
Regular Expressions,
Context Free Grammars

CSE 311: Foundations of
Computing I
Lecture 19

Announcements

• Homework 6 is due Friday 11:59pm

• Midterm grades tomorrow, 7/30 evening

Theoretical Computer Science

Recall: Course Goals

1. Learn to make & clearly communicate rigorous formal arguments
- Mathematical Proofs

2. Understand mathematical objects that are widely used in CS
- Number Theory, Set Theory, Recursively-Defined Functions

3. Explore and analyze models of computation
- Regular Expressions, Context-Free Grammars, Finite Automata

Languages

Definition:
A language is a set of strings.

For Example:

• “The set of all valid English sentences”

• “The set of all binary strings of even length”

• “The set of all syntactically correct Java programs”

Languages in Theoretical Computer Science

• We want to study different models of computation, and the strengths &

limitations of each.

• A computer is said to recognize a language if it can distinguish which

strings are in a language vs. which are not.

• One way to evaluate how powerful a model of computation is is to

determine which languages it can recognize.

Regular Languages
One class of languages

Regular Expressions

Basis Step:
• is a regular expression
• is a regular expression for any

Recursive Step: If and are regular expressions, then…
• is a regular expression
• is a regular expression
• ∗

Regular Expressions

Each regular expression matches a set of strings (a language).

matches only the empty string

matches only the single-character string

Can Regex express any language?

All binary strings with an equal number of 0’s and 1’s

Can Regex represent any pattern?
All binary strings with an equal number of 0’s and 1’s

Does this work? (01 U 10)*

Can Regex represent any pattern?
All binary strings with an equal number of 0’s and 1’s

Does this work? (01 U 10)*

Can Regex represent any pattern?
All binary strings with an equal number of 0’s and 1’s

Does this work? (01 U 10)*

Sometimes! 010110

But what about: 0011

Can Regex represent any pattern?
All binary strings with an equal number of 0’s and 1’s

Does this work? (01 U 10)*

Sometimes! 010110
But what about: 0011

Would this cover that case: 0* 1*

Can Regex represent any pattern?
All binary strings with an equal number of 0’s and 1’s

Does this work? (01 U 10)*

Sometimes! 010110
But what about: 0011

Would this cover that case: 0* 1*

Careful! 0*1* would allow 00011
which should not be produced

Is this even possible?!
A regex cannot represent “All binary strings with an equal number of 0’s
and 1’s” because this is an irregular language

Regex: regular expression for regular languages

Regular Languages

Definitions:

Regular Languages are languages that can be specified by a regular

expression.

Irregular Languages are languages that are not regular.

Irregular Languages

It turns out a lot of useful languages are irregular.

• Binary strings with an equal number of 0s and 1s

• Palindromes (strings that read the same forwards and backwards)

• Matched parentheses, e.g.

• Properly formed arithmetic expressions

Context Free Languages
Another class of languages

Context-Free Languages

• We just saw some limitations of Regular Languages

• Context-Free Languages are a strictly larger class of languages

• Context-Free Languages are generated by Context-Free Grammars

(just like Regular Languages are specified by Regular Expressions)

Context-Free
Languages

Regular
Languages

Context-Free Grammars (CFGs)

• A production rule for a nonterminal takes the form:
ଵ ଶ

where each is a string of terminals and nonterminals

For example:

Context-Free Grammars (CFGs)

• A production rule for a nonterminal takes the form:
ଵ ଶ

where each is a string of terminals and nonterminals

For example:

Context-Free Grammars (CFGs)

For example:
terminal

Start from S

• A Non-terminal symbol means you can still select
another symbol to concatenate

• A terminal symbol is the last symbol you can select

Non-terminal

Context-Free Grammars

• A Context-Free Grammar is a finite set of production rules, involving:
- Alphabet of terminal symbols (e.g.)
- A finite set of nonterminal symbols (e.g.)
- One special nonterminal called the start symbol, usually

Context-Free Grammars

We think of Context-Free Grammars as generating strings.

1. Start from the start symbol .

2. Choose a nonterminal, e.g. , in the string, and replace it by one of the ’s
in the rules for

ଵ ଶ

3. Repeat step 2 until there are no nonterminals left.

The language that the CFG describes is the set of all strings that it generates.

Regex to CFGs?
Union
(1 U 0)

Kleene Star
(1 U 0)*

Concatenation
(1*0*)

Context-Free Grammars (CFGs)

For example:

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”
• “caab”

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”

• “aa”
• “aab”
• “caab”

S

A b

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”

c can only be picked from the
A non terminal

• “aa”
• “aab”
• “caab”

NO!

A b

S

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”

No! You must start from S where we are
required to use at least one b or have one c

• “aab”
• “caab”

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”

• “caab”

S

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”

• “caab”

S

A b

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”

• “caab”

S

A b

A a

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”

• “caab”

S

A b

A a

A a

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”

• “caab”

S

A b

A a

A a

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”

• “caab”

S

A b

A a

A a

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”
• “caab”

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”
• “caab”

S

A b

A a

A a

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”
• “caab”

This does not work! We cannot
select Ab

S

A b

A a

A a

Context-Free Grammars (CFGs)

For example: Can you create:
• “cb”
• “aa”
• “aab”
• “caab”
This does not work! We cannot
select Ab

S

A b

A a

A a

Example

Example

The set of all binary strings with any number of 0s followed by any

number of 1s

Example

Example

The set of all binary palindromes.

Example

CFG for the language

Example

CFG for the language

Example

CFG for the language

Example

CFG for the language

Exercises

CFG for the set of binary strings with the same number of 0s as 1s.

CFG for the set of balanced parentheses. E.g.

Exercises

CFG for the set of binary strings with the same number of 0s as 1s.

CFG for the set of balanced parentheses. E.g.

Exercises

CFG for the set of binary strings with the same number of 0s as 1s.

CFG for the set of balanced parentheses. E.g.

Simple Arithmetic Expressions
E E+E | E E | E | x | y | z | 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Generate (2 x) + y

Simple Arithmetic Expressions
E E+E | E E | E | x | y | z | 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Generate (2 x) + y

E E+E (E)+E (E E)+E (2 E)+E (2 x)+E (2 x)+y

Exercises

All binary strings that start with 11.

Exercises

All binary strings that start with 11.
Thinking back to regular expressions…

Exercises

All binary strings that start with 11.
Thinking back to regular expressions…

11 (0 ∪ 1)*

Exercises

All binary strings that start with 11.
Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

Exercises

All binary strings that start with 11.
Thinking back to regular expressions…

11 (0 ∪ 1)*

Now generate the CFG…

S → 11T
T → 1T | 0T | ε

Exercises
All binary strings that contain at most one 1.

Exercises
All binary strings that contain at most one 1.

Thinking back to Regular expressions…

Exercises
All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Exercises
All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

Exercises
All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Exercises
All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Alternative solution:

Exercises
All binary strings that contain at most one 1.

Thinking back to Regular expressions…

0* (1 ∪ ε) 0*

Now generate the CFG…

S → ABA
A → 0A | ε
B → 1 | ε

Alternative solution:

S → 0S | S0| 1 | 0 | ε

