
Regular Expressions CSE 311 Autumn 2023
Lecture 17

Announcements
Everyone will get credit for yesterday’s section

HW 4 part 1 grades will be out today

HW 5 Is due tonight and HW 6 releases today

Quick Set Theory Proof:
Prove that if , then .
Suppose A = B.

Quick Set Theory Proof:
Prove that if , then .
Suppose A = B.
Let be arbitrary. This means that by definition of
powerset. Since , this means that or . Therefore,

Let be arbitrary. This means that by definition of
powerset. Since , this means that or . Therefore,

.
Since and we have
Therefore, if , then .

Theoretical Computer Science

Recall: Course Goals

1. Learn to make & clearly communicate rigorous formal arguments
- Mathematical Proofs

2. Understand mathematical objects that are widely used in CS
- Number Theory, Set Theory, Recursively-Defined Functions

3. Explore and analyze models of computation
- Regular Expressions, Context-Free Grammars, Finite Automata

Languages

Definition:
A language is a set of strings.

For Example:

• “The set of all valid English sentences”

• “The set of all binary strings of even length”

• “The set of all syntactically correct Java programs”

Languages in Theoretical Computer Science

• We want to study different models of computation, and the strengths &

limitations of each.

• A computer is said to recognize a language if it can distinguish which

strings are in a language vs. which are not.

• One way to evaluate how powerful a model of computation is is to

determine which languages it can recognize.

Regular Expressions In Practice
EXTREMELY useful. Used to define valid “tokens” (like legal variable names or all known keywords when writing
compilers/languages)
Used in grep to actually search through documents.
Pattern p = Pattern.compile("a*b");
Matcher m = p.matcher("aaaaab");
boolean b = m.matches();

• ^ start of string

• $ end of string

• [01] a 0 or a 1

• [0-9] any single digit

• \. period \, comma \- minus

• . any single character

• ab a followed by b (AB)

• (a|b) a or b (A B)
a? zero or one of a (A)
a* zero or more of a A*

• a+ one or more of a AA*

e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

Regular Languages
One class of languages

Regular Expressions

is a regular expression. The empty string itself matches the pattern (and nothing
else does).

is a regular expression. No strings match this pattern.
is a regular expression, for any (i.e. any character). The character itself

matching this pattern.

If are regular expressions then is a regular expression
matched by any string that matches or that matches [or both]).

If are regular expressions then is a regular expression.
matched by any string such that , matches and matches .

If is a regular expression, then ∗ is a regular expression.
matched by any string that can be divided into or more strings that match

Regular Expressions

Each regular expression matches a set of strings (a language).

matches all strings that either matches or matches.

matches all strings where matches and matches .

∗ matches all strings with any number of strings that matches, i.e.

Regular Expressions

Each regular expression matches a set of strings (a language).

matches all strings that either matches or matches.

matches the strings in the set

matches all strings where matches and matches .

matches the strings in the set

∗ matches all strings with any number of strings that matches, i.e.

∗ matches the strings in the set

Examples

∗ ∗

∗

Examples

∗ ∗

Matches strings with any number of s followed by any number of s.

Matches strings in the set .

∗

Matches all binary strings where s and s come in pairs

Examples

• Construct a regular expression that matches the given set of strings.

All binary strings.

• All binary strings that contain .

Examples

• Construct a regular expression that matches the given set of strings.

All binary strings.
∗

• All binary strings that contain .
∗ ∗

Examples

Construct a regular expression that matches the given set of strings.

All binary strings that have an even number of s.

All binary strings that don’t contain .

Examples

• Construct a regular expression that matches the given set of strings.

All binary strings that have an even number of s.
∗ ∗

• All binary strings that don’t contain .
∗

Practical Advice

• Check and single character strings. Those are often edge cases.

• List 5 strings that should be matched, and 5 strings that shouldn’t be.

Test your RegEx against those strings.

• Remember allows for 0 copies! To say “at least one copy”, use ∗.

Exercises

• Construct a regular expression that matches the given set of strings.

The set of all binary strings of odd length.

• The set of all binary strings with at most two ones.

• The set of all binary strings with equal number of 0s and 1s.

Exercises

• Construct a regular expression that matches the given set of strings.

The set of all binary strings of odd length.
∗

• The set of all binary strings with at most two ones.
∗ ∗ ∗

• The set of all binary strings with equal number of 0s and 1s.

Not possible!

Note:

• Many implementations of RegExs are more powerful than our
theoretical Regular Expression

Finite Languages vs Regular Expressions
• All Finite Languages have a regular expression

• Why?

• Could make this formal by induction

Finite Languages vs Regular Expressions
• Every Regular Expression generates a finite language if it does not

use *

Why?

• You can prove this by structural induction on the syntax of a regular
expression

Star-free implies finite

Let A be a regular expression that does not use *. Then L(A) is finite.

Proof: We proceed by informal (don’t do this on HW) structural induction on A.

Case ε:

Case a:

Case A B:

L(ε) = {ε}, which is finite

L(a) = {a}, which is finite

L(A B) = L(A) L(B)
By the IH, each is finite, so their union is finite.

Star-free implies finite

Let A be a regular expression that does not use *. Then L(A) is finite.

Proof: We proceed by structural induction on A.
Case AB:

By the IH, and are finite.

Every element of is covered by a pair (y, z) where
and , so is finite.

(No case for A*!)

Regular Languages

• Definitions:

• Regular Languages are languages that can be specified by a regular

expression.

• Irregular Languages are languages that are not regular.

Irregular Languages

• It turns out a lot of useful languages are irregular.

• Binary strings with an equal number of 0s and 1s

• Palindromes (strings that read the same forwards and backwards)

• Matched parentheses, e.g.

• Properly formed arithmetic expressions

Context Free Languages
Another class of languages

Context-Free Languages

• We just saw some limitations of Regular Languages

• Context-Free Languages are a strictly larger class of languages

• Context-Free Languages are generated by Context-Free Grammars

(just like Regular Languages are specified by Regular Expressions)

Context-Free
Languages

Regular
Languages

Context-Free Grammars (CFGs)

• A Context-Free Grammar is a finite set of production rules, involving:
- Alphabet of terminal symbols (e.g.)
- A finite set of nonterminal symbols (e.g.)
- One special nonterminal called the start symbol, usually

• A production rule for a nonterminal takes the form:
ଵ ଶ

where each is a string of terminals and nonterminals

Context-Free Grammars (CFGs)

• For example:

Context-Free Grammars

• We think of Context-Free Grammars as generating strings.

1. Start from the start symbol .

2. Choose a nonterminal, e.g. , in the string, and replace it by one of the ’s
in the rules for

ଵ ଶ

3. Repeat step 2 until there are no nonterminals left.

• The language that the CFG describes is the set of all strings that it
generates.

Example Context-Free Grammars
Example: S 0S0 | 1S1 | 0 | 1 |

How does this grammar generate 0110?

S 0S0 01S10 01ε10 = 0110

Example

• The set of all binary strings with any number of 0s followed by any

number of 1s

Example

• The set of all binary palindromes.

Example

CFG for the language

Example

CFG for the language

Example

CFG for the language

Example

CFG for the language

•

•

Exercises

• CFG for the set of binary strings with the same number of 0s as 1s.

• CFG for the set of balanced parentheses. E.g.

Exercises

• CFG for the set of binary strings with the same number of 0s as 1s.

•

• CFG for the set of balanced parentheses. E.g.

•

