
CSE 311: Foundations of Computing

Topic 10: Finite State Machines

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every
regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

 apply DFA minimization lazily while simulating the
NFA)

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Is this ⊆ really “=” or “⊊”?

Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular
expression

 that accepts the same language

Corollary: A language is recognized by a DFA (or
NFA) if and only if it has a regular
expression

You need to know these facts
– the construction for the Theorem is included in the

slides after this, but you will not be tested on it

New Machinery: Generalized NFAs

• Like NFAs but allow
– parallel edges
– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• The label of a path is now the concatenation of
the regular expressions on those edges,
making it a regular expression

• Def: A string x is accepted by a generalized
NFA iff there is a path from start to final state
labeled by a regular expression whose
language contains x

Construction Idea

Add new start state and final state

ɛ

ɛ

ɛ

A

Then delete the original states one by
one, adding edges to keep the same
language,
until the graph looks like:

Starting from an NFA

A

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

Final graph has only one path to the accepting
state, which is labeled by A,
so it accepts iff x is in the language of A

Thus, A is a regular expression with the same
language as the original NFA.

Only two simplification rules

• Rule 1: For any two states q1 and q2 with
parallel edges (possibly q1=q2), replace

If the machine would have used the edge labeled
A by consuming an input x in the language of A, it
can instead use the edge labeled A⋃B.

Furthermore, this new edge does not allow
transitions for any strings other than those that
matched A or B.

q1
q2

A

B
by

A⋃B
q1

q2

Only two simplification rules

• Rule 2: Eliminate non-start/accepting state q3
by creating direct edges that skip q3

 for every pair of states q1, q2 (even if q1=q2)

Any path from q1 to q2 would have to match ABnC
for some n (the number of times the self loop was
used), so the machine can use the new edge
instead. New edge only allows strings that were
allowed before.

A
B

C AB*Cq1 q3 q2 q1
q2

becomes

Construction Overview

A

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same
language as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits

mod 3 sum of the digits is 0

t
0 t

2

t
1

0

0
0

1 1

1

2

22

Splicing out a state t1

Create direct edges between neighbors of t1
(so that we can delete it afterward)

t
0 t

2

t
1

0

0

1 1

1

2

22

0

s
ɛ

f

ɛ

Splicing out a state t1

Regular expressions to add to edges

t
0 t

2

t
1

0

0

1 1

1

2

22

t
0
→t

1
→t

0
 : 10*2

t
0
→t

1
→t

2
 : 10*1

t
2
→t

1
→t

0
 : 20*2

t
2
→t

1
→t

2
 : 20*1

0

s
ɛ

f

ɛ

Splicing out a state t1

Delete t1 now that it is redundant

t
0 t

2

0 ∪ 20*1
2 ∪ 10*1

t
0
→t

1
→t

0
 : 10*2

t
0
→t

1
→t

2
 : 10*1

t
2
→t

1
→t

0
 : 20*2

t
2
→t

1
→t

2
 : 20*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

Splicing out a state t1

Create direct edges between neighbors of t2
(so that we can delete it afterward)

t
0 t

2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

Splicing out a state t1

Regular expressions to add to edges

t
0 t

2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

Delete t2 now that it is redundant

t
0R5

f

ɛ

s
ɛ

R
5
: R

1
 ∪ R

2
R

4
*R

3

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3

Create direct (s,f) edge so we can delete t0

t
0R5

f

ɛ

s
ɛ

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3

Regular expressions to add to edges

t
0R5

f

ɛ

s
ɛ

t
0
→t

1
→t

0
: R

5
*

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3

Delete t0 now that it is redundant

R6
fs

R
6
: R

5
*

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3
R

6
: R

5
*

Regular expressions to add to edges

R6
fs

Final regular expression: R
6
 =

(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

≡
Languages represented by DFA, NFAs, or regular
expressions
are called Regular Languages

Recall: Algorithms for Regular Languages

We have seen algorithms for
• RE to NFA
• NFA to DFA
• DFA/NFA to RE
• DFA minimization

Example Corollary of These Results

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=
Now: Is this ⊆ really “=” or “⊊”?

What languages have DFAs? CFGs?

All of
them?

Languages and Representations!
All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

{001, 10, 12}

Languages and Representations!
All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Reminder:
All finite
languages
are regular.

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union
construction.

Languages and Machines!
All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup 2:
Surprising
example
here

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and
10}.

L is infinite.
0, 00, 000, …

L is regular. How could this be?
That seems to require comparing counts...

– easy for a CFG
– but seems hard for DFAs!

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and
10}.

L is infinite.
0, 00, 000, …

L is regular. How could this be? It is just the set of binary
strings that are empty or begin and end with the same
character!

s
0

0

1 s
4s

3

0

1

01

s
2s

1

1

0

10

Languages and Representations!
All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

??? Main Event:
Prove there
is a
context-free
language
that isn’t
regular.

{001, 10, 12}

Tangent: How to prove a DFA minimal?

• Show there is no smaller DFA…

• Find a set of strings that must be
distinguished
– Such a set is a lower bound on the DFA size

Recall: Binary strings with a 1 in the 3rd position from the start

s
0

s
2

As
1

10,10,1

0,1

R

0
0,1

The language of “Binary Palindromes” is
Context-Free

•

Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!):
 Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the “first part” of the
input in order to check the second part against it
 …but there are an infinite # of possible first parts and
we only have finitely many states.

Proof idea: any machine that does not remember the
entire first half will be wrong for some inputs

Useful Lemmas about DFAs

x z
y

x•z = x1 x2 … xn z1 z2 … zk

y•z = y1 y2 … ym z1 z2 … zk

Useful Lemmas about DFAs

Lemma 2: If DFA M has n states and a set S contains
more than n strings, then M takes at least two strings
from S to the same state.

M can’t take n+1 or more strings to different states
because it doesn’t have n+1 different states.

So, some pair of strings must go to the same state.

B = {binary palindromes} can’t be recognized by any
DFA
Suppose for contradiction that some DFA, M, recognizes B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

B = {binary palindromes} can’t be recognized by any
DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely
many strings in S, by Lemma 2, there exist strings 0a1 ∈ S
and 0b1 ∈ S with a≠b that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to
choose what a and b are. Remember, we’ve just
proven they exist…we must take the ones we’re
given!

B = {binary palindromes} can’t be recognized by any
DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely
many strings in S, by Lemma 2, there exist strings 0a1 ∈ S
and 0b1 ∈ S with a≠b that end in the same state of M.
Now, consider appending 0a to both strings.

0a
a1

q
0
a

0

b1

B = {binary palindromes} can’t be recognized by any
DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely
many strings in S, by Lemma 2, there exist strings 0a1 ∈ S
and 0b1 ∈ S with a≠b that end in the same state of M.
Now, consider appending 0a to both strings.

Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a
also end in the same state, call it q. But then M makes a
mistake: q needs to be an accept state since 0a10a ∈ B,
but M would accept 0b10a ∉ B, which is an error.

0a
a1

q
0
a

0

b1

B = {binary palindromes} can’t be recognized by any
DFA
Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely
many strings in S, by Lemma 2, there exist strings 0a1 ∈ S
and 0b1 ∈ S with a≠b that end in the same state of M.
Now, consider appending 0a to both strings.
Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a
also end in the same state, call it q. But then M makes a
mistake: q needs to be an accept state since 0a10a ∈ B,
but M would accept 0b10a ∉ B, which is an error.
This proves that M does not recognize B, contradicting
our assumption that it does. Thus, no DFA recognizes B.

Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M

recognizes L.”
2. Consider an INFINITE set S of prefixes (which we

intend to complete later).
3. “Since S is infinite and M has finitely many states,

there must be two strings sa and sb in S for sa ≠ sb that
end up at the same state of M.”

4. Consider appending the (correct) completion t to each
of the two strings.

5. “Since sa and sb both end up at the same state of M,
and we appended the same string t, both sat and sbt
end at the same state q of M. Since sat ∈ L and sbt ∉
L, M does not recognize L.”

6. “Thus, no DFA recognizes L.”

Showing that a Language L is not regular

The choice of S is the creative part of the proof

You must find an infinite set S with the property that no
two strings can be taken to the same state

– i.e., for every pair of strings S there is an “accept”
completion that the two strings DO NOT SHARE

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S =

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely
many states, there must be two strings, 0a and 0b for
some a ≠ b that end in the same state in M.

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely
many states, there must be two strings, 0a and 0b for
some a ≠ b that end in the same state in M.

Consider appending 1a to both strings.

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes
A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely
many states, there must be two strings, 0a and 0b for
some a ≠ b that end in the same state in M.

Consider appending 1a to both strings.

Note that 0a1a ∈ A, but 0b1a ∉ A since a ≠ b. But they both
end up in the same state of M, call it q. Since 0a1a ∈ A,
state q must be an accept state but then M would
incorrectly accept 0b1a ∉ A so M does not recognize A.
Thus, no DFA recognizes A.

Prove P = {balanced parentheses} is not
regular
Suppose for contradiction that some DFA, M, accepts P.

Let S =

Prove P = {balanced parentheses} is not
regular
Suppose for contradiction that some DFA, M, recognizes
P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely
many states, there must be two strings, (a and (b for
some a ≠ b that end in the same state in M.

Prove P = {balanced parentheses} is not
regular
Suppose for contradiction that some DFA, M, recognizes
P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely
many states, there must be two strings, (a and (b for
some a ≠ b that end in the same state in M.

Consider appending)a to both strings.

Prove P = {balanced parentheses} is not
regular
Suppose for contradiction that some DFA, M, recognizes
P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely
many states, there must be two strings, (a and (b for
some a ≠ b that end in the same state in M.

Consider appending)a to both strings.

Note that (a)a ∈ P, but (b)a ∉ P since a ≠ b. But they both
end up in the same state of M, call it q. Since (a)a ∈ P,
state q must be an accept state but then M would
incorrectly accept (b)a ∉ P so M does not recognize P.
Thus, no DFA recognizes P.

Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M

recognizes L.”
2. Consider an INFINITE set S of prefixes (which we

intend to complete later). It is imperative that for
every pair of strings in our set there is an “accept”
completion that the two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states,
there must be two strings sa and sb in S for sa ≠ sb that
end up at the same state of M.”

4. Consider appending the (correct) completion t to each
of the two strings.

5. “Since sa and sb both end up at the same state of M,
and we appended the same string t, both sat and sbt
end at the same state q of M. Since sat ∈ L and sbt ∉
L, M does not recognize L.”

6. “Thus, no DFA recognizes L.”

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest
set of prefixes with the property that, for every pair s

a
≠

s
b
 ∈ S, there is some string t such that one of s

a
t, s

b
t is

in L but the other isn’t.
• If S is infinite, then L is not regular
• If S is finite, then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest
set of prefixes with the property that, for every pair s

a
≠

s
b
 ∈ S, there is some string t such that one of s

a
t, s

b
t is

in L but the other isn’t.
• If S is infinite, then L is not regular
• If S is finite, then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.
– we separated exactly those states for which some t would

make one accept and another not accept

Important Notes

•

Do not claim in your proof that,
because L ⊆ U, U is also irregular

New Machinery: Generalized NFAs

• Like NFAs but allow
– parallel edges (between the same pair of

states)
– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• Machine can follow an edge labeled by A by
reading a string of input characters in the
language of A
– (if A is a or ɛ, this matches the original definition, but

 we now allow REs built with recursive steps.)

New Machinery: Generalized NFAs

• Like NFAs but allow
– parallel edges
– regular expressions as edge labels

NFAs already have edges labeled ɛ or a

• The label of a path is now the concatenation of
the regular expressions on those edges,
making it a regular expression

• Def: A string x is accepted by a generalized
NFA iff there is a path from start to final state
labeled by a regular expression whose
language contains x

Construction Idea

Add new start state and final state

ɛ

ɛ

ɛ

A

Then delete the original states one by
one, adding edges to keep the same
language,
until the graph looks like:

Starting from an NFA

A

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

Final graph has only one path to the accepting
state, which is labeled by A,
so it accepts iff x is in the language of A

Thus, A is a regular expression with the same
language as the original NFA.

Only two simplification rules

• Rule 1: For any two states q1 and q2 with
parallel edges (possibly q1=q2), replace

If the machine would have used the edge labeled
A by consuming an input x in the language of A, it
can instead use the edge labeled A⋃B.

Furthermore, this new edge does not allow
transitions for any strings other than those that
matched A or B.

q1
q2

A

B
by

A⋃B
q1

q2

Only two simplification rules

• Rule 2: Eliminate non-start/accepting state q3
by creating direct edges that skip q3

 for every pair of states q1, q2 (even if q1=q2)

Any path from q1 to q2 would have to match ABnC
for some n (the number of times the self loop was
used), so the machine can use the new edge
instead. New edge only allows strings that were
allowed before.

A
B

C AB*Cq1 q3 q2 q1
q2

becomes

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

Construction Overview

Add new start state and final state

ɛ

ɛ

ɛ

Construction Overview

A

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same
language as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits

mod 3 sum of the digits is 0

t
0 t

2

t
1

0

0
0

1 1

1

2

22

Splicing out a state t1

Create direct edges between neighbors of t1
(so that we can delete it afterward)

t
0 t

2

t
1

0

0

1 1

1

2

22

0

s
ɛ

f

ɛ

Splicing out a state t1

Regular expressions to add to edges

t
0 t

2

t
1

0

0

1 1

1

2

22

t
0
→t

1
→t

0
 : 10*2

t
0
→t

1
→t

2
 : 10*1

t
2
→t

1
→t

0
 : 20*2

t
2
→t

1
→t

2
 : 20*1

0

s
ɛ

f

ɛ

Splicing out a state t1

Delete t1 now that it is redundant

t
0 t

2

0 ∪ 20*1
2 ∪ 10*1

t
0
→t

1
→t

0
 : 10*2

t
0
→t

1
→t

2
 : 10*1

t
2
→t

1
→t

0
 : 20*2

t
2
→t

1
→t

2
 : 20*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

Splicing out a state t1

Create direct edges between neighbors of t2
(so that we can delete it afterward)

t
0 t

2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

Splicing out a state t1

Regular expressions to add to edges

t
0 t

2

0 ∪ 20*1
2 ∪ 10*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

Delete t2 now that it is redundant

t
0R5

f

ɛ

s
ɛ

R
5
: R

1
 ∪ R

2
R

4
*R

3

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3

Create direct (s,f) edge so we can delete t0

t
0R5

f

ɛ

s
ɛ

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3

Regular expressions to add to edges

t
0R5

f

ɛ

s
ɛ

t
0
→t

1
→t

0
: R

5
*

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3

Delete t0 now that it is redundant

R6
fs

R
6
: R

5
*

Splicing out state t2 (and then t0)

R
1
: 0 ∪ 10*2

R
2
: 2 ∪ 10*1

R
3
: 1 ∪ 20*2

R
4
: 0 ∪ 20*1

R
5
: R

1
 ∪ R

2
R

4
*R

3
R

6
: R

5
*

Regular expressions to add to edges

R6
fs

Final regular expression: R
6
 =

(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

Application of FSMs: Pattern matching

•

Application of FSMs: Pattern Matching

•

Last time: NFA to DFA

c

a

b

0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

∅

1

0,1

0

0

1

1
0

Exponential Blow-up in Simulating
Nondeterminism
•

