
CSE 311: Foundations of Computing

Topic 10:  Finite State Machines



Last time: Languages — REs and CFGs

Saw two new ways of defining languages

• Regular Expressions (0  1)* 0110 (0  1)*
– easy to understand (declarative)

• Context-free Grammars S  SS | 0S1 | 1S0 | 
– more expressive

– (≈ recursively-defined sets)

We will connect these to machines shortly.

But first, we need some new math terminology….



Selecting strings using labeled graphs as “machines”



Finite State Machines

“Start 
here”

“If I get this symbol, follow the 
arrow…”

The circles are called “states”
We’re only in a single state at 
any point in time…

The “double circle” means “the 
input is good if it ends here”



Which strings does this machine say are OK?



Which strings does this machine say are OK?

The set of all binary 
strings that end in 0



Finite State Machines

• States

• Transitions on input symbols

• Start state and final states

• The “language recognized” by the machine is the 
set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

010Old State
s1s0s0

s2s0s1

s3s0s2

s3s3s3



10Old State
s1s0s0

s2s0s1

s3s0s2

s3s3s3

Finite State Machines

• Each machine designed for strings over some 
fixed alphabet .

• Must have a transition defined from each state for 
every symbol in .

s0 s2 s3s1
111

0,1

0

0

0



10Old State
s1s0s0

s2s0s1

s3s0s2

s3s3s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0



10Old State
s1s0s0

s2s0s1

s3s0s2

s3s3s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0

The set of all binary strings that contain 111
or don’t end in 1



Applications of FSMs (a.k.a. Finite Automata)

• Implementation of regular expression matching in 
programs like grep

• Control structures for sequential logic in digital 
circuits

• Algorithms for communication and cache-
coherence protocols

– Each agent runs its own FSM

• Design specifications for reactive systems

– Components are communicating FSMs



Applications of FSMs (a.k.a. Finite Automata)

• Formal verification of systems

– Is an unsafe state reachable?

• Computer games

– FSMs implement non-player characters

• Minimization algorithms for FSMs can be 
extended to more general models used in

– Text prediction

– Speech recognition



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

2 0,10,1

2



FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {

int sum = 0;

for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) == '2’)

sum = (sum + 2) % 3;

if (str.charAt(i) == '1’)

sum = (sum + 1) % 3;

if (str.charAt(i) == ‘0’)

sum = (sum + 0) % 3;

}

return sum == 0;

}



State Machine Design Recipe

Given a language, how do you design a state machine for it?

Need enough states to:

• Decide whether to accept or reject at the end

• Update the state on each new character



State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0



State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

Can we get away with two states?
• One for 0 mod 3 and one for everything else



State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

Can we get away with two states?
• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can’t update the state on each new character



State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

Can we get away with two states?
• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can’t update the state on each new character:
• If you’re in the “not 0 mod 3” state, and the next 

character is 1, which state should you go to?



State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

So, we need three states. 

What information should we track? 

t0 t2

t1



Strings over {0, 1, 2}

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

0

0

0

1 1

1

2 2

2



FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {

int sum = 0;

for (int i = 0; i < str.length(); i++) {

if (str.charAt(i) == '2’)

sum = (sum + 2) % 3;

if (str.charAt(i) == '1’)

sum = (sum + 1) % 3;

if (str.charAt(i) == ‘0’)

sum = (sum + 0) % 3;

}

return sum == 0;

}

FSMs can model Java code with
a finite number of fixed-size variables
that makes one pass through input



FSM to Java code

int[][] TRANSITION = {...};

boolean sumCongruentToZero(String str) {

int state = 0;

for (int i = 0; i < str.length(); i++) {

int d = str.charAt(i) - ‘0’;

state = TRANSITION[state][d];

}

return state == 0;

}



Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

0

0

0

1 1

1

2 2

2

s0 s1

2 0,10,1

2



Strings over {0,1,2} w/ even number of 2’s AND mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2



Strings over {0,1,2} w/ even number of 2’s AND mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2



Strings over {0,1,2} w/ even number of 2’s OR mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2



Strings over {0,1,2} w/ even number of 2’s XOR mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2



What language does this machine recognize?

s0

s2 s3

s1
1

1

1

1

0

0

0

0



What language does this machine recognize?

s0

s2 s3

s1
1

1

1

1

0

0

0

0

The set of all binary strings with # of 1’s # of 0’s (mod 2)
(both are even or both are odd).



The set of binary strings with a 1 in the 3rd position from the start



The set of binary strings with a 1 in the 3rd position from the start

s0 s2 As1
10,10,1

0,1

R

0
0,1



The set of binary strings with a 1 in the 3rd position from the end



3 bit shift register

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0 1

0

0

00

“Remember the last three bits”



001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

10

00 01 10 11

11

1

0

0 0

0 0 0 0
1

1

1
1

The set of binary strings with a 1 in the 3rd position from the end



001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0 1

0

0

00

The set of binary strings with a 1 in the 3rd position from the end



The beginning versus the end

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

s0 s2 As1
10,10,1

0,1

R

0 0,1



Adding Output to Finite State Machines

• So far we have considered finite state 
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers



Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar



Vending Machine, v0.1

0 5 10 15

D D

N N N, D

B, S

Basic transitions on N (nickel),  D (dime),  B (butterfinger), S (snickers)



Vending Machine, v0.2

0’   
[B]

5 10

15

Adding output to states:  N – Nickel,  S – Snickers, B – Butterfinger

15’ 
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D B

S

S



Vending Machine, v1.0

0’  
[B]

5 10

15

Adding additional “unexpected” transitions to cover all symbols for each state

15’
[N]

0

0” 
[S]

N

N

N

N

N

B

D

D

D

D

D
B

S

S

15” 
[D]S

B

B,S

B,S

B,S

B,S
B,S

N

N

N

D

D

D



Recall: Finite State Machines

• States

• Transitions on input symbols

• Start state and final states

• The “language recognized” by the machine is the 
set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

010Old State
s1s0s0

s2s0s1

s3s0s2

s3s3s3



10Old State
s1s0s0

s2s0s1

s3s0s2

s3s3s3

Recall: Finite State Machines

• Each machine designed for strings over some 
fixed alphabet .

• Must have a transition defined from each state for 
every symbol in .

s0 s2 s3s1
111

0,1

0

0

0



State Minimization

• Many FSMs (DFAs) for the same problem

• Take a given FSM and try to reduce its state 
set by combining states
– Algorithm will always produce the unique 

minimal equivalent machine (up to renaming of 
states) but we won’t prove this



State Minimization Algorithm

• Put states into groups

• Try to find groups that can be collapsed into one state
– states can keep track of information that isn’t necessary to 

determine whether to accept or reject

• Group states together until we can prove that 
collapsing them can change the accept/reject result
– find a specific string x such that:

starting from state A, following edges according to x ends in accept
starting from state B, following edges according to x ends in reject

– (algorithm below could be modified to show these strings)



State Minimization Algorithm

1. Put states into groups based on their outputs 
(whether they accept or reject)



State Minimization Algorithm

1. Put states into groups based on their outputs 
(whether they accept or reject)

2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group 

G agree on which group s leads to, split G into smaller 
groups based on which group the states go to on s

3. Finally, convert groups to states

G1

G2

G3

s
s

s

s

G10
G2

G3

s

s

s

s
G11



State Minimization Example

state 
transition table

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0



State Minimization Example

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)



State Minimization Example

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to, 
split G based on which group the states go 
to on s



State Minimization Example

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to, 
split G based on which group the states go 
to on s



State Minimization Example

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2
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2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to, 
split G based on which group the states go 
to on s



State Minimization Example

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2

1

2

3
1

0

S0
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Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to, 
split G based on which group the states go 
to on s



State Minimization Example

state 
transition table

present next state        output
state 0 1 2 3

S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to, 
split G based on which group the states go 
to on s



State Minimization Example

state 
transition table

present next state        output
state 0 1 2 3
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S5 0
S2 S1 S3 S2 S4 1
S3 S1 S0 S4 S5 0
S4 S0 S1 S2 S5 1
S5 S1 S4 S0 S5 0

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

3
2

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Finally convert groups to states:

Can combine states S0-S4 and
S3-S5.  

In table replace all S4 with S0 
and all S5 with S3



Minimized Machine

state 
transition table

present next state        output
state 0 1 2 3
S0 S0 S1 S2 S3 1
S1 S0 S3 S1 S3 0
S2 S1 S3 S2 S0 1
S3 S1 S0 S0 S3 0

2
1

3

0

0

1

3

2

2
0

0

3

1,2

S0

S2

S1

S3

1,3



A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

The set of all binary strings with # of 1’s # of 0’s (mod 2).

#0s is even

#0s is odd

#1s is even #1s is odd



A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

Split states into 
accept/reject groups

Every symbol causes 
the DFA to go from one 
group to the other so 
neither group needs to 
be split



Minimized DFA

s0
s3

s1
s2

0,1

0,1

= The set of all binary strings with even length.

The set of all binary strings with # of 1’s # of 0’s (mod 2).

length is even length is odd


