CSE 311: Foundations of Computing

Topic 10: Finite State Machines

Saw two new ways of defining languages

- Regular Expressions $(0 \cup 1)^* 0110 (0 \cup 1)^*$
 - easy to understand (declarative)
- Context-free Grammars $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$
 - more expressive
 - (≈ recursively-defined sets)

We will connect these to machines shortly. But first, we need some new math terminology....

Selecting strings using labeled graphs as "machines"

Finite State Machines

Which strings does this machine say are OK?

Which strings does this machine say are OK?

The set of all binary strings that end in 0

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ .

What language does this machine recognize?

Old State	0	1
s ₀	s ₀	S ₁
S ₁	s ₀	s ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃

What language does this machine recognize?

The set of all binary strings that contain **111** or don't end in **1**

Old State	0	1
s ₀	s ₀	S_1
S ₁	s ₀	s ₂
s ₂	s ₀	S ₃
S ₃	S ₃	S ₃

Applications of FSMs (a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 Components are communicating ESMs
 - Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs implement non-player characters
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition

Strings over {0, 1, 2}

M₁: Strings with an even number of 2's

 M_1 : Strings with an even number of 2's


```
boolean sumCongruentToZero(String str) {
   int sum = 0;
   for (int i = 0; i < str.length(); i++) {</pre>
      if (str.charAt(i) == '2')
         sum = (sum + 2) \% 3;
      if (str.charAt(i) == '1')
         sum = (sum + 1) \% 3;
      if (str.charAt(i) == '0')
         sum = (sum + 0) \% 3;
   }
   return sum == 0;
```

Given a language, how do you design a state machine for it?

Need enough states to:

- Decide whether to accept or reject at the end
- Update the state on each new character

State Machine Design Recipe

M₂: Strings where the sum of digits mod 3 is 0

Can we get away with two states?

• One for 0 mod 3 and one for everything else

Can we get away with two states?

• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can't update the state on each new character

Can we get away with two states?

• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can't update the state on each new character:

• If you're in the "not 0 mod 3" state, and the next character is 1, which state should you go to?

State Machine Design Recipe

M₂: Strings where the sum of digits mod 3 is 0

So, we need three states. What information should we track?


```
boolean sumCongruentToZero(String str) {
   int sum = 0;
   for (int i = 0; i < str.length(); i++) {</pre>
      if (str.charAt(i) == '2')
          sum = (sum + 2) \% 3;
      if (str.charAt(i) == '1')
          sum = (sum + 1) \% 3;
      if (str.charAt(i) == '0')
          sum = (sum + 0) \% 3;
   }
                       FSMs can model Java code with
   return sum ==
                     a finite number of fixed-size variables
                      that makes one pass through input
```

int[][] TRANSITION = {...};

```
boolean sumCongruentToZero(String str) {
    int state = 0;
    for (int i = 0; i < str.length(); i++) {
        int d = str.charAt(i) - '0';
        state = TRANSITION[state][d];
    }
    return state == 0;
}</pre>
```

M₁: Strings with an even number of 2's

M₂: Strings where the sum of digits mod 3 is 0

Strings over {0,1,2} w/ even number of 2's AND mod 3 sum 0

Strings over {0,1,2} w/ even number of 2's OR mod 3 sum 0

Strings over {0,1,2} w/ even number of 2's XOR mod 3 sum 0

What language does this machine recognize?

What language does this machine recognize?

The set of all binary strings with # of 1's \equiv # of 0's (mod 2) (both are even or both are odd).

The set of binary strings with a 1 in the 3rd position from the start

3 bit shift register "Remember the last three bits"

The set of binary strings with a 1 in the 3rd position from the end

The beginning versus the end

Adding Output to Finite State Machines

- So far we have considered finite state machines that just accept/reject strings

 called "Deterministic Finite Automata" or DFAs
- Now we consider finite state machines with output
 - These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels Press S or B for a candy bar

Vending Machine, v0.1

B, S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

Vending Machine, v1.0

Adding additional "unexpected" transitions to cover all symbols for each state

Recall: Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Recall: Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ .

- Many FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
 - Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State Minimization Algorithm

- Put states into groups
- Try to find groups that can be collapsed into one state
 - states can keep track of information that isn't necessary to determine whether to accept or reject
- Group states together until we can prove that collapsing them can change the accept/reject result
 - find a specific string x such that:
 - starting from state A, following edges according to x ends in accept starting from state B, following edges according to x ends in reject
 - (algorithm below could be modified to show these strings)

State Minimization Algorithm

1. Put states into groups based on their outputs (whether they accept or reject)

State Minimization Algorithm

- 1. Put states into groups based on their outputs (whether they accept or reject)
- 2. Repeat the following until no change happens
 - a. If there is a symbol s so that not all states in a group
 G agree on which group s leads to, split G into smaller
 groups based on which group the states go to on s

3. Finally, convert groups to states

present		next	output		
state	0	1	2	3	-
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)

present		nex	output		
state	0	1	2	3	_
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)

present		next	output		
state	0	1	2	3	-
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S 1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)

present	I	next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)

present	next state				output
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)

present		next	output		
state	0	1	2	3	-
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)

present		next	output		
state	0	1	2	3	_
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)

present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
<mark>S2</mark>	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	SO	S5	0

state transition table

Finally convert groups to states:

Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

Minimized Machine

present	I	nex	output				
state	0	1	2	3			
SO	SO	S1	S2	S3	1		
S1	SO	S3	S1	S3	0		
<mark>S2</mark>	S1	S3	S2	SO	1		
S3	S1	SO	SO	S3	0		
state							
transition table							

A Simpler Minimization Example

#0s is even

#0s is odd

#1s is even #1s is odd

The set of all binary strings with # of 1's \equiv # of 0's (mod 2).

A Simpler Minimization Example

Split states into accept/reject groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA

length is even length is odd

The set of all binary strings with # of 1's \equiv # of 0's (mod 2). = The set of all binary strings with even length.