
CSE 311: Foundations of Computing

Topic 10:  Finite State Machines



The set of binary strings with a 1 in the 3rd position from the start
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The set of binary strings with a 1 in the 3rd position from the end



Adding Output to Finite State Machines

• So far we have considered finite state 
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers



Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar



Vending Machine, v1.0
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Recall: Finite State Machines

• States

• Transitions on input symbols

• Start state and final states

• The “language recognized” by the machine is the 
set of strings that reach a final state from the start
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Recall: Finite State Machines

• Each machine designed for strings over some 
fixed alphabet .

• Must have a transition defined from each state for 
every symbol in .
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State Minimization

• Many FSMs (DFAs) for the same problem

• Take a given FSM and try to reduce its state 
set by combining states
– Algorithm will always produce the unique 

minimal equivalent machine (up to renaming of 
states) but we won’t prove this



State Minimization Algorithm

• Put states into groups

• Try to find groups that can be collapsed into one state
– states can keep track of information that isn’t necessary to 

determine whether to accept or reject

• Group states together until we can prove that 
collapsing them can change the accept/reject result
– find a specific string x such that:

starting from state A, following edges according to x ends in accept
starting from state B, following edges according to x ends in reject

– (algorithm below could be modified to show these strings)



State Minimization Algorithm

1. Put states into groups based on their outputs 
(whether they accept or reject)



State Minimization Algorithm

1. Put states into groups based on their outputs 
(whether they accept or reject)

2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group 

G agree on which group s leads to, split G into smaller 
groups based on which group the states go to on s

3. Finally, convert groups to states
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Put states into groups based on their
outputs (or whether they accept or reject)

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
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S5 S1 S4 S0 S5 0
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State Minimization Example

state 
transition table

present next state        output
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Finally convert groups to states:

Can combine states S0-S4 and
S3-S5.  

In table replace all S4 with S0 
and all S5 with S3



Minimized Machine

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
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A Simpler Minimization Example
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The set of all binary strings with # of 1’s # of 0’s (mod 2).

#0s is even

#0s is odd

#1s is even #1s is odd



A Simpler Minimization Example
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Split states into 
accept/reject groups

Every symbol causes 
the DFA to go from one 
group to the other so 
neither group needs to 
be split



Minimized DFA

s0
s3

s1
s2

0,1

0,1

= The set of all binary strings with even length.

The set of all binary strings with # of 1’s # of 0’s (mod 2).

length is even length is odd



The Characters

REs

DFAs NFAs

CFGs



Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled 
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state 

labeled by each symbol--- can have 0 or >1

– Also can have edges labeled by empty string 

• Definition:  x is in the language recognized by an 
NFA if and only if some valid execution of the 
machine gets to an accept state

s0 s2 s3s1

111

0,10,1



Consider This NFA

What language does this NFA accept?

s0
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Consider This NFA

What language does this NFA accept?
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10(10)*  111 (0 1)* 



NFA -moves 
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NFA -moves 
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Strings over {0,1,2} w/even # of 2’s OR sum to 0 mod 3



NFA for set of binary strings with a 1 in the 3rd position from the end



NFA for set of binary strings with a 1 in the 3rd position from the end

0,1

s3 s2 s1 s0
0,1 0,11



001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0 1

0

0

00

Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11



Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel

• Outside observer:  Is there a path labeled by x from 
the start state to some accepting state?  
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0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string  0101100
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0 1 0 1 1 0 0
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s3 s3
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Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel

• Outside observer:  Is there a path labeled by x from 
the start state to some accepting state?  



Path Labels

Def: The label of path v0, v1, ..., vn is the
concatenation of the labels of the edges
(v0, v1), (v1, v2), …, (vn-1, vn)

Example: The label of path s0, s1, s2, s0, s0 is 1100

s0 s2 s3s1
111

0,1

0

0



Deterministic Finite Automata (DFA)

• Theorem: x is in the language recognized by an 
DFA if and only if x labels a path from the start 
state to some final state

• Path v0, v1, ..., vn with v0 = s0 and label x describes 
a correct simulation of the DFA on input x
– i-th step must match the i-th character of x

s0 s2 s3s1
111

0,1

0

0

0



Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled by 
symbols (like DFA) but
– Not required to have exactly 1 edge out of each state labeled 

by each symbol--- can have 0 or >1

– Can also have edges labeled by empty string 

• Theorem: x is in the language recognized by an NFA
if and only if x labels some path from the start state to 
an accepting state

s0 s2 s3s1

111

0,10,1



Summary of NFAs

• Generalization of DFAs
– drop two restrictions of DFAs

– every DFA is an NFA

• Seem to be more powerful
– designing is easier than with DFAs

• Seem related to regular expressions



The story so far...

REs

DFAs NFAs

CFGs



Theorem: For any set of strings (language)
described by a regular expression, there is 

an NFA that recognizes .  

Proof idea:   Structural induction based on the 
recursive definition of regular expressions...

NFAs and regular expressions



Regular Expressions over 

• Basis:
– is a regular expression

– a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions, then so are:

A  B
AB
A*



• Case :

• Case a:

Base Case



• Case :

• Case a:

Base Case



• Case :

• Case a:

Base Case

a



Regular Expressions over 

• Basis:
– is a regular expression

– a is a regular expression for any a  

• Recursive step:
– If A and B are regular expressions, then so are:

A  B
AB
A*



Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such 
that NA recognizes the language given by A 
and NB recognizes the language given by B

NA NB



Inductive Step

Case A  B:

NA

NB



Inductive Step

Case A  B:

NA

NB



Inductive Step

Case AB:

NA NB



Inductive Step

Case AB:

NA NB



Inductive Step

Case A*

NA



Inductive Step

Case A*

NA



Build an NFA for (01 1)*0



Solution

(01 1)*0

0

0

1

1



The story so far...

REs

DFAs NFAs

CFGs



NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?



NFAs and DFAs

Every DFA is an NFA

– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?   No!

Theorem:  For every NFA there is a DFA that 
recognizes exactly the same language



Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever 
there is a choice of what to do it magically guesses a 
good one (if one exists)

• Parallel exploration:  The NFA computation runs all 
possible computations on x step-by-step at the same 
time in parallel

• Outside observer:  Is there a path labeled by x from 
the start state to some final state?  



0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string  0101100

s3 s3 s3 s3 s3 s3 s3

0 1 0 1 1 0 0

s2 s1 s0

s2 s1 s0

s2 s1 s0

s3

X

X



Conversion of NFAs to a DFAs

• Construction Idea:
– The DFA keeps track of ALL states reachable in 

the NFA along a path labeled by the input so far
(Note: not all paths; all last states on those paths.)

– There will be one state in the DFA for each 
subset of states of the NFA that can be reached 
by some string



Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start 

state of the NFA using only edges labeled 

a,b,e,f

f

e

ba

NFA DFA



Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of 
states of the NFA and each symbol s

– Add an edge labeled s to state corresponding to T, the 
set of states of the NFA reached by 

∙ starting from some state in S, then
∙ following one edge labeled by s, and
then following some number of edges labeled by 

– T will be  if no edges from S labeled s exist

f

e

b c

d

g

1

1

1

1

b,e,f c,d,e,g1



Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of 

the NFA

a,b,c,e
ce

ba

NFA
DFA



Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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Example: NFA to DFA
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The story so far...

=

REs

DFAs NFAs

CFGs



Regular expressions NFAs ≡ DFAs

We have shown how to build an optimal DFA for every 
regular expression

– Build NFA

– Convert NFA to DFA using subset construction

– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA

– (even better: one can combine the two approaches:
apply DFA minimization lazily while simulating the NFA)



The story so far...

=

REs

DFAs NFAs

CFGs

Is this really “=” or “ ”?



Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression
that accepts the same language

Corollary:  A language is recognized by a DFA (or NFA) 
if and only if it has a regular expression

You need to know these facts
– the construction for the Theorem is included in the slides 

after this, but you will not be tested on it



The story so far...

≡

REs

DFAs NFAs

CFGs

≡
Languages represented by DFA, NFAs, or regular expressions
are called Regular Languages



Recall: Algorithms for Regular Languages

We have seen algorithms for

• RE to NFA

• NFA to DFA

• DFA/NFA to RE (not tested)

• DFA minimization

Practice three of these in HW.

(May also be on the final.)



Example Corollary of These Results

(This is the complement with respect to the universe of all strings 
over the alphabet, i.e., .)

Corollary:  If is the language of a regular expression,
then is the language of a regular expression*.



The story so far...

=

REs

DFAs NFAs

CFGs

=
Now:  Is this really “=” or “ ”?



What languages have DFAs?  CFGs?

All of them?



Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

{001, 10, 12}



Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Reminder:
All finite 
languages 
are regular.



DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.



Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup 2:
Surprising 
example here



An Interesting Infinite Regular Language 

L = {x 0, 1 : x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be?   
That seems to require comparing counts...

– easy for a CFG

– but seems hard for DFAs!



An Interesting Infinite Regular Language 

L = {x 0, 1 : x has an equal number of substrings 01 and 10}.

L is infinite.

0, 00, 000, …

L is regular. How could this be?   It is just the set of binary strings 
that are empty or begin and end with the same character!

s0

0

1 s4s3

0

1

01

s2s1

1

0

10



Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

??? Main Event:
Prove there is 
a context-free 
language 
that isn’t 
regular.

{001, 10, 12}



Tangent: How to prove a DFA minimal?

• Show there is no smaller DFA…

• Find a set of strings that must be distinguished
– Such a set is a lower bound on the DFA size



Recall: Binary strings with a 1 in the 3rd position from the start

s0 s2 As1
10,10,1

0,1

R

0
0,1

Distinguishing set: 

{ , 0, 00, 000, 001}



The language of “Binary Palindromes” is Context-Free

S → | 0 | 1 | 0S0 | 1S1



Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!): 

Q: What would a DFA need to keep track of to decide?

A: It would need to keep track of the “first part” of the input 
in order to check the second part against it

…but there are an infinite # of possible first parts and we 
only have finitely many states.

Proof idea: any machine that does not remember the entire first 
half will be wrong for some inputs



Useful Lemmas about DFAs

Lemma 1:  If DFA M takes to the same state, 
then for every , M accepts iff it accepts .

M can’t remember that the input was , not .

x z

y

x•z =  x1 x2 … xn z1 z2 … zk

y•z =  y1 y2 … ym z1 z2 … zk



Useful Lemmas about DFAs

Lemma 2:  If DFA M has n states and a set S contains 
more than n strings, then M takes at least two strings 
from S to the same state.

M can’t take n+1 or more strings to different states 
because it doesn’t have n+1 different states.
So, some pair of strings must go to the same state.



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.

We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 S and 0b1 S
with a≠b that end in the same state of M.

SUPER IMPORTANT POINT:  You do not get to choose 
what a and b are.  Remember, we’ve just proven they 
exist…we must take the ones we’re given!



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 S and 0b1 S
with a≠b that end in the same state of M.

Now, consider appending 0a to both strings.  

0a
a1

q0a

0b1



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 S and 0b1 S
with a≠b that end in the same state of M.

Now, consider appending 0a to both strings.  

Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a also 
end in the same state, call it q. But then M makes a mistake: 
q needs to be an accept state since 0a10a B, but M would 
accept 0b10a B, which is an error.

0a
a1

q0a

0b1



B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.

We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}
Since there are finitely many states in M and infinitely many 
strings in S, by Lemma 2, there exist strings 0a1 S and 0b1 S
with a≠b that end in the same state of M.

Now, consider appending 0a to both strings.  

Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a also 
end in the same state, call it q. But then M makes a mistake: 
q needs to be an accept state since 0a10a B, but M would 
accept 0b10a B, which is an error.

This proves that M does not recognize B, contradicting our 
assumption that it does. Thus, no DFA recognizes B.



Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M recognizes L.” 

2. Consider an INFINITE set S of prefixes (which we intend to 
complete later).

3. “Since S is infinite and M has finitely many states, there 
must be two strings sa and sb in S for sa ≠ sb that end up at 
the same state of M.”

4. Consider appending the (correct) completion t to each of 
the two strings.

5. “Since sa and sb both end up at the same state of M, and 
we appended the same string t, both sat and sbt end at the 
same state q of M.   Since sat L and sbt L, M does not 
recognize L.”    

6. “Thus, no DFA recognizes L.”



Showing that a Language L is not regular

The choice of S is the creative part of the proof

You must find an infinite set S with the property that no two 
strings can be taken to the same state

– i.e., for every pair of strings S there is an “accept” 
completion that the two strings DO NOT SHARE



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.

Consider appending  1a to both strings.  



Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.

Consider appending  1a to both strings.  

Note that 0a1a A, but 0b1a A since a ≠ b.  But they both end 
up in the same state  of M, call it q.  Since 0a1a A, state q
must be an accept state but then M would incorrectly accept 
0b1a A so M does not recognize A.    

Thus, no DFA recognizes A.



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, (a and (b for some a ≠ b that 
end in the same state in M.



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, (a and (b for some a ≠ b that 
end in the same state in M.

Consider appending  )a to both strings.  



Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}.  Since S is infinite and M has finitely many 
states, there must be two strings, (a and (b for some a ≠ b that 
end in the same state in M.

Consider appending  )a to both strings.  

Note that (a)a P, but (b)a P since a ≠ b.  But they both end up 
in the same state of M, call it q.  Since (a)a P, state q must be 
an accept state but then M would incorrectly accept (b)a P so 
M does not recognize P.    

Thus, no DFA recognizes P.



Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M recognizes L.” 

2. Consider an INFINITE set S of prefixes (which we intend to 
complete later). It is imperative that for every pair of 
strings in our set there is an “accept” completion that the 
two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there 
must be two strings sa and sb in S for sa ≠ sb that end up at 
the same state of M.”

4. Consider appending the (correct) completion t to each of 
the two strings.

5. “Since sa and sb both end up at the same state of M, and 
we appended the same string t, both sat and sbt end at the 
same state q of M.   Since sat L and sbt L, M does not 
recognize L.”    

6. “Thus, no DFA recognizes L.”



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 
prefixes with the property that, for every pair sa≠ sb S, 
there is some string t such that one of sat, sbt is in L but the 
other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely            
|S| states, one reached by each member of S.



Fact:  This method is optimal

• Suppose that for a language L, the set S is a largest set of 
prefixes with the property that, for every pair sa≠ sb S, 
there is some string t such that one of sat, sbt is in L but the 
other isn’t.

• If S is infinite, then L is not regular

• If S is finite, then the minimal DFA for L has precisely            
|S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.
– we separated exactly those states for which some t would make 

one accept and another not accept



Important Notes

• It is not necessary for our strings xz with x L to 
allow any string in the language
– we only need to find a small “core” set of strings that 

must be distinguished by the machine

• It is not true that, if L is irregular and L U, then
U is irregular!
– we always have L Σ* and Σ* is regular!

– our argument needs different answers: L L
for Σ*, both strings are always in the language

Do not claim in your proof that, 
because L U, U is also irregular



New Machinery: Generalized NFAs 

• Like NFAs but allow

– parallel edges (between the same pair of states)

– regular expressions as edge labels
NFAs already have edges labeled or a

• Machine can follow an edge labeled by A by reading 
a string of input characters in the language of A
– (if A is a or , this matches the original definition, but

we now allow REs built with recursive steps.)



New Machinery: Generalized NFAs 

• Like NFAs but allow
– parallel edges
– regular expressions as edge labels

NFAs already have edges labeled or a

• The label of a path is now the concatenation of the 
regular expressions on those edges, making it a 
regular expression

• Def: A string x is accepted by a generalized NFA iff 
there is a path from start to final state labeled by 
a regular expression whose language contains x



Construction Idea

Add new start state and final state

A

Then delete the original states one by one, 
adding edges to keep the same language,
until the graph looks like:



Starting from an NFA

A

Then delete the original states one by one,
adding edges to keep the same language,
until the graph looks like:

Final graph has only one path to the accepting state, 
which is labeled by A,
so it accepts iff x is in the language of A

Thus, A is a regular expression with the same 
language as the original NFA.



Only two simplification rules

• Rule 1:  For any two states q1 and q2 with parallel 
edges (possibly q1=q2), replace

If the machine would have used the edge labeled A 
by consuming an input x in the language of A, it can 
instead use the edge labeled A B.

Furthermore, this new edge does not allow transitions 
for any strings other than those that matched A or B.

q1
q2

A

B
by A B

q1
q2



Only two simplification rules

• Rule 2: Eliminate non-start/accepting state q3 by 
creating direct edges that skip q3

for every pair of states q1, q2 (even if q1=q2)

Any path from q1 to q2 would have to match ABnC for 
some n (the number of times the self loop was used), 
so the machine can use the new edge instead. New 
edge only allows strings that were allowed before.

A
B

C AB*Cq1 q3 q2 q1
q2

becomes



While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

Construction Overview

Add new start state and final state



Construction Overview

A

While the box contains some state s:
for all states r, t with (r, s) and (s, t) in E:

create a direct edge (r, t) by Rule 2
delete s (no longer needed)
merge all parallel edges by Rule 1

When the loop exits, the graph looks like this:

A is a regular expression with the same language 
as the original NFA.



Converting an NFA to a regular expression

Consider the DFA for the mod 3 sum
– Accept strings from {0,1,2}* where the digits 

mod 3 sum of the digits is 0

t0 t2

t1

0

0
0

1 1

1

2

22



Splicing out a state t1

Create direct edges between neighbors of t1

(so that we can delete it afterward)

t0 t2

t1

0

0

1 1

1

2

22

0

s

f



Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1

0

s

f



Splicing out a state t1

Delete t1 now that it is redundant

t0 t2

0 20*1
2 10*1

t0→t1→t0 :   10*2
t0→t1→t2 :   10*1
t2→t1→t0 :   20*2
t2→t1→t2 :   20*1

0 10*2

s

f

1 20*2



Splicing out a state t1

Create direct edges between neighbors of t2

(so that we can delete it afterward)

t0 t2

0 20*1
2 10*1

0 10*2

s

f

1 20*2



Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 20*1
2 10*1

0 10*2

s

f

1 20*2

R1:   0 10*2
R2:   2 10*1
R3:   1 20*2
R4:   0 20*1



Splicing out state t2 (and then t0)

R1:   0 10*2
R2:   2 10*1
R3:   1 20*2
R4:   0 20*1

Delete t2 now that it is redundant

t0R5

f

s

R5:   R1 R2R4*R3



Splicing out state t2 (and then t0)

R1:   0 10*2
R2:   2 10*1
R3:   1 20*2
R4:   0 20*1
R5:   R1 R2R4*R3

Create direct (s,f) edge so we can delete t0

t0R5

f

s



Splicing out state t2 (and then t0)

R1:   0 10*2
R2:   2 10*1
R3:   1 20*2
R4:   0 20*1
R5:   R1 R2R4*R3

Regular expressions to add to edges

t0R5

f

s

t0→t1→t0: R5 *



Splicing out state t2 (and then t0)

R1:   0 10*2
R2:   2 10*1
R3:   1 20*2
R4:   0 20*1
R5:   R1 R2R4*R3

Delete t0 now that it is redundant

R6

fs

R6:   R5*



Splicing out state t2 (and then t0)

R1:   0 10*2
R2:   2 10*1
R3:   1 20*2
R4:   0 20*1
R5:   R1 R2R4*R3
R6:   R5*

Regular expressions to add to edges

R6

fs

Final regular expression: R6 =
(0 10*2 (2 10*1)(0 20*1)*(1 20*2))*



Application of FSMs: Pattern matching

• Given 
– a string s of characters

– a pattern p of characters

– usually 

• Find
– all occurrences of the pattern p in the string s

• Obvious algorithm: 

– try to see if p matches at each of the positions in s
stop at a failed match and try matching at the next 
position:   running time.



Application of FSMs: Pattern Matching

• With DFAs can do this in time.

• See Extra Credit problem on HW8 for some ideas 
of how to get to O(m2 + n).



Last time: NFA to DFA

c

a

b

0

0,1

1

0

NFA

a,b

DFA

0

c 

1

b 

b,c

1

0

a,b,c



1

0,1

0

0

1

1
0



Exponential Blow-up in Simulating Nondeterminism

• In general the DFA might need a state for every 
subset of states of the NFA
– Power set of the set of states of the NFA

– -state NFA yields DFA with at most states

– We saw an example where roughly is necessary

“Is the th char from the end a 1?”

The famous “P=NP?” question asks whether a 
similar blow-up is always necessary to get rid of 
nondeterminism for polynomial-time algorithms


