CSE 311: Foundations of Computing

Topic 10: Finite State Machines

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)

The story so far...

Theorem: For any NFA, there is a regular expression

that accepts the same language

Corollary: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know these facts

 the construction for the Theorem is included in the slides after this, but you will not be tested on it

New Machinery: Generalized NFAs

- Like NFAs but allow
 - parallel edges
 - regular expressions as edge labels
 NFAs already have edges labeled ε or a
- The label of a path is now the concatenation of the regular expressions on those edges, making it a regular expression
- Def: A string x is accepted by a generalized NFA iff there is a *path* from start to final state labeled by a regular expression whose language contains x

Add new start state and final state

Then delete the original states one by one, adding edges to keep the same language, until the graph looks like: Then delete the original states one by one, adding edges to **keep the same language**, until the graph looks like:

Final graph has only one path to the accepting state, which is labeled by A, so it accepts iff x is in the language of A

Thus, A is a regular expression with the same language as the original NFA.

Only two simplification rules

 Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

If the machine would have used the edge labeled A by consuming an input x in the language of A, it can instead use the edge labeled AUB.

Furthermore, this new edge does not allow transitions for any strings other than those that matched A or B.

Only two simplification rules

 Rule 2: Eliminate non-start/accepting state q₃ by creating direct edges that skip q₃

for every pair of states q_1, q_2 (even if $q_1=q_2$)

Any path from q₁ to q₂ would have to match ABⁿC for some n (the number of times the self loop was used), so the machine can use the new edge instead. New edge *only* allows strings that were allowed before.

While the box contains some state s: for all states r, t with (r, s) and (s, t) in E: create a direct edge (r, t) by Rule 2 delete s (no longer needed) merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same language as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

 Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0

Create direct edges between neighbors of t_1 (so that we can delete it afterward)

Regular expressions to add to edges

Delete t_1 now that it is redundant

$$t_0 \rightarrow t_1 \rightarrow t_0 : 10*2$$

$$t_0 \rightarrow t_1 \rightarrow t_2 : 10*1$$

$$t_2 \rightarrow t_1 \rightarrow t_0 : 20*2$$

$$t_2 \rightarrow t_1 \rightarrow t_2 : 20*1$$

Create direct edges between neighbors of t_2 (so that we can delete it afterward)

Splicing out a state t₁

Regular expressions to add to edges

 $\begin{array}{ll} R_{1}: & 0 \cup 10^{*}2 \\ R_{2}: & 2 \cup 10^{*}1 \\ R_{3}: & 1 \cup 20^{*}2 \\ R_{4}: & 0 \cup 20^{*}1 \end{array}$

Delete t₂ now that it is redundant

 $R_{1}: 0 \cup 10^{*}2$ $R_{2}: 2 \cup 10^{*}1$ $R_{3}: 1 \cup 20^{*}2$ $R_{4}: 0 \cup 20^{*}1$ $R_{5}: R_{1} \cup R_{2}R_{4}^{*}R_{3}$

Create direct (s,f) edge so we can delete t_0

Regular expressions to add to edges

 $R_{1}: 0 \cup 10^{*}2$ $R_{2}: 2 \cup 10^{*}1$ $R_{3}: 1 \cup 20^{*}2$ $R_{4}: 0 \cup 20^{*}1$ $R_{5}: R_{1} \cup R_{2}R_{4}^{*}R_{3}$ $t_{0} \rightarrow t_{1} \rightarrow t_{0}: R_{5}^{*}$ f

Delete t₀ now that it is redundant

 $R_{6}: R_{5}^{*}$

Regular expressions to add to edges

Final regular expression: $R_6 = (0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))^*$

The story so far...

Languages represented by DFA, NFAs, or regular expressions are called **Regular Languages**

Recall: Algorithms for Regular Languages

We have seen algorithms for

- RE to NFA
- NFA to DFA
- DFA/NFA to RE
- DFA minimization

Example Corollary of These Results

Corollary: If **A** is the language of a regular expression, then $\overline{\mathbf{A}}$ is the language of a regular expression*.

(This is the complement with respect to the universe of all strings over the alphabet, i.e., $\overline{A} = \Sigma^* \setminus A$.)

The story so far...

<u>Now</u>: Is this \subseteq really "=" or " \subsetneq "?

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

Languages and Representations!

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

An Interesting Infinite Regular Language

L = { $x \in \{0, 1\}^*$: x has an equal number of substrings 01 and 10}.

L is infinite. 0, 00, 000, ...

L is regular. How could this be?

That seems to require comparing counts...

- easy for a CFG
- but seems hard for DFAs!

An Interesting Infinite Regular Language

L = { $x \in \{0, 1\}^*$: x has an equal number of substrings 01 and 10}.

L is infinite. 0, 00, 000, ...

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character! 1

Languages and Representations!

Tangent: How to prove a DFA minimal?

- Show there is no smaller DFA...
- Find a set of strings that *must* be distinguished
 - Such a set is a lower bound on the DFA size

Recall: Binary strings with a 1 in the 3rd position from the start

Distinguishing set:

{ε, 0, 00, 000, 00**1**}

The language of "Binary Palindromes" is Context-Free

ullet

$\textbf{S} \rightarrow \epsilon \mid \textbf{0} \mid \textbf{1} \mid \textbf{0S0} \mid \textbf{1S1}$

Intuition (NOT A PROOF!):

Q: What would a DFA need to keep track of to decide?
A: It would need to keep track of the "first part" of the input in order to check the second part against it ...but there are an infinite # of possible first parts and we only have finitely many states.

Proof idea: any machine that does not remember the entire first half will be wrong for some inputs

Lemma 1: If DFA **M** takes $x, y \in \Sigma^*$ to the same state, then for every $z \in \Sigma^*$, M accepts $x \cdot z$ iff it accepts $y \cdot z$.

M can't remember that the input was **x**, not **y**.

$$\begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} z \\ y \end{array} \qquad \begin{array}{c} z \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ y \\ y \end{array} \qquad \begin{array}{c} x \\ \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ \end{array} \qquad \begin{array}{c} x \\ y \end{array} \qquad \begin{array}{c} x \\ \end{array} \end{array} \qquad \begin{array}{c} x \\ \end{array} \end{array} \end{array} \qquad \begin{array}{c} x \\ \end{array} \end{array} \end{array} \end{array} \qquad \begin{array}{c} x \\ \end{array} \end{array} \end{array} \qquad \begin{array}{c} x \\ \end{array} \end{array} \end{array} \qquad \begin{array}{c} x \\ \end{array} \end{array} \qquad \end{array} \end{array}$$

Lemma 2: If DFA **M** has **n** states and a set **S** contains *more* than **n** strings, then **M** takes at least two strings from **S** to the same state.

M can't take n+1 or more strings to different states because it doesn't have n+1 different states.

So, some pair of strings must go to the same state.

Suppose for contradiction that some DFA, M, recognizes B. We will show M accepts or rejects a string it shouldn't. Consider S = $\{1, 01, 001, 0001, ...\} = \{0^n 1 : n \ge 0\}$.

Suppose for contradiction that some DFA, M, accepts B. We will show M accepts or rejects a string it shouldn't. Consider S = {1, 01, 001, 0001, 00001, ...} = {0ⁿ1 : n ≥ 0}. Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^a1 \in S$ and $0^b1 \in S$ with $a \neq b$ that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we must take the ones we're given!

Suppose for contradiction that some DFA, M, accepts B. We will show M accepts or rejects a string it shouldn't. Consider $S = \{1, 01, 001, 0001, 00001, ...\} = \{0^n 1 : n \ge 0\}$. Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of M. *Now, consider appending 0^a* to both strings.

Suppose for contradiction that some DFA, M, accepts B. We will show M accepts or rejects a string it shouldn't. Consider S = {1, 01, 001, 0001, 00001, ...} = {0ⁿ1 : n ≥ 0}. Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings 0^a1 \subseteq S and 0^b1 \subseteq S with a≠b that end in the same state of M. Now, consider appending 0^a to both strings.

$$\overset{O^{a}1}{\longrightarrow} O^{b}1 \overset{O}{\longrightarrow} \overset{O}{a} \overset{O}{\bigcirc}$$

Since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since $0^{a}10^{a} \in B$, but M would accept $0^{b}10^{a} \notin B$, which is an error.

Suppose for contradiction that some DFA, M, accepts B. We will show M accepts or rejects a string it shouldn't.

Consider S = {1, 01, 001, 0001, 00001, ...} = { $0^{n}1 : n \ge 0$ }.

Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^a 1 \in S$ and $0^b 1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending 0^a to both strings.

Since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since $0^{a}10^{a} \in B$, but M would accept $0^{b}10^{a} \notin B$, which is an error.

This proves that **M** does not recognize **B**, contradicting our assumption that it does. Thus, no DFA recognizes **B**.

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an **INFINITE** set **S** of prefixes (which we intend to complete later).
- 3. "Since **S** is infinite and **M** has finitely many states, there must be two strings s_a and s_b in **S** for $s_a \neq s_b$ that end up at the same state of **M**."
- 4. Consider appending the (correct) completion **t** to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Thus, no DFA recognizes L."

The choice of **S** is the creative part of the proof

You must find an <u>infinite</u> set S with the property that *no two* strings can be taken to the same state

i.e., for every pair of strings S there is an <u>"accept"</u>
 <u>completion</u> that the two strings DO NOT SHARE

Prove $A = \{0^n 1^n : n \ge 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =

Prove $A = \{0^n 1^n : n \ge 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M. Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Note that $0^{a}1^{a} \in A$, but $0^{b}1^{a} \notin A$ since $a \neq b$. But they both end up in the same state of M, call it **q**. Since $0^{a}1^{a} \in A$, state **q** must be an accept state but then M would incorrectly accept $0^{b}1^{a} \notin A$ so M does not recognize A. Thus, no DFA recognizes A.

regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =

regular Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : $n \ge 0$ }. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

regular Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0 \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

regular Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (^n : n \ge 0 \}$. Since S is infinite and M has finitely many states, there must be two strings, (^a and (^b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

Note that $(^{a})^{a} \in P$, but $(^{b})^{a} \notin P$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $(^{a})^{a} \in P$, state q must be an accept state but then M would incorrectly accept $(^{b})^{a} \notin P$ so M does not recognize P. Thus, no DFA recognizes P.

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an **INFINITE** set **S** of prefixes (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since **S** is infinite and **M** has finitely many states, there must be two strings s_a and s_b in **S** for $s_a \neq s_b$ that end up at the same state of **M**."
- 4. Consider appending the (correct) completion **t** to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."

Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If **S** is infinite, then **L** is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

 we separated *exactly* those states for which some t would make one accept and another not accept

- It is not necessary for our strings xz with x ∈ L to allow any string in the language
 - we only need to find a small "core" set of strings that must be distinguished by the machine
- It is not true that, if L is irregular and L ⊆ U, then
 U is irregular!
 - we always have $L \subseteq \Sigma^*$ and Σ^* is regular!
 - our argument needs different answers: $xz \in L \nleftrightarrow yz \in L$

for **Σ***, both strings are always in the language

Do not claim in your proof that, because $L \subseteq U$, U is also irregular

New Machinery: Generalized NFAs

- Like NFAs but allow
 - parallel edges (between the same pair of states)
 - regular expressions as edge labels
 NFAs already have edges labeled ε or a
- Machine can follow an edge labeled by A by reading a <u>string of input characters</u> in the language of A
 - (if A is a or ε, this matches the original definition, but we now allow REs built with recursive steps.)

New Machinery: Generalized NFAs

- Like NFAs but allow
 - parallel edges
 - regular expressions as edge labels
 NFAs already have edges labeled ε or a
- The label of a path is now the concatenation of the regular expressions on those edges, making it a regular expression
- Def: A string x is accepted by a generalized NFA iff there is a *path* from start to final state labeled by a regular expression whose language contains x

Add new start state and final state

Then delete the original states one by one, adding edges to keep the same language, until the graph looks like: Then delete the original states one by one, adding edges to **keep the same language**, until the graph looks like:

Final graph has only one path to the accepting state, which is labeled by A, so it accepts iff x is in the language of A

Thus, A is a regular expression with the same language as the original NFA.

Only two simplification rules

 Rule 1: For any two states q₁ and q₂ with parallel edges (possibly q₁=q₂), replace

If the machine would have used the edge labeled A by consuming an input x in the language of A, it can instead use the edge labeled AUB.

Furthermore, this new edge does not allow transitions for any strings other than those that matched A or B.

Only two simplification rules

 Rule 2: Eliminate non-start/accepting state q₃ by creating direct edges that skip q₃

for every pair of states q_1, q_2 (even if $q_1=q_2$)

Any path from q₁ to q₂ would have to match ABⁿC for some n (the number of times the self loop was used), so the machine can use the new edge instead. New edge *only* allows strings that were allowed before.

Add new start state and final state

While the box contains some state s: for all states r, t with (r, s) and (s, t) in E: create a direct edge (r, t) by Rule 2 delete s (no longer needed) merge all parallel edges by Rule 1 While the box contains some state s: for all states r, t with (r, s) and (s, t) in E: create a direct edge (r, t) by Rule 2 delete s (no longer needed) merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same language as the original NFA.

Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum

 Accept strings from {0,1,2}* where the digits mod 3 sum of the digits is 0

Create direct edges between neighbors of t_1 (so that we can delete it afterward)

Regular expressions to add to edges

Delete t_1 now that it is redundant

$$t_0 \rightarrow t_1 \rightarrow t_0 : 10*2$$

$$t_0 \rightarrow t_1 \rightarrow t_2 : 10*1$$

$$t_2 \rightarrow t_1 \rightarrow t_0 : 20*2$$

$$t_2 \rightarrow t_1 \rightarrow t_2 : 20*1$$

Create direct edges between neighbors of t_2 (so that we can delete it afterward)

Splicing out a state t₁

Regular expressions to add to edges

 $\begin{array}{ll} R_{1}: & 0 \cup 10^{*}2 \\ R_{2}: & 2 \cup 10^{*}1 \\ R_{3}: & 1 \cup 20^{*}2 \\ R_{4}: & 0 \cup 20^{*}1 \end{array}$

Delete t₂ now that it is redundant

 $R_{1}: 0 \cup 10^{*}2$ $R_{2}: 2 \cup 10^{*}1$ $R_{3}: 1 \cup 20^{*}2$ $R_{4}: 0 \cup 20^{*}1$ $R_{5}: R_{1} \cup R_{2}R_{4}^{*}R_{3}$

Create direct (s,f) edge so we can delete t_0

Regular expressions to add to edges

 $R_{1}: 0 \cup 10^{*}2$ $R_{2}: 2 \cup 10^{*}1$ $R_{3}: 1 \cup 20^{*}2$ $R_{4}: 0 \cup 20^{*}1$ $R_{5}: R_{1} \cup R_{2}R_{4}^{*}R_{3}$ $t_{0} \rightarrow t_{1} \rightarrow t_{0}: R_{5}^{*}$ f

Delete t₀ now that it is redundant

 $R_{6}: R_{5}^{*}$

Regular expressions to add to edges

Final regular expression: $R_6 = (0 \cup 10^*2 \cup (2 \cup 10^*1)(0 \cup 20^*1)^*(1 \cup 20^*2))^*$

Application of FSMs: Pattern matching

- Given
 - a string **S** of **n** characters
 - a pattern p of m characters
 - usually $m \ll n$
- Find
 - all occurrences of the pattern \boldsymbol{p} in the string \boldsymbol{s}
- Obvious algorithm:
 - try to see if p matches at each of the positions in s
 stop at a failed match and try matching at the post

Application of FSMs: Pattern Matching

- With DFAs can do this in O(m + n) time.
- See Extra Credit problem on HW8 for some ideas of how to get to O(m² + n).

Last time: NFA to DFA

NFA

Exponential Blow-up in Simulating Nondeterminism

- In general the DFA might need a state for every subset of states of the NFA
 - Power set of the set of states of the NFA
 - *n*-state NFA yields DFA with at most 2^n states
 - We saw an example where roughly 2^n is necessary "Is the n^{th} char from the end a 1?"

The famous "P=NP?" question asks whether a similar blow-up is always necessary to get rid of nondeterminism for polynomial-time algorithms