REC

A

WHAT IS IT?

k

URSION
/

Structural Induction

CSE 311: Foundations of
Computing |
Lecture 16

Structural Induction Template

1. Define P(). Claim that P(s) holds for all s € §. State your proof is by
structural induction.

2. Base Case: Show P(b,), ..., P(b,,) holds for each basis step b4, ..., b,, In
S.

3. Inductive Hypothesis: Suppose P(x;), ..., P(x,,) for all values listed in
the recursive rules.

4. Inductive Step: Show P() holds for the “new element” given by the
recursive step. You will need a separate step for every rule.

5. Conclusion: Conclude that P(s) holds for all s € S by structural
induction.

‘ Structural Induction

On Strings

String Terminology

¥ is the alphabet, i.e. the set of all letters you can use in strings.

For example: £ = {0,1} or ¥ ={a,b,c,....,7,_}

¥* is the set of all strings you can build from the letters in the alphabet.
For example: If £ = {0,1} then 01001 € £*. If £ = {a,b, ¢,, Z,_}, then

i love induction € X*

g 1s the empty string

Analogous to " in Java

Recursive definition of Strings

2 is the alphabet
X* is the set of all strings
€ is the empty string

The set of all strings £* can be defined recursively (using Z, €):

Basis Step: € € X*

Recursive Step: Ifw € £* and a € X, then wa € X*

wa here means the string w with the character a appended on to it

len(e) =0 eR = ¢ Basis: € € X
PFOO]C len(wa) = len(w) + 1 (wa)R = awR Recursive: If w E Z* and a € X,
then wa € X*

1. Let P(s) be len(s®) = len(s). We prove P(s) for all strings s by structural
induction.

2. Base Case(s): (s = €). LHS: Since e® = ¢, len(e®) = len(¢) = 0. RHS: len(e) = 0.
Since 0 = 0, the base case holds.

3. Inductive Hypothesis: Suppose P(w) for some arbitrary string w. Then
len(wk) = len(w)

4. Inductive Step: | goql: len((wa)R) = len(wa)
Let a be an arbitrary character. Observe:

len((wa)®) = len(awR) By definition of reverse
= len(w®) + 1 By definition of length
= len(w) + 1 By IH
= len(wa) By definition of length

5. Conclusion: Thus P(s) holds for all strings s by structural induction.

More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree. @

Recursive Step: If T; and T, are rooted binary trees with roots r; and r,
then a tree rooted at a new node, with children r, r, Is a binary tree.

(AN

Exercise

Basis: null € Tree

Recursive: If L, R € Tree, and a € Z then (L,a,R) € Tree

Write out the following tree using our notation for trees.

Basis: null € Tree

Exe rCiIS€E Recursive: If L, R € Tree, and a € Z then (L,a,R) € Tree

Write out the following tree using our notation for trees.

((null, 5,null), 1, ((null, 4,null), 6, (null, 8, null)))

‘ Claim 1

Basis: null € Tree

Functions on Binary Trees

Recursive: If L, R € Tree, and a € Z then (L,a,R) € Tree

To prove interesting facts about trees, we need functions on trees.
Size:

size(null) = 0

size((L,a,R)) = 1 + size(L) + size(R)

Height:

height(null) = —1

ﬁneight((L, a, R)) =1+ max(height(L), height(R))

Functions on Binary

r€ees

size(null) = 0

size((L, a,R)) = 1 + size(L) + size(R)

What's the size the tree ((null, 5, null), 1, ((null, 4, null), 6, (null, 8, null)))?

size ((null, 5,null), 1, ((null, 4, null), 6, (null, 8, null)))

= 1 + size((null, 5,null)) + size((null, 4, null), 6, (null, 8, null))

=1+ 1+ size(null) + size(null) + 1 + size(null, 4, null) + size(null, 8, null)

= 3 4+ 1 + size(null) + size(null) + 1 + size(null) +size(null)

=5

Functions on Binary Trees

height(null) = —1
height((L, a, R)) =1+ max(height(L),height(R))

What's the height of the tree ((null, 5, null), 1, ((null, 4, null), 6, (null, 8, null)))?

height ((null, 5,null), 1, ((null, 4,null), 6, (null, 8, null)))

= 1 + max (height(null, 5, null),height((null, 4,null), 6, (null, 8, null)))

= 1+ max (1 + max(height(null), height(null)), 1 + max(height(null, 4, null), height(null, 8, null)))

= 1 + max (1 - 1,1+ max(l + max(height(null),height(null)), 1+ max(height(null),height(null))))

=1+ max(0,1 + max(1—1,1-1))

= 1+ max(0,1 + max(0,0)) =1+ max(0,1+0)=1+1=2 9 0

Claim 1

height(null) = —1
height((L, a,R)) =1+ max(height(L),height(R))

size(null) = 0
size((L, a, R)) = 1+ size(L) + size(R)

Claim 1: For every binary tree, size(T) < 2height(M+1 _ 1

height(T) = 2
size(T) =7
7<7=8-1=23-1=2%*"1-1

size(null) =0
size((L, a, R)) = 1 + size(L) + size(R)

height(null) = -1
height((L, a, R)) =1+ max(height(L),height(R))

Basis: null € Tree
Recursive: If L,R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof

1.

Let P(T) be

We show P(T) for all binary trees T by structural induction.

size(null) =0
size((L, a, R)) = 1 + size(L) + size(R)

height(null) = -1
height((L, a, R)) =1+ max(height(L),height(R))

Basis: null € Tree
Recursive: If L, R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof

Let P(T) be "size(T) < 2height(M+1 _ 1" We show P(T) for all binary trees T by structural induction.

1.

| size(null) =0 | height(null) = —1 | Basis: null € Tree
size((L,a,R)) = 1 + size(L) + size(R) height((L,a,R)) =1+ max(height(L),height(R)) Recursive: If L, R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof
1. Let P(T) be "size(T) < 2height(T+1 _ 1" We show P(T) for all binary trees T by structural induction.

2. Base Case: Consider the null tree. Then height(null) = —1 and size(null) = 0. Since
0<0=1-1=2%-1=2"11_1, the base case holds.

| size(null) =0 | height(null) = —1 | Basis: null € Tree
size((L,a,R)) = 1 + size(L) + size(R) height((L,a,R)) =1+ max(height(L),height(R)) Recursive: If L, R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof
1. Let P(T) be "size(T) < 2height(T+1 _ 1" We show P(T) for all binary trees T by structural induction.

2. Base Case: Consider the null tree. Then height(null) = —1 and size(null) = 0. Since
0<0=1-1=2%-1=2"11_1, the base case holds.

3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then size(L) < 2height(l)+1 _ 1 gng
size(R) < 2height(R)+1 _ 1

4. IS: Let a € Z be arbitrary. Consider the binary tree (L, a, R):

| size(null) =0 | height(null) = —1 | Basis: null € Tree

size((L,a,R)) = 1 + size(L) + size(R) height((L,a,R)) =1+ max(height(L),height(R)) Recursive: If L, R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof

1. Let P(T) be "size(T) < 2height(T+1 _ 1" We show P(T) for all binary trees T by structural induction.

2. Base Case: Consider the null tree. Then height(null) = —1 and size(null) = 0. Since
0<0=1-1=2%-1=2"11_1, the base case holds.

3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then size(L) < 2height(l)+1 _ 1 gng
size(R) < 2height(R)+1 _ 1

4. IS: Let a € Z be arbitrary. Consider the binary tree (L, a, R):
size((L,a,R)) = 1 + size(L) + size(R) Definition of Size

| size(null) =0 | height(null) = —1 | Basis: null € Tree

size((L,a,R)) = 1 + size(L) + size(R) height((L,a,R)) =1+ max(height(L),height(R)) Recursive: If L, R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof

1. Let P(T) be "size(T) < 2height(T+1 _ 1" We show P(T) for all binary trees T by structural induction.

2. Base Case: Consider the null tree. Then height(null) = —1 and size(null) = 0. Since
0<0=1-1=2%-1=2"11_1, the base case holds.

3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then size(L) < 2height(l)+1 _ 1 gng
size(R) < 2height(R)+1 _ 1

4. IS: Let a € Z be arbitrary. Consider the binary tree (L, a, R):
size((L,a,R)) = 1 + size(L) + size(R) Definition of Size
<1+ Zheight(L)+1 — 14+ 2height(R)+1 —1 By the |H
— Zheight(L)+1 + zheight(R)+1 —1 Algebra

| size(null) =0 | height(null) = —1 Basis: null € Tree

size((L,a,R)) = 1 + size(L) + size(R) height((L,a,R)) =1+ max(height(L),height(R)) Recursive: If L, R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof

1. Let P(T) be "size(T) < 2height(T+1 _ 1" We show P(T) for all binary trees T by structural induction.

2. Base Case: Consider the null tree. Then height(null) = —1 and size(null) = 0. Since
0<0=1-1=2%-1=2"11_1, the base case holds.

3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then size(L) < 2height(l)+1 _ 1 gng
size(R) < 2height(R)+1 _ 1

4. IS: Let a € Z be arbitrary. Consider the binary tree (L, a, R):

size((L,a,R)) = 1 + size(L) + size(R) Definition of Size
<1+ 2height(L)+1 — 14+ 2height(R)+1 -1 By the |H
— 2height(L)+1 + 2height(R)+1 —1 Algebra
< 2max(height(L),height(R))+1 + 2max(height(L),height(R))+1 —1 Property of max

— o . gmax(height(L) height(R))+1 _ 1 Algebra

| size(null) =0 | height(null) = —1 Basis: null € Tree

size((L,a,R)) = 1 + size(L) + size(R) height((L,a,R)) =1+ max(height(L),height(R)) Recursive: If L, R € Tree, and a € Z
then (L,a,R) € Tree

Claim 1 Proof
1. Let P(T) be "size(T) < 2height(T+1 _ 1" We show P(T) for all binary trees T by structural induction.

2. Base Case: Consider the null tree. Then height(null) = —1 and size(null) = 0. Since
0<0=1-1=2%-1=2"11_1, the base case holds.

3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then size(L) < 2height(l)+1 _ 1 gng
size(R) < 2height(R)+1 _ 1

4. IS: Let a € Z be arbitrary. Consider the binary tree (L, a, R):

size((L,a,R)) = 1 + size(L) + size(R) Definition of Size
<1+ 2height(L)+1 — 14+ 2height(R)+1 -1 By the |H
— Zheight(L)+1 + zheight(R)+1 —1 Algebra
< 2max(height(L),height(R))+1 + 2max(height(L),height(R))+1 —1 Property of max
— o . gmax(height(L) height(R))+1 _ 1 Algebra
= 2 . pheight(LaR)) _ ¢ Definition of Height
— 2height((L,a,R))+1 —1 Algebra

5. Thus P(T) holds for all trees T by structural induction.

‘ Claim 2

Basis: [| € List

Functions on Lists

Recursive: If L € List and a € Z then a :: LL € List

To prove interesting facts about lists, we need functions on lists.

Lengtn:
len([]) =0
len(a :: L) =1 + len(L)

Concatenation:
concat([[,R) =R

concat(a :: L,R) = a :: concat(L,R)

Claim 2

len([]) =0
len(a:: L) =1+ len(L)

concat([[,R) =R
concat(a :: L, R) = a :: concat(L, R)

Claim 2: For all lists L, R, len(concat(L, R)) = len(L) + len(R).

How do we prove a nested forall?

Let P(L) be “len(concat(L,R)) = len(L) + len(R) for all lists R € List".

We prove P(L) for all lists L. € List by structural induction.

5.

Basis: [] € List concat([],R) =R

. Recursive: If L € List and a € Z then concat(a :: L,R) = a :: concat(L, R)
Claim 2 Proof a L List
len([]) =0
len(a :: L) =1+ len(L)
Let P(L) be* . We prove P(L)
for all lists L € List by structural induction.
Base Case:
IH:
|S:

Thus P(L) holds for all lists L. € List by structural induction.

5.

Basis: [] € List concat([],R) =R
Recursive: If L € List and a € Z then concat(a :: L,R) = a :: concat(L, R)

Claim 2 Proof ol e List

len([]) =0
len(a :: L) =1+ len(L)

Let P(L) be “len(concat(L,R)) = len(L) + len(R) for all lists R € List”. We prove P(L)
for all lists L. € List by structural induction.

Base Case:

IH:

|S:

Thus P(L) holds for all lists L. € List by structural induction.

5.

Basis: [] € List concat([],R) =R
. Recursive: If L € List and a € Z then concat(a :: L,R) = a :: concat(L, R)
Claim 2 Proof @ L€ List
len([]) =0

len(a :: L) = 1+ len(L)

Let P(L) be “len(concat(L,R)) = len(L) + len(R) for all lists R € List”. We prove P(L)
for all lists L. € List by structural induction.

Base Case: Let R € List be arbitrary. Observe that len(concat([,R)) = len(R) = 0 +
len(R) = len([]) + len(R), so P([]) holds.
IH:

|S:

Thus P(L) holds for all lists L. € List by structural induction.

5.

Basis: [] € List concat([],R) =R
. Recursive: If L € List and a € Z then concat(a :: L,R) = a :: concat(L, R)
Claim 2 Proof @ L€ List
len([]) =0

len(a :: L) = 1+ len(L)

Let P(L) be “len(concat(L,R)) = len(L) + len(R) for all lists R € List”. We prove P(L)
for all lists L. € List by structural induction.

Base Case: Let R € List be arbitrary. Observe that len(concat([,R)) = len(R) = 0 +
len(R) = len([]) + len(R), so P([]) holds.

IH: Suppose that P(L) holds for some arbitrary L € List. That is, for all R € List,
len(concat(L, R)) = len(L) + len(R).

|S:

Thus P(L) holds for all lists L. € List by structural induction.

5.

Basis: [] € List concat([],R) =R
. Recursive: If L € List and a € Z then concat(a :: L,R) = a :: concat(L, R)
Claim 2 Proof @ L€ List
len([])=0

len(a :: L) = 1+ len(L)
Let P(L) be “len(concat(L,R)) = len(L) + len(R) for all lists R € List”. We prove P(L)
for all lists L. € List by structural induction.

Base Case: Let R € List be arbitrary. Observe that len(concat([], R)) = len(R) =0 +
len(R) = len([]) + len(R), so P([]) holds.

IH: Suppose that P(L) holds for some arbitrary L € List. That is, for all R € List,
len(concat(L, R)) = len(L) + len(R).

IS: Let R € List be arbitrary. Then observe that:

len(concat(a :: L,R)) = len(a :: concat(L,R)) Def of concat
=1+ len(concat(L, R)) Def of length
= 1+ len(L) + len(R) IH
= len(a :: L) + len(R) Def of length

Thus P(L) holds for all lists L. € List by structural induction.

Runtime of Euclid’s Algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps for gcd(a,b) with
a=>b=0.Thena = f,,,, where f, is the nth Fibonacci number

Exercise: Prove that f, > 22~ ' for all integers n > 2 by strong
induction.

Runtime of Euclid’s Algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps for gcd(a,b) with
a=>b=0.Thena = f,,,, where f, is the nth Fibonacci number

Why does this help us bound the running time of Euclid’s Algorithm?

Left as an exercise to prove that f,, = 227150 fuqg = 272
Therefore: if Euclid’s Algorithm takes n steps, then a = f,,4,.

SonT_lslogzaornS1+210g2a

l.e # of steps < 1 + twice the # of bits in a

Runtime of Euclid’s Algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps for gcd(a,b) with a = b = 0. Then
a = fn+o Where f, is the nth Fibonacci number

Intuition: Consider an n step gcd calculation starting with r,.,=a and r,=b:
Fne1 = dnln + Mh-1

rn = qn—1rn-1 + rr1-2
Forallk22,r, =r, . modr
k-1 k+1 k

Qof, + Iy
g1

3

P

Now r; > 1T and each g, must be > 1. If we replace all the g¢'s by 1and replace r; by 1, we
can only reduce the r,'s. After that reduction, r,=f, for every k.

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1
by strong induction.
Base Case:

/€

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1

by strong induction.

Base Case:

n=1Suppose Euclid’s Algorithm with a = b > 0 takes 1 step. By assumption, we have
thata = b > 1= f, thus P(1) holds.

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1

by strong induction.

Base Case:

n=1Suppose Euclid’s Algorithm with a = b > 0 takes 1 step. By assumption, we have
thata = b > 1= f, thus P(1) holds.

n = 2 If the Euclid's algorithm takes 2 steps, then we have a = g,b + r; and
b = qryandr; > 0.Sincea =b > 0wemusthaveqg, >Tandb > 1. So
a=qyb+r,=b+r =2=f;thus P(2) holds.

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1
by strong induction.
Base Case:

n=1Suppose Euclid’s Algorithm with a = b > 0 takes 1 step. By assumption, we have
thata = b > 1= f, thus P(1) holds.

n = 2 If the Euclid's algorithm takes 2 steps, then we have a = g,b + r; and
b = qryandr; > 0.Sincea =b > 0wemusthaveqg, >Tandb > 1. So

a=qyb+r,=b+r =2=f;thus P(2) holds.

Inductive Hypothesis: Suppose that P(1) A -+« A P(k) hold for some arbitrary k > 2

Inductive step: Suppose that gcd(a,b) with a = b > 0 takes k+1 steps.

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1
by strong induction.

Inductive Hypothesis: Suppose that P(1) A -+ A P(k) hold for some arbitrary k > 2
Inductive step:

Suppose that gcd(a,b) with a = b > 0 takes k+1 steps.

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1
by strong induction.

Inductive Hypothesis: Suppose that P(1) A -+ A P(k) hold for some arbitrary k > 2
Inductive step:

Suppose that gcd(a,b) with a = b > 0 takes k+1 steps. We know that k + 1 > 3 so for the
first 3 steps, we have:

= Qr+1b + 1%
= QT t Tk-1
Qk—1Tk—1 T Tk—2

I S Q

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1

by strong induction.
Inductive Hypothesis: Suppose that P(1) A -+ A P(k) hold for some arbitrary k > 2

Inductive step:
Suppose that gcd(a,b) with a = b > 0 takes k+1 steps. We know that k + 1 > 3 so for the

first 3 steps, we have:

a = qg+1b + 1%
b = qrre+ Tk—1
Tk = Qk-1Tk-1 1 Tk-2
And there are k-2 more steps after this. This means that the gcd(r,1,—1) takes k-1 steps.
Since k,k —1 =1, by the IH we have thatb > f;,_1; and r, = f.

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1
by strong induction.
Inductive Hypothesis: Suppose that P(1) A -+ A P(k) hold for some arbitrary k > 2

Inductive step:
Suppose that gcd(a,b) with a = b > 0 takes k+1 steps. We know that k + 1 > 3 so for the

first 3 steps, we have:

a = qg+1b + 1%
b = qrre+ Tk—1
Tk = Qk-1Tk-1 1 Tk-2
And there are k-2 more steps after this. This means that the gcd(r,1,—1) takes k-1 steps.
Since k,k —1 =1, by the IH we have thatb > f;,_1; and r, = f.

Since a = b, we must have that g4 = 1.

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f,,;". We will prove this for all n > 1
by strong induction.
Inductive Hypothesis: Suppose that P(1) A -+ A P(k) hold for some arbitrary k > 2

Inductive step:
Suppose that gcd(a,b) with a = b > 0 takes k+1 steps. We know that k + 1 > 3 so for the

first 3 steps, we have:

a = qg+1b + 1%
b = qrre+ Tk—1
Tk = Qk-1Tk-1 1 Tk-2
And there are k-2 more steps after this. This means that the gcd(r,1,—1) takes k-1 steps.
Since k,k —1 =1, by the IH we have thatb > f;,_1; and r, = f.

Since a = b, we must have that g4 = 1.

Thus a = g1+ 1 = b + 1 2 free1 + fre = frso

