

Structural Induction

CSE 311: Foundations of Computing I Lecture 16

Structural Induction Template

- 1. Define P(). Claim that P(s) holds for all $s \in S$. State your proof is by structural induction.
- 2. Base Case: Show $P(b_1), ..., P(b_n)$ holds for each basis step $b_1, ..., b_n$ in S.
- 3. Inductive Hypothesis: Suppose $P(x_1), ..., P(x_m)$ for all values listed in the recursive rules.
- 4. Inductive Step: Show P() holds for the "new element" given by the recursive step. You will need a separate step for every rule.
- 5. Conclusion: Conclude that P(s) holds for all $s \in S$ by structural induction.

Structural Induction

On Strings

String Terminology

 Σ is the alphabet, i.e. the set of all letters you can use in strings.

For example: $\Sigma = \{0,1\}$ or $\Sigma = \{a,b,c,\ldots,z,_\}$

 Σ^* is the set of all strings you can build from the letters in the alphabet.

For example: If $\Sigma = \{0,1\}$ then $01001 \in \Sigma^*$. If $\Sigma = \{a,b,c,...,z,_\}$, then i_love_induction $\in \Sigma^*$

 ε is the empty string

Analogous to "" in Java

Recursive definition of Strings

 Σ is the alphabet Σ^* is the set of all strings ε is the empty string

The set of all strings Σ^* can be defined recursively (using Σ, ε):

Basis Step: $\varepsilon \in \Sigma^*$

Recursive Step: If $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

wa here means the string w with the character a appended on to it

$$len(\varepsilon) = 0$$

 $len(wa) = len(w) + 1$

$$\varepsilon^R = \varepsilon$$
$$(wa)^R = aw^R$$

Basis: $\varepsilon \in \Sigma^*$ Recursive: If $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

- 1. Let P(s) be $len(s^R) = len(s)$. We prove P(s) for all strings s by structural induction.
- 2. Base Case(s): $(s = \varepsilon)$. LHS: Since $\varepsilon^R = \varepsilon$, $len(\varepsilon^R) = len(\varepsilon) = 0$. RHS: $len(\varepsilon) = 0$. Since 0 = 0, the base case holds.
- 3. Inductive Hypothesis: Suppose P(w) for some arbitrary string w. Then $len(w^R) = len(w)$

4. Inductive Step: Goal:
$$len((wa)^R) = len(wa)$$

Let a be an arbitrary character. Observe:

$$len((wa)^R) = len(aw^R)$$
 By definition of reverse
 $= len(w^R) + 1$ By definition of length
 $= len(w) + 1$ By IH
 $= len(wa)$ By definition of length

5. Conclusion: Thus P(s) holds for all strings s by structural induction.

Trees!

More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.

Recursive Step: If T_1 and T_2 are rooted binary trees with roots r_1 and r_2 , then a tree rooted at a new node, with children r_1 , r_2 is a binary tree.

Exercise

Basis: null ∈ Tree

Recursive: If $L, R \in \text{Tree}$, and $a \in \mathbb{Z}$ then $(L, a, R) \in \text{Tree}$

Write out the following tree using our notation for trees.

Exercise

Basis: null ∈ Tree

Recursive: If $L, R \in \text{Tree}$, and $a \in \mathbb{Z}$ then $(L, a, R) \in \text{Tree}$

Write out the following tree using our notation for trees.

((null, 5, null), 1, ((null, 4, null), 6, (null, 8, null)))

— Claim 1

Functions on Binary Trees

Basis: null ∈ Tree

Recursive: If $L, R \in \text{Tree}$, and $a \in \mathbb{Z}$ then $(L, a, R) \in \text{Tree}$

To prove interesting facts about trees, we need functions on trees.

Size:

size(null) = 0

size((L, a, R)) = 1 + size(L) + size(R)

Height:

height(null) = -1

height((L, a, R)) = 1 + max(height(L), height(R))

Functions on Binary Trees

```
size(null) = 0

size((L, a, R)) = 1 + size(L) + size(R)
```

What's the size the tree ((null, 5, null), 1, ((null, 4, null), 6, (null, 8, null)))?

$$size(null, 5, null), 1, ((null, 4, null), 6, (null, 8, null))$$

=
$$1 + \text{size}((\text{null}, 5, \text{null})) + \text{size}((\text{null}, 4, \text{null}), 6, (\text{null}, 8, \text{null}))$$

$$= 1 + 1 + \text{size}(\text{null}) + \text{size}(\text{null}) + 1 + \text{size}(\text{null}, 4, \text{null}) + \text{size}(\text{null}, 8, \text{null})$$

$$= 3 + 1 + \text{size(null)} + \text{size(null)} + 1 + \text{size(null)} + \text{size(null)}$$

=5

Functions on Binary Trees

 $\begin{aligned} \text{height(null)} &= -1 \\ \text{height(}(L, a, R)) &= 1 + \max(\text{height(}L), \text{height(}R)) \end{aligned}$

```
What's the height of the tree ((null, 5, null), 1, ((null, 4, null), 6, (null, 8, null)))?
height ((null, 5, null), 1, ((null, 4, null), 6, (null, 8, null)))
= 1 + \max(height(null, 5, null), height((null, 4, null), 6, (null, 8, null)))
= 1 + \max(1 + \max(\text{height(null}), \text{height(null})), 1 + \max(\text{height(null}, 4, \text{null}), \text{height(null}, 8, \text{null})))
= 1 + \max(1 - 1, 1 + \max(1 + \max(\text{height(null}), \text{height(null})), 1 + \max(\text{height(null}), \text{height(null})))
= 1 + \max(0, 1 + \max(1 - 1, 1 - 1))
= 1 + \max(0, 1 + \max(0, 0)) = 1 + \max(0, 1 + 0) = 1 + 1 = 2
```

Claim 1

$$\begin{aligned} \text{height(null)} &= -1 \\ \text{height(}(L, a, R) \text{)} &= 1 + \max(\text{height(}L), \text{height(}R) \text{)} \end{aligned}$$

$$size(null) = 0$$

 $size((L, a, R)) = 1 + size(L) + size(R)$

Claim 1: For every binary tree, $size(T) \le 2^{height(T)+1} - 1$.

height(
$$T$$
) = 2
size(T) = 7
 $7 \le 7 = 8 - 1 = 2^3 - 1 = 2^{2+1} - 1$

$$size(null) = 0$$

$$size((L, a, R)) = 1 + size(L) + size(R)$$

$$\begin{aligned} & \text{height(null)} = -1 \\ & \text{height(}(L, a, R) \\ &) = 1 + \max \\ & \text{height(}L), \text{height(}R) \\ &) \end{aligned}$$

Basis: null \in Tree Recursive: If $L, R \in$ Tree, and $a \in \mathbb{Z}$ then $(L, a, R) \in$ Tree

Claim 1 Proof

1. Let P(T) be

We show P(T) for all binary trees T by structural induction.

 $\begin{aligned} & \text{height(null)} = -1 \\ & \text{height(}(L, a, R) \text{)} = 1 + \max \text{(height(}L\text{), height(}R\text{)} \text{)} \end{aligned}$

Basis: null \in Tree Recursive: If $L, R \in$ Tree, and $a \in \mathbb{Z}$ then $(L, a, R) \in$ Tree

Claim 1 Proof

1. Let P(T) be "size $(T) \le 2^{\operatorname{height}(T)+1} - 1$ ". We show P(T) for all binary trees T by structural induction.

 $\begin{aligned} & \text{height(null)} = -1 \\ & \text{height(}(L, a, R) \text{)} = 1 + \max \text{(height(}L\text{), height(}R\text{)} \text{)} \end{aligned}$

Basis: null \in Tree Recursive: If $L, R \in$ Tree, and $a \in \mathbb{Z}$ then $(L, a, R) \in$ Tree

Claim 1 Proof

- 1. Let P(T) be "size $(T) \le 2^{\operatorname{height}(T)+1} 1$ ". We show P(T) for all binary trees T by structural induction.
- 2. Base Case: Consider the null tree. Then height(null) = -1 and size(null) = 0. Since $0 \le 0 = 1 1 = 2^0 1 = 2^{-1+1} 1$, the base case holds.

 $\begin{aligned} & \text{height(null)} = -1 \\ & \text{height(}(L, a, R) \text{)} = 1 + \max \text{(height(}L\text{), height(}R\text{)} \text{)} \end{aligned}$

Basis: null \in Tree Recursive: If $L, R \in$ Tree, and $a \in \mathbb{Z}$ then $(L, a, R) \in$ Tree

Claim 1 Proof

- 1. Let P(T) be "size $(T) \le 2^{\operatorname{height}(T)+1} 1$ ". We show P(T) for all binary trees T by structural induction.
- 2. Base Case: Consider the null tree. Then height(null) = -1 and size(null) = 0. Since $0 \le 0 = 1 1 = 2^0 1 = 2^{-1+1} 1$, the base case holds.
- 3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then $size(L) \le 2^{height(L)+1} 1$ and $size(R) \le 2^{height(R)+1} 1$.
- 4. IS: Let $a \in \mathbb{Z}$ be arbitrary. Consider the binary tree (L, a, R):

$$size(null) = 0$$

 $size((L, a, R)) = 1 + size(L) + size(R)$

$$\begin{aligned} & \text{height(null)} = -1 \\ & \text{height(}(L, a, R) \\) = 1 + \max \\ & \text{(height(}L), \text{height(}R) \\) \end{aligned}$$

Basis: null \in Tree Recursive: If $L, R \in$ Tree, and $a \in \mathbb{Z}$ then $(L, a, R) \in$ Tree

Claim 1 Proof

- 1. Let P(T) be "size $(T) \le 2^{\operatorname{height}(T)+1} 1$ ". We show P(T) for all binary trees T by structural induction.
- 2. Base Case: Consider the null tree. Then height(null) = -1 and size(null) = 0. Since $0 \le 0 = 1 1 = 2^0 1 = 2^{-1+1} 1$, the base case holds.
- 3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then $size(L) \le 2^{height(L)+1} 1$ and $size(R) \le 2^{height(R)+1} 1$.
- 4. IS: Let $a \in \mathbb{Z}$ be arbitrary. Consider the binary tree (L, a, R): size((L, a, R)) = 1 + size(L) + size(R)

Definition of Size

 $\begin{aligned} & \text{height(null)} = -1 \\ & \text{height(}(L, a, R) \\ &) = 1 + \max \\ & \text{height(}L), \text{height(}R) \\ &) \end{aligned}$

Basis: null \in Tree Recursive: If $L, R \in$ Tree, and $a \in \mathbb{Z}$ then $(L, a, R) \in$ Tree

Claim 1 Proof

- 1. Let P(T) be "size $(T) \le 2^{\operatorname{height}(T)+1} 1$ ". We show P(T) for all binary trees T by structural induction.
- 2. Base Case: Consider the null tree. Then height(null) = -1 and size(null) = 0. Since $0 \le 0 = 1 1 = 2^0 1 = 2^{-1+1} 1$, the base case holds.
- 3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then $size(L) \le 2^{height(L)+1} 1$ and $size(R) \le 2^{height(R)+1} 1$.
- 4. IS: Let $a \in \mathbb{Z}$ be arbitrary. Consider the binary tree (L, a, R): size((L, a, R)) = 1 + size(L) + size(R) $\leq 1 + 2^{height(L)+1} 1 + 2^{height(R)+1} 1$

 $= 2^{\operatorname{height}(L)+1} + 2^{\operatorname{height}(R)+1} - 1$

Definition of Size By the IH Algebra

height(null) = -1height((L, a, R)) = 1 + max(height(L), height(R))

Basis: null ∈ Tree Recursive: If $L, R \in \text{Tree}$, and $a \in \mathbb{Z}$ then $(L, a, R) \in \text{Tree}$

Claim 1 Proof

- Let P(T) be "size $(T) \le 2^{\operatorname{height}(T)+1} 1$ ". We show P(T) for all binary trees T by structural induction.
- Base Case: Consider the null tree. Then height(null) = -1 and size(null) = 0. Since $0 \le 0 = 1 - 1 = 2^0 - 1 = 2^{-1+1} - 1$, the base case holds.
- IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then $size(L) \le 2^{height(L)+1} 1$ and $size(R) \le 2^{height(R)+1} - 1$.
- 4. IS: Let $a \in \mathbb{Z}$ be arbitrary. Consider the binary tree (L, a, R):

$$size((L, a, R)) = 1 + size(L) + size(R)$$

$$\leq 1 + 2^{\text{height}(L)+1} - 1 + 2^{\text{height}(R)+1} - 1$$

$$= 2^{\text{height}(L)+1} + 2^{\text{height}(R)+1} - 1$$

$$\leq 2^{\max(\text{height}(L),\text{height}(R))+1} + 2^{\max(\text{height}(L),\text{height}(R))+1} - 1$$

$$= 2 \cdot 2^{\max(\text{height}(L),\text{height}(R))+1} - 1$$
Algebra

Definition of Size

By the IH

Algebra

Property of max

Algebra

$$size(null) = 0$$

 $size((L, a, R)) = 1 + size(L) + size(R)$

$$\begin{aligned} & \text{height(null)} = -1 \\ & \text{height(}(L, a, R)) = 1 + \max \big(\text{height(}L), \text{height(}R) \big) \end{aligned}$$

Basis: null \in Tree Recursive: If $L, R \in$ Tree, and $a \in \mathbb{Z}$ then $(L, a, R) \in$ Tree

Claim 1 Proof

- 1. Let P(T) be "size $(T) \le 2^{\operatorname{height}(T)+1} 1$ ". We show P(T) for all binary trees T by structural induction.
- 2. Base Case: Consider the null tree. Then height(null) = -1 and size(null) = 0. Since $0 \le 0 = 1 1 = 2^0 1 = 2^{-1+1} 1$, the base case holds.
- 3. IH: Suppose P(L) and P(R) hold for arbitrary binary trees L, R. Then $size(L) \le 2^{height(L)+1} 1$ and $size(R) \le 2^{height(R)+1} 1$.
- 4. IS: Let $a \in \mathbb{Z}$ be arbitrary. Consider the binary tree (L, a, R):

size((
$$L$$
, a , R)) = 1 + size(L) + size(R)
$$\leq 1 + 2^{\text{height}(L)+1} - 1 + 2^{\text{height}(R)+1} - 1$$

$$= 2^{\text{height}(L)+1} + 2^{\text{height}(R)+1} - 1$$

$$\leq 2^{\max(\text{height}(L),\text{height}(R))+1} + 2^{\max(\text{height}(L),\text{height}(R))+1} - 1$$

$$= 2 \cdot 2^{\max(\text{height}(L),\text{height}(R))+1} - 1$$

$$= 2 \cdot 2^{\text{height}((L,a,R))} - 1$$

$$= 2^{\text{height}((L,a,R))+1} - 1$$
Definition of Size
$$\text{By the IH}$$
Algebra
$$\text{Property of max}$$
Algebra
$$\text{Property of max}$$
Algebra
$$\text{Property of Height}$$
Algebra

5. Thus P(T) holds for all trees T by structural induction.

Claim 2

Functions on Lists

Basis: $[] \in List$

Recursive: If $L \in List$ and $a \in \mathbb{Z}$ then $a :: L \in List$

To prove interesting facts about lists, we need functions on lists.

Length:

$$len([]) = 0$$

$$len(a :: L) = 1 + len(L)$$

Concatenation:

$$concat([], R) = R$$

$$concat(a :: L, R) = a :: concat(L, R)$$

$$len([]) = 0$$

$$len(a :: L) = 1 + len(L)$$

$$concat([],R) = R$$

 $concat(a :: L,R) = a :: concat(L,R)$

Claim 2: For all lists L, R, len(concat(L, R)) = len(L) + len(R).

How do we prove a nested forall?

Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all lists $R \in List$ ".

We prove P(L) for all lists $L \in List$ by structural induction.

Basis: [] ∈ List

Recursive: If $L \in List$ and $a \in \mathbb{Z}$ then

 $a :: L \in List$

concat([], R) = Rconcat(a :: L, R) = a :: concat(L, R)

len([]) = 0len(a :: L) = 1 + len(L)

". We prove P(L)

- Let P(L) be "
 for all lists L ∈ List by structural induction.
- 2. Base Case:
- 3. IH:
- 4. IS:

Basis: $[] \in List$

Recursive: If $L \in List$ and $a \in \mathbb{Z}$ then

 $a :: L \in List$

concat([], R) = Rconcat(a :: L, R) = a :: concat(L, R)

len([]) = 0len(a :: L) = 1 + len(L)

- 1. Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all lists $R \in List$ ". We prove P(L) for all lists $L \in List$ by structural induction.
- 2. Base Case:
- 3. IH:

4. IS

Basis: [] ∈ List

Recursive: If $L \in List$ and $a \in \mathbb{Z}$ then

 $a :: L \in List$

concat([], R) = Rconcat(a :: L, R) = a :: concat(L, R)

len([]) = 0len(a :: L) = 1 + len(L)

- Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all lists R ∈ List". We prove P(L) for all lists L ∈ List by structural induction.
- 2. Base Case: Let $R \in List$ be arbitrary. Observe that len(concat([], R)) = len(R) = 0 + len(R) = len([]) + len(R), so P([]) holds.
- 3. IH:

4. IS:

Basis: $[] \in List$

Recursive: If $L \in List$ and $a \in \mathbb{Z}$ then

 $a :: L \in List$

concat([], R) = Rconcat(a :: L, R) = a :: concat(L, R)

len([]) = 0len(a :: L) = 1 + len(L)

- 1. Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all lists $R \in List$ ". We prove P(L) for all lists $L \in List$ by structural induction.
- 2. Base Case: Let $R \in List$ be arbitrary. Observe that len(concat([], R)) = len(R) = 0 + len(R) = len([]) + len(R), so P([]) holds.
- 3. IH: Suppose that P(L) holds for some arbitrary $L \in List$. That is, for all $R \in List$, len(concat(L, R)) = len(L) + len(R).
- 4. IS:

Basis: $[] \in List$

Recursive: If $L \in List$ and $a \in \mathbb{Z}$ then

 $a :: L \in List$

concat([], R) = Rconcat(a :: L, R) = a :: concat(L, R)

len([]) = 0len(a :: L) = 1 + len(L)

- Let P(L) be "len(concat(L, R)) = len(L) + len(R) for all lists R ∈ List". We prove P(L) for all lists L ∈ List by structural induction.
- 2. Base Case: Let $R \in List$ be arbitrary. Observe that len(concat([], R)) = len(R) = 0 + len(R) = len([]) + len(R), so P([]) holds.
- 3. IH: Suppose that P(L) holds for some arbitrary $L \in List$. That is, for all $R \in List$, len(concat(L, R)) = len(L) + len(R).
- 4. IS: Let $R \in List$ be arbitrary. Then observe that:

len(concat(a :: L, R)) = len(a :: concat(L, R)) Def of concat

= 1 + len(concat(L, R)) Def of length

= 1 + len(L) + len(R) IH

= len(a :: L) + len(R) Def of length

Runtime of Euclid's Algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a,b) with $a \ge b \ge 0$. Then $a \ge f_{n+2}$ where f_n is the nth Fibonacci number

Exercise: Prove that $f_n \ge 2^{\frac{n}{2}-1}$ for all integers $n \ge 2$ by strong induction.

Runtime of Euclid's Algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for gcd(a,b) with $a \ge b \ge 0$. Then $a \ge f_{n+2}$ where f_n is the nth Fibonacci number

Why does this help us bound the running time of Euclid's Algorithm?

Left as an exercise to prove that $f_n \geq 2^{\frac{n}{2}-1}$, so $f_{n+1} \geq 2^{\frac{n-1}{2}}$

Therefore: if Euclid's Algorithm takes n steps, then $a \ge f_{n+2}$,

so
$$\frac{n-1}{2} \le \log_2 a$$
 or $n \le 1 + 2\log_2 a$

i.e # of steps ≤ 1 + twice the # of bits in a

Runtime of Euclid's Algorithm

Theorem: Suppose that Euclid's Algorithm takes n steps for $\gcd(a,b)$ with $a \ge b \ge 0$. Then $a \ge f_{n+2}$ where f_n is the nth Fibonacci number

Intuition: Consider an n step gcd calculation starting with r_{n+1} =a and r_n =b:

$$\begin{array}{lll} r_{n+1} = & q_n r_n & + & r_{n-1} \\ r_n & = & q_{n-1} r_{n-1} + r_{n-2} \\ & & \dots \end{array}$$
 For all $k \geq 2$, $r_{k-1} = r_{k+1} \mod r_k$
$$r_3 & = & q_2 r_2 & + & r_1 \\ r_2 & = & q_1 r_1 \end{array}$$

Now $r_1 \ge 1$ and each q_k must be ≥ 1 . If we replace all the q_K 's by 1 and replace r_1 by 1, we can only reduce the r_k 's. After that reduction, $r_k = f_k$ for every k.

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Base Case:

/e

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Base Case:

n=1 Suppose Euclid's Algorithm with $a \ge b > 0$ takes 1 step. By assumption, we have that $a \ge b > 1 = f_2$ thus P(1) holds.

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Base Case:

n=1 Suppose Euclid's Algorithm with $a \ge b > 0$ takes 1 step. By assumption, we have that $a \ge b > 1 = f_2$ thus P(1) holds.

n = 2 If the Euclid's algorithm takes 2 steps, then we have $a=q_2b+r_1$ and $b=q_1r_1$ and $r_1>0$. Since $a\geq b>0$ we must have $q_2\geq 1$ and $b\geq 1$. So $a=q_2b+r_1\geq b+r_1\geq 2=f_3$ thus P(2) holds.

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Base Case:

n=1 Suppose Euclid's Algorithm with $a \ge b > 0$ takes 1 step. By assumption, we have that $a \ge b > 1 = f_2$ thus P(1) holds.

n = 2 If the Euclid's algorithm takes 2 steps, then we have $a=q_2b+r_1$ and $b=q_1r_1$ and $r_1>0$. Since $a\geq b>0$ we must have $q_2\geq 1$ and $b\geq 1$. So $a=q_2b+r_1\geq b+r_1\geq 2=f_3$ thus P(2) holds.

<u>Inductive Hypothesis</u>: Suppose that $P(1) \land \cdots \land P(k)$ hold for some arbitrary $k \ge 2$

<u>Inductive step:</u> Suppose that gcd(a,b) with $a \ge b > 0$ takes k+1 steps.

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

<u>Inductive Hypothesis</u>: Suppose that $P(1) \land \cdots \land P(k)$ hold for some arbitrary $k \geq 2$ <u>Inductive step:</u>

Suppose that gcd(a,b) with $a \ge b > 0$ takes k+1 steps.

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Inductive Hypothesis: Suppose that $P(1) \land \cdots \land P(k)$ hold for some arbitrary $k \ge 2$ Inductive step:

Suppose that gcd(a,b) with $a \ge b > 0$ takes k+1 steps. We know that $k+1 \ge 3$ so for the first 3 steps, we have:

$$a = q_{k+1}b + r_k$$

$$b = q_k r_k + r_{k-1}$$

$$r_k = q_{k-1} r_{k-1} + r_{k-2}$$

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Inductive Hypothesis: Suppose that $P(1) \land \cdots \land P(k)$ hold for some arbitrary $k \ge 2$ Inductive step:

Suppose that gcd(a,b) with $a \ge b > 0$ takes k+1 steps. We know that $k+1 \ge 3$ so for the first 3 steps, we have:

$$a = q_{k+1}b + r_k$$

$$b = q_k r_k + r_{k-1}$$

$$r_k = q_{k-1} r_{k-1} + r_{k-2}$$

And there are k-2 more steps after this. This means that the $gcd(r_kr_{k-1})$ takes k-1 steps. Since $k, k-1 \ge 1$, by the IH we have that $b \ge f_{k-1}$ and $r_k \ge f_k$.

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Inductive Hypothesis: Suppose that $P(1) \land \cdots \land P(k)$ hold for some arbitrary $k \ge 2$ Inductive step:

Suppose that gcd(a,b) with $a \ge b > 0$ takes k+1 steps. We know that $k+1 \ge 3$ so for the first 3 steps, we have:

$$a = q_{k+1}b + r_k$$

$$b = q_k r_k + r_{k-1}$$

$$r_k = q_{k-1} r_{k-1} + r_{k-2}$$

And there are k-2 more steps after this. This means that the $gcd(r_kr_{k-1})$ takes k-1 steps. Since $k, k-1 \ge 1$, by the IH we have that $b \ge f_{k-1}$ and $r_k \ge f_k$.

Since $a \ge b$, we must have that $q_{k+1} \ge 1$.

Let P(n) be "gcd(a,b) with a \geq b>0 takes n steps \rightarrow a \geq f_{n+1}". We will prove this for all n \geq 1 by strong induction.

Inductive Hypothesis: Suppose that $P(1) \land \cdots \land P(k)$ hold for some arbitrary $k \ge 2$ Inductive step:

Suppose that gcd(a,b) with $a \ge b > 0$ takes k+1 steps. We know that $k + 1 \ge 3$ so for the first 3 steps, we have:

$$a = q_{k+1}b + r_k$$

$$b = q_k r_k + r_{k-1}$$

$$r_k = q_{k-1} r_{k-1} + r_{k-2}$$

And there are k-2 more steps after this. This means that the $gcd(r_kr_{k-1})$ takes k-1 steps. Since $k, k-1 \ge 1$, by the IH we have that $b \ge f_{k-1}$ and $r_k \ge f_k$.

Since $a \ge b$, we must have that $q_{k+1} \ge 1$.

Thus
$$a = q_{k+1} + r_k \ge b + r_k \ge f_{k+1} + f_k = f_{k+2}$$