O O
N N — W ==
N O N O

—t, —t

OuU20*1

2 U 10*1 Q
t2
1U 2072

Splicing out a state t,

Create direct edges between neighbors of t,
(so that we can delete it afterward)

OuU20*1

(DO

Splicing out a state t,

Regular expressions to add to edges

: 0U 10*2
2 U 10*1
1U 20%*2
0 U 20*1

X X0 0 0

A W N

OuU20*1

2 U 10*1 Q
t2
1U 2072

Splicing out state t, (and then t)

Delete t2 now that it is redundant

: 0U 10*2
2 U 10*1
1U 20%*2
0 U 20*1

X X0 0 0

A W N

R;: R, URR,*R,

Splicing out state t, (and then t)

Create direct (s,f) edge so we can delete t,

: 0U 10%2
2 U 10%1
1U 20%2
0 U 20*1
R, URR,*R,

X 0 X0 XN X0
LRV REONL R

Splicing out state t, (and then t)

Regular expressions to add to edges

: 0U 10%2
2 U 10%1
1U 20%2
0 U 20*1
R, URR,*R,

X X0 X0 X0 X0

o A~ W N

. %k
t0—>t1—>t0. R5

Splicing out state t, (and then t)

Delete tO now that it is redundant

: 0U 10*2
2 U 10*1
1U 20%*2

©—0
R, URR,*R,

X 0 X0 XN X0
LRV REONL R

Splicing out state t, (and then t)

Regular expressions to add to edges

: 0U 10%2

2 U 10*1

1 U 20%2 i
©—0
R, URR,*R,

R.*

X 0 X0 X0 X0 0
QLN L RLCINOR

Final regular expression: R_=
(OU10*2 U (2U 10*1)(0 U 20*1)*(1 U 20*2))*

The story so far...

IN

REs CFGs

DFAs NFAs

Languages represented by DFA, NFAs, or regular
expressions

are called Regular Languages

Recall: Algorithms for Regular Languages

We have seen algorithms for
 RE to NFA
 NFA to DFA

* DFA/NFA to RE
* DFA minimization

Example Corollary of These Results

Corollary: If A is the language of a regular expression,
then A is the language of a regular expression*.

(This is the complement with respect to the universe of all strings
over the alphabet, i.e.,, A =X\ A.)

The story so far...

IN

REs CFGs

DFAs NFAs

“__n

Now: Is this € really “=” or “G”?

What languages have DFAs? CFGs?

All of
them?

Languages and Representations!

Languages and Representations!

All
Context-Free \
\ Reminder:
Regular All finite
languages
are regular.

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union
construction.

Languages and Machines!

All
Context-Free \
\ Warmup 2:
Regular Surprising
. example
O NFA here
Regex
Finite
{001,10, 12}

An Interesting Infinite Regular Language

L = {xe {0, 1}": x has an equal number of substrings 01 and
10}.

L is infinite.
0, 00, 000, ...

L is regular. How could this be?
That seems to require comparing counts...
— easy fora CFG
— but seems hard for DFAS!

An Interesting Infinite Regular Language

L = {xe {0, 1}": x has an equal number of substrings 01 and
10}.

L is infinite.
0, 00, 000,...
L is regular. How could this be? It is just the set of binary

strings that are empty oregin and end with the same
character!

Languages and Representations!

All

Context-Free\\

?7?7?¢———— " MainEvent:
Prove there

IS a
context-free
language
that isn’t
regylar.

O*

Finite

{001,10,12}

Tangent: How to prove a DFA minimal?

« Show there is no smaller DFA...

* Find a set of strings that must be
distinguished
— Such asetis alower bound on the DFA size

Recall: Binary strings with a 1 in the 37 position from the start

0,1

0
0,1 0,1 1
| | (&)
Distinguishing set:

{¢, 0, 00, 000, 001}

The language of “Binary Palindromes” is

Context-Free

S—>€¢|]0]1]0S0 | 1S1

Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!):
Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the “first part” of the
input inorder to check the second part against it

...but there are an infinite # of possible first parts and
we only have finitely many states.

Proof idea: any machine that does not remember the
entire first half will be wrong for some inputs

Useful Lemmas about DFAs

Lemma 1: If DFAM takes x,y € X* to the same state,
then for every z € £*, M accepts x » z iff it accepts y e z.

M can’t remember that the input was X, noty.

N ST XZ = Xy Xy X 2,250 Z,

y VZ=Y,Y,.Y.2,Z,...2,

Useful Lemmas about DFAs

Lemma 2: If DFA M has n states and a set S contains
more than n strings, then M takes at least two strings

from S to the same state.

M can’t take n+1 or more strings to different states
because it doesn’t have n+1 different states.

So, some pair of strings must go to the same state.

B ={binary palindromes} can’t be recognized by any

DFA
Suppose for contradiction that some DFA, M, recognizes B.
We will show M accepts or rejects a string it shouldn’t.

Consider s = {1, 01, 001, 0001, 00001, ...} ={0"1 : n = O}

B ={binary palindromes} can’t be recognized by any

DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S={1, 01, 001, 0001, 00001, ...} ={0"1 : n = 0}.
Since there are finitely many states in M and infinitely

many strings in S, by Lemma 2, there exist strings 0°1 € S
and 0°1 € s with o#b that end in the same state of M.

SUPER IMPORTANT POINT: You do not getto
choose what a and b are. Remember, we’ve just
proven they exist...we must take the ones we're
given!

B ={binary palindromes} can’t be recognized by any

DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S={1, 01, 001, 0001, 00001, ...} ={0"1 : n = 0}.

Since there are finitely many states in M and infinitely
many stringsin S, by Lemma 2, there exist strings 0°1 € S
and 0°1 € s with a#b that end in the same state of M.

Now, consider appending 0° to both strings.

B ={binary palindromes} can’t be recognized by any

DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S={1, 01, 001, 0001, 00001, ...} ={0"1 : n = 0}.

Since there are finitely many states in M and infinitely

many strings in S, by Lemma 2, there exist strings 0°1 € S
and 0°1 € s with a#b that end in the same state of M.

Now, consider appending 0° to both strings.

Since 0°1 and 0°1 end in the same state, 0°10% and 0°10?
also end in the same state, call it g. But then M makes a
mistake: g needs to be an accept state since 0°10° € B,
but M would accept 0°10° € B, which is an error.

B ={binary palindromes} can’t be recognized by any

DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S={1, 01, 001, 0001, 00001, ...} ={0"1 : n = 0}.

Since there are finitely many states in M and infinitely
many strings in S, by Lemma 2, there exist strings 0°1 € S
and 0°1 € s with a#b that end in the same state of M.

Now, consider appending 0° to both strings.

Since 0°1 and 0°1 end in the same state, 0°10° and 0°10°
also end in the same state, call it q. But then M makes a
mistake: q needs to be an accept state since 0°10° € B,
but M would accept 0°10% ¢ B, which is an error.

This proves that M does not recognize B, contradicting
our assumption that it does. Thus, no DFA recognizes B.

Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M
recognizes L.”

2. Consider an INFINITE set S of prefixes (which we
intend to complete later).

3. “Since Sisinfinite and M has finitely many states,
there must be two stringss_and s, in S fors_# s, that
end up at the same state of M.”

4. Consider appending the (correct) completion t to each
of the two strings.

5. “Since s_and s, both end up at the same state of M,
and we appended the same string t, boths_tand s, t
end at the same state g of M. Since stelands t¢
L, M does not recognize L.”

6. “Thus,no DFA recognizesL.”

Showing that a Language L is not regular

The choice of S is the creative part of the proof

You must find an infinite set S with the property that no
two strings can be taken to the same state

— i.e., for every pair of strings S there is an “accept”
completion that the two strings DO NOT SHARE

Prove A ={0"1": n =0} Is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S =

Prove A ={0"1": n =0} Is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S={0":n=0}. Since S s infinite and M has finitely
many states, there must be two strings, 0 and 0° for
some a # b that end in the same state in M.

Prove A ={0"1": n =0} Is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S={0":n=0}. Since S s infinite and M has finitely
many states, there must be two strings, 0 and 0° for
some a # b that end in the same state in M.

Consider appending 1°to both strings.

Prove A ={0"1": n =0} Is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S={0":n=0}. Since S s infinite and M has finitely
many states, there must be two strings, 0 and 0° for
some a # b that end in the same state in M.

Consider appending 1°to both strings.

Note that 0°1° € A, but 0°1°¢ A since a # b. But they both
end up in the same state of M, call it q. Since 0°1° € A,
state q must be an accept state but then M would
incorrectly accept 0°1°¢ A so M does not recognize A.

Thus, no DFA recognizes A.

Prove P = {balanced parentheses} is not

regular
Suppose for contradiction that some DFA, M, accepts P.

Let S =

Prove P = {balanced parentheses} is not

regular
Suppose for contradiction that some DFA, M, recognizes

P.

Let S ={(": n=0}. Since Sis infinite and M has finitely
many states, there must be two strings, (* and (° for
some a # b that end in the same state in M.

Prove P = {balanced parentheses} is not

regular
Suppose for contradiction that some DFA, M, recognizes

P.

Let S ={(": n=0}. Since Sis infinite and M has finitely
many states, there must be two strings, (* and (° for
some a # b that end in the same state in M.

Consider appending)? to both strings.

Prove P = {balanced parentheses} is not

regular
Suppose for contradiction that some DFA, M, recognizes
.

Let S ={(": n=0}. Since Sis infinite and M has finitely
many states, there must be two strings, (* and (° for
some a # b that end in the same state in M.

Consider appending)? to both strings.

Note that (°) € P, but (°)?€ P since a # b. But they both
end up in the same state of M, call it q. Since (?)° € P,
state q must be an accept state but then M would
incorrectly accept (°)*¢ P so M does not recognize P.

Thus, no DFA recognizes P.

Showing that a Language L is not regular

1. “Suppose for contradiction that some DFA M
recognizes L.”

2. Consider an INFINITE set S of prefixes (which we
intend to complete later). It is imperative that for
every pair of strings in our set there is an “accept”
completion that the two strings DO NOT SHARE.

3. “Since Sisinfinite and M has finitely many states,
there must be two stringss_and s, in S fors_# s, that
end up at the same state of M.”

4. Consider appending the (correct) completion t to each
of the two strings.

5. “Since s_and s, both end up at the same state of M,
and we appended the same string t, boths_tand s, t
end at the same state g of M. Since stelands t¢
L, M does not recognize L.”

o~ 75 ud P . Y el . U - B]

Fact: This method is optimal

« Suppose that for alanguage L, the set S is a largest
set of prefixes with the property that, for every pairs_#
s, € S, there is some string t such that one of s t, s tis
in L but the other isn'’t.

* |[f Sisinfinite, then L is not regular

* |f Sis finite, then the minimal DFA for L has precisely
S| states, one reached by each member of S.

Fact: This method is optimal

« Suppose that for alanguage L, the set S is a largest
set of prefixes with the property that, for every pairs_#
s, € S, there is some string t such that one of s t, s tis
in L but the other isn'’t.

* |[f Sisinfinite, then L is not regular

« |f Sis finite, then the minimal DFA for L has precisely
S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

— we separated exactly those states for which some t would
make one accept and another not accept

Important Notes

« |t is not necessary for our strings xz with x € L to
allow any string in the language

— we only need to find a small “core” set of strings that
must be distinguished by the machine

* |tis not true that, if L is irregular and L < U, then
U is irregular!
— we always have L € Z* and Z* is regular!
— our argument needs different answers: xzeL < yz €L

for Z*, both strings are always in the language

Do not claim in your proof that,
because L € U, U is also irregular

New Machinery: Generalized NFAs

* Like NFAs but allow

— parallel edges (between the same pair of
states)

— regular expressions as edge labels
NFAs already have edges labeled € or a

 Machine can follow an edge labeled by A by
reading a string of input characters in the
language of A

— (if Ais a or g, this matches the original definition, but
we nhow allow REs built with recursive steps.)

New Machinery: Generalized NFAs

* Like NFAs but allow
— parallel edges

— regular expressions as edge labels
NFAs already have edges labeled € or a

 The label of a path is now the concatenation of
the regular expressions on those edges,
making it a regular expression

« Def: A string x is accepted by a generalized
NFA iff there is a path from start to final state
labeled by a regular expression whose
language contains x

Construction ldea

Add new start state and final state

€

®—<0 [=0

€

Then delete the original states one by
one, adding edges to keep the same
language,

until the graph looksg like:
- A 0

Starting from an NFA

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

5 A

O

Final graph has only one path to the accepting
state, which is labeled by A,

soitacceptsiffxisint

ne language of A

Thus, A is a regular expression with the same
language as the original NFA.

Only two simplification rules

* Rulel: For any two states q, and q, with
parallel edges (possibly q,=q,), replace
A

If the machine would have used the edge labeled
A by consuming an input x in the language of A, it
can instead use the edge labeled AUB.

Furthermore, this new edge does not allow
transitions for any strings other than those that
matched A or B

Only two simplification rules

* Rule 2: Eliminate non-start/accepting state q,
by creating direct edges that skip q,

becomes

B
@A)@ c)@ @AB*C

for every pair of states q,, q, (evenif q,=q,)

Any path from q, to q, would have to match AB"C
for some n (the number of times the self loop was
used), so the machine can use the new edge

iInstead. New edge only allows strings that were
allowed before.

Construction Overview

Add new start state and final state

— €

®—£ -0 =0

€

While the box contains some state s:
for all statesr, t with (r, s) and (s, t) in E:
create a direct edge (r, t) by Rule 2
delete s (ho longer needed)
merge all parallel edges by Rule 1

Construction Overview

While the box contains some state s:
for all statesr, t with (r, s) and (s, t) in E:
create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

O A -0

A Is a regular expression with the same
language as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

— Accept strings from {0,1,2}* where the digits
mod 3 sum of the digitsis 0

Splicing out a state t,

Create direct edges between neighbors of t,
(so that we can delete it afterward)

Splicing out a state t,

Regular expressions to add to edges

t »t.—t : 10*2
t . 10*1

0
t : 20%2 <i>
: 20*1
1 1
2 2
» t
€

—t. —t

—t, —t

—t, —t

N N O O
N N — W ==
N O N O

t
0
2

1

Splicing out a state t,

Delete t1 now that it is redundant

t >t —t : 10*2
t . 10*1
t . 20%2
t . 20*1

—t. —t

—t, —t

N N O O
N N — W ==
N O N O

—t, —t

OuU20*1

2 U 10*1 Q
t2
1U 2072

Splicing out a state t,

Create direct edges between neighbors of t,
(so that we can delete it afterward)

OuU20*1

(DO

Splicing out a state t,

Regular expressions to add to edges

: 0U 10*2
2 U 10*1
1U 20%*2
0 U 20*1

X X0 0 0

A W N

OuU20*1

2 U 10*1 Q
t2
1U 2072

Splicing out state t, (and then t)

Delete t2 now that it is redundant

: 0U 10*2
2 U 10*1
1U 20%*2
0 U 20*1

X X0 0 0

A W N

R;: R, URR,*R,

Splicing out state t, (and then t)

Create direct (s,f) edge so we can delete t,

: 0U 10%2
2 U 10%1
1U 20%2
0 U 20*1
R, URR,*R,

X 0 X0 XN X0
LRV REONL R

Splicing out state t, (and then t)

Regular expressions to add to edges

: 0U 10%2
2 U 10%1
1U 20%2
0 U 20*1
R, URR,*R,

X X0 X0 X0 X0

o A~ W N

. %k
t0—>t1—>t0. R5

Splicing out state t, (and then t)

Delete tO now that it is redundant

: 0U 10*2
2 U 10*1
1U 20%*2

©—0
R, URR,*R,

X 0 X0 XN X0
LRV REONL R

Splicing out state t, (and then t)

Regular expressions to add to edges

: 0U 10%2

2 U 10*1

1 U 20%2 i
©—0
R, URR,*R,

R.*

X 0 X0 X0 X0 0
QLN L RLCINOR

Final regular expression: R_=
(OU10*2 U (2U 10*1)(0 U 20*1)*(1 U 20*2))*

Application of FSMs: Pattern matching

« Given
— a string s of n characters

— a pattern p of m characters
—usuallym <K n

 Find

— all occurrences of the pattern p in the string s

* Obvious algorithm:

— try to see if p matches at each of the positions in s

ctAan At A failad manatalh and +vir mMaatarhing at tha navt

Application of FSMs: Pattern Matching

« With DFAs can do this in O(m + n) time.

e See Extra Credit problem on HWS8 for some ideas
of how to get to O(m2 + n).

Last time: NFA to DFA

Exponential Blow-up in Simulating

Nondeterminism

« |n general the DFA might need a state for every
subset of states of the NFA
— Power set of the set of states of the NFA
— n-state NFA yields DFA with at most 2" states
— We saw an example where roughly 2™ is necessary

“Is the nt" char from the end a 1?”

The famous “P=NP?” question asks whether a
similar blow-up is always necessary to get rid of
nhondeterminism for polynomial-time algorithms

