

Regular Expressions | CSE 311 Autumn 2023

Lecture 17

Announcements

Everyone will get credit for yesterday's section

HW 4 part 1 grades will be out today

HW 5 Is due tonight and HW 6 releases today

Quick Set Theory Proof:

Quick Set Theory Proof:
Prove that if $A = B$, then $P(A) = P(B)$.
Suppose A = B.

Quick Set Theory Proof:

```
Prove that if A = B, then P(A) = P(B).
```

```
Suppose A = B.
```

```
Let X \in P(A) be arbitrary. This means that X \subseteq A by definition of
powerset. Since A = B, this means that X \subseteq B or X \in P(B). Therefore,
P(A) \subseteq P(B)
```

```
Let X \in P(B) be arbitrary. This means that X \subseteq B by definition of
powerset. Since A = B, this means that X \subseteq A or X \in P(A). Therefore,
P(B) \subseteq P(A).<br>Since P(A) \subseteq P(B) and P(B) \subseteq P(A), we have P(A) = P(B)
```

```
Therefore, if A = B, then P(A) = P(B).
```


Recall: Course Goals

- Recall: Course Goals
1. Learn to make & clearly communicate rigorous formal arguments
- Mathematical Proofs
2. Understand mathematical objects that are widely used in CS **Example 2. Understand mathematical objects that are widely used in CS**
2. Understand mathematical objects that are widely used in CS
2. Understand mathematical objects that are widely used in CS
2. Fxplore and analyze mod **Ecall: Course Goals

Learn to make & clearly communicate rigorous formal arguments

- Mathematical Proofs

Understand mathematical objects that are widely used in CS

- Number Theory, Set Theory, Recursively-Defined Funct**
	-
- **Ecall: Course Goals

Learn to make & clearly communica**

 Mathematical Proofs

 Number Theory, Set Theory, Recursivel **Recall: Course Goals**
 3. Learn to make & clearly communicate rigorous formal argum
 4. Understand mathematical objects that are widely used in CS
 5. Understand mathematical objects that are widely used in CS
 5. Example 12 Course Goals
 Example 18 Context Automorphic Context
 Contextand mathematical objects that are widely used in
 Context-Free Mumber Theory, Set Theory, Recursively-Defined Functions
 Explore and analyze
	-
- -

Languages

Definition: A language is a set of strings.

For Example:

- "The set of all valid English sentences"
- "The set of all binary strings of even length"
- "The set of all syntactically correct Java programs"

Languages in Theoretical Computer Science

- We want to study different models of computation, and the strengths & limitations of each. Languages in Theoretical Computer Science
• We want to study different models of computation, and the strengths &
limitations of each.
• A computer is said to recognize a language if it can distinguish which
strings are in
- A computer is said to recognize a language if it can distinguish which strings are in a language vs. which are not.
- determine which languages it can recognize.

Regular Expressions In Practice Regular Expressions In Practice
EXTREMELY useful. Used to define valid "tokens" (like legal variable names or all knov
compilers/languages)
Used in grep to actually search through documents.
Pattern p = Pattern.compile("a* Regular Expressions In
EXTREMELY useful. Used to define valid "tokens" (like legal v
compilers/languages)
Date in grep to actually search through documents.
Date in grep to actually search through documents.
Matcher m = p.

EXTREMELY useful. Used to define valid "tokens" (like legal variable names or all known keywords when writing compilers/languages)

```
Pattern p = Pattern.compile("a*b");
Matcher m = p.\text{matter}('daaaab'');
```
- ^ start of string
- \$ end of string
- [01] a 0 or a 1
- [0-9] any single digit
- \backslash . period \backslash , comma \backslash minus
- . any single character

e.g. Λ [\-+]?[0-9]*(\.|\,)?[0-9]+\$

General form of decimal number e.g. 9.12 or -9,8 (Europe)

One class of languages

Regular Expressions

 ε is a regular expression. The empty string itself matches the pattern (and nothing else does). **Regular Expression**

Basis:
 ε is a regular expression. The empty string itself matches the pattern (and nothing
 e is a regular expression. No strings match this pattern.
 a is a regular expression, for any $a \in \Sigma$

 \emptyset is a regular expression. No strings match this pattern.

If A, B are regular expressions then $(A \cup B)$ is a regular expression matched by any string that matches A or that matches B [or both]).

If A, B are regular expressions then AB is a regular expression.

matched by any string x such that $x = yz$, y matches A and z matches B.

If A is a regular expression, then A^* is a regular expression.

matched by any string that can be divided into 0 or more strings that match A .

Regular Expressions

Each regular expression matches a set of strings (a language). $A \cup B$ matches all strings that either A matches or B matches.

AB matches all strings $x = yz$ where A matches y and B matches z.

 A^* matches all strings with any number of strings that A matches, i.e. $\varepsilon \cup A \cup A A \cup \cdots$

Regular Expressions

Each regular expression matches a set of strings (a language). $A \cup B$ matches all strings that either A matches or B matches.

 $(0 \cup 1)$ matches the strings in the set $\{0,1\}$

AB matches all strings $x = yz$ where A matches y and B matches z.

 $0(0 \cup 1)1$ matches the strings in the set $\{001,011\}$

 A^* matches all strings with any number of strings that A matches, i.e. $\varepsilon \cup A \cup A A \cup \cdots$

0^{*} matches the strings in the set $\{\varepsilon, 0, 00, 000, 0000\}$... }

 a^*b^*

$(0 \cup 1)0(0 \cup 1)0$

 $(00 \cup 11)^*$

 a^*b^*

Matches strings with any number of as followed by any number of bs .

 $(0 \cup 1)0(0 \cup 1)0$

Matches strings in the set $\{0000, 1000, 0010, 1010\}$.

∗

Matches all binary strings where 0s and 1s come in pairs

• Construct a regular expression that matches the given set of strings. All binary strings.

• All binary strings that contain 0110.

• Construct a regular expression that matches the given set of strings. All binary strings.

∗

• All binary strings that contain 0110.

 $(0 \cup 1)^*0110(0 \cup 1)^*$

Construct a regular expression that matches the given set of strings. All binary strings that have an even number of 1s.

All binary strings that don't contain 00.

• Construct a regular expression that matches the given set of strings. All binary strings that have an even number of 1s. $(10^*1 \cup 0)^*$

• All binary strings that don't contain 00. $(01 \cup 1)^*(0 \cup \varepsilon)$

Practical Advice

- Check ε and single character strings. Those are often edge cases.
- List 5 strings that should be matched, and 5 strings that shouldn't be. **actical Advice**
Check ε and single character strings. Those are of
List 5 strings that should be matched, and 5 string
Test your RegEx against those strings.
Remember $*$ allows for 0 copies! To say "at least c • Check ε and single character strings. Those are often edge cases.
• List 5 strings that should be matched, and 5 strings that shouldn't be.
• Test your RegEx against those strings.
• Remember * allows for 0 copies! To s
- Remember $*$ allows for 0 copies! To say "at least one copy", use AA^* .

Exercises

• Construct a regular expression that matches the given set of strings. The set of all binary strings of odd length.

• The set of all binary strings with at most two ones.

• The set of all binary strings with equal number of 0s and 1s.

Exercises

- Construct a regular expression that matches the given set of strings. The set of all binary strings of odd length. ∗
- The set of all binary strings with at most two ones. $0^*(1 \cup \varepsilon)0^*(1 \cup \varepsilon)0^*$
- The set of all binary strings with equal number of 0s and 1s. Not possible!

Note:

• Many implementations of RegExs are more powerful than our theoretical Regular Expression

Finite Languages vs Regular Expressions

• All Finite Languages have a regular expression

• Why?

• Could make this formal by induction

Finite Languages vs Regular Expressions

Finite Languages vs Regular Expressions
• Every Regular Expression generates a finite language if it does not use * use *

Why?

• You can prove this by structural induction on the syntax of a regular expression

Star-free implies finite

Let A be a regular expression that does not use $*$. Then L(A) is finite.

Proof: We proceed by informal (don't do this on HW) structural induction on A.

Case ε:

L(ε) = {ε}, which is finite

Case a:

 $L(a) = \{a\}$, which is finite

Case $A \cup B$:

 $L(A \cup B) = L(A) \cup L(B)$ By the IH, each is finite, so their union is finite.

Star-free implies finite

Let A be a regular expression that does not use $*$. Then L(A) is finite.

Proof: We proceed by structural induction on A. Case AB:

 $L(AB) = \{x : \exists y \in L(A), \exists z \in L(B) (x = y \cdot z)\}\$ By the IH, $L(A)$ and $L(B)$ are finite.

Every element of $L(AB)$ is covered by a pair (y, z) where $y \in L(A)$ and $z \in L(B)$, so $L(AB)$ is finite.

(No case for A*!)

Regular Languages

- Definitions:
- Regular Languages are languages that can be specified by a regular expression.
- Irregular Languages are languages that are not regular.

Irregular Languages

- It turns out a lot of useful languages are irregular.
- Binary strings with an equal number of 0s and 1s
- Palindromes (strings that read the same forwards and backwards)
- Matched parentheses, e.g. $((())()$
- Properly formed arithmetic expressions

Another class of languages

Context-Free Languages

- We just saw some limitations of Regular Languages
- Context-Free Languages are a strictly larger class of languages

• Context-Free Languages are generated by Context-Free Grammars (just like Regular Languages are specified by Regular Expressions)

Context-Free Grammars (CFGs)

- A Context-Free Grammar is a finite set of production rules, involving: **Superior Alphabet of the Cammand State of School State of Schools (e.g. 0, 1, a, b,** ε **)**
- Alphabet of *terminal* symbols (e.g. 0, 1, a, b, ε)
- A finite set of *nonterminal* symbols (e.g. A, B, S, T, R)
- One spe 9 ntext-Free Grammars (CFGs)
A Context-Free Grammar is a finite set of production rules, invo
- Alphabet of *terminal* symbols (e.g. 0, 1, a, b, ε)
- A finite set of *nonterminal* symbols (e.g. A, B, S, T, R)
- One specia **Solution 19.13**

A Context-Free Grammar is a finite set of production rules, involving

- Alphabet of *terminal* symbols (e.g. 0, 1, a, b, ε)

- A finite set of *nonterminal* symbols (e.g. A, B, S, T, R)

- One speci
	-
	-
	-
- A production rule for a nonterminal A takes the form: $A \rightarrow W_1 \mid W_2 \mid \cdots \mid W_k$

where each w_i is a string of terminals and nonterminals

Context-Free Grammars (CFGs)

- For example:
- $S \rightarrow Ab \mid c$
- $A \rightarrow Aa \mid \varepsilon$

Context-Free Grammars

- We think of Context-Free Grammars as generating strings.
-
- **1.** Start from the start symbol S.

2. Choose a nonterminal, e.g. S, in the string, and replace it by one of the w 's

in the rules for S.
 $S \rightarrow w_1 \mid w_2 \mid ... \mid w_k$ in the rules for **S** \rightarrow Ab | c

3. Repeat step 2 until there are no nonterminals left.

3. Repeat step 2 until there are no nonterminals left.

4. The language that the CFG describes is the set of all strings that it

5. The language th

 $S \rightarrow W_1 \mid W_2 \mid ... \mid W_k$

-
- The language that the CFG describes is the set of all strings that it generates.

For Example:
S
$$
\rightarrow
$$
 Ab | c
A \rightarrow Aa | ε

Example Context-Free Grammars

Example: $S \rightarrow 0S0 | 1S1 | 0 | 1 | \varepsilon$

How does this grammar generate 0110?

 $S \rightarrow 0S0$ | 151 | 0 | 1 | ε
ammar generate 0110?
 $S \rightarrow 0S0 \rightarrow 01S10 \rightarrow 01 \epsilon 10 = 0110$

 $S \rightarrow 0S \mid S1 \mid \varepsilon$

• The set of all binary strings with any number of 0s followed by any number of 1s

- $S \rightarrow 0S0$ | 1S1| 0| 1| ε
- The set of all binary palindromes.

CFG for the language $\{0^n1^n : n \geq 0\}$

CFG for the language $\{0^n1^n : n \geq 0\}$

 $S \rightarrow 0S1 \mid \varepsilon$

CFG for the language $\{0^n1^n23: n \geq 0\}$

CFG for the language $\{0^n1^n23: n \geq 0\}$

- $S \rightarrow A23$
- $A \rightarrow 0A1 \mid \varepsilon$

Exercises

• CFG for the set of binary strings with the same number of 0s as 1s.

• CFG for the set of balanced parentheses. E.g. $((())()$

Exercises

- CFG for the set of binary strings with the same number of 0s as 1s.
- $S \rightarrow SS$ | 0S1 | 1S0 | ε

- CFG for the set of balanced parentheses. E.g. $((())())$
- $S \rightarrow SS | (S) | \varepsilon$