Structural Induction
Announcements

• HW4 due tonight at 11:59 pm. Turn it in with no late days to receive feedback by tomorrow for induction
Find the Bug
Find the Bug

Claim: For every odd integer n, $n^2 \equiv_4 1$.

Proof: Let n be an arbitrary odd integer. Then by definition of odd, $n = 2k + 1$ for some integer k. Then consider $n^2 \equiv_4 1$. Plugging in $n = 2k + 1$ for n^2:

\[
\begin{align*}
 n^2 &\equiv_4 1 \\
 (2k + 1)^2 &\equiv_4 1 \\
 4k^2 + 4k + 1 &\equiv_4 1
\end{align*}
\]

Then by definition of congruence, $4 \mid 4k^2 + 4k + 1 - 1$, so $4 \mid 4k^2 + 4k$. Since this is true, the claim holds.
Find the Bug

Claim: For every odd integer n, $n^2 \equiv_4 1$.

Proof: Let n be an arbitrary odd integer. Then by definition of odd, $n = 2k + 1$ for some integer k. Then consider $n^2 \equiv_4 1$. Plugging in $n = 2k + 1$ for n^2:

\[
\begin{align*}
 n^2 &\equiv_4 1 \\
 (2k + 1)^2 &\equiv_4 1 \\
 4k^2 + 4k + 1 &\equiv_4 1
\end{align*}
\]

Then by definition of congruence, $4 \mid 4k^2 + 4k + 1 - 1$, so $4 \mid 4k^2 + 4k$. Since this is true, the claim holds.
Fixed Proof

Claim: For every odd integer \(n \), \(n^2 \equiv_4 1 \).

Proof: Let \(n \) be an arbitrary odd integer. Then by definition of odd, \(n = 2k + 1 \) for some integer \(k \). Then consider \(n^2 \):

\[
\begin{align*}
n^2 &= (2k + 1)^2 \\
&= 4k^2 + 4k + 1 \\
&= 4(k^2 + k) + 1
\end{align*}
\]

Since \(k \) is an integer, \(k^2 + k \) is an integer. So by definition of divides, \(4 \mid n^2 - 1 \). So by definition of congruence, \(n^2 \equiv_4 1 \). Since \(n \) was arbitrary, the claim holds.
Fixed Proof

Claim: For every odd integer n, $n^2 \equiv_4 1$.

Proof: Let n be an arbitrary odd integer. Then by definition of odd, $n = 2k + 1$ for some integer k. Then consider n^2:

$$n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$$
$$n^2 - 1 = 4k^2 + 4k$$
$$n^2 - 1 = 4(k^2 + k)$$

Since k is an integer, $k^2 + k$ is an integer. So by definition of divides, $4 \mid n^2 - 1$. So by definition of congruence, $n^2 \equiv_4 1$. Since n was arbitrary, the claim holds.
Backwards Reasoning

Backwards reasoning is the incorrect proof technique of *assuming* the goal is true, and then deriving some other true statement.

This reasoning can be used to incorrectly prove false statements.

Claim: For all integer x, if $x^2 = 25$, then $x = 5$.

Backwards Proof: Let x be an arbitrary integer. Suppose $x^2 = 25$. Plugging in $x = 5$, we have $5^2 = 25$. Since this is true, the claim holds.

False! What if $x = -5$?
Find the 4 Bugs

Claim: For all integers \(n \geq 1 \), \(1 + \cdots + n = \frac{n(n+1)}{2} \).

Proof: Let \(P(n) \) be "\(1 + \cdots + n = \frac{n(n+1)}{2} \) for all integers \(n \geq 1 \)". We prove by induction.

Base Case: Plugging in \(n = 1 \), we have \(1 = \frac{1(1+1)}{2} \). So \(1 = \frac{2}{2} \). So \(1 = 1 \). Since this is true, the base case holds.

IH: Suppose \(1 + \cdots + k = \frac{k(k+1)}{2} \) for an arbitrary integer \(k \).

IS: We aim to show \(P(k+1) \). Observe that:

\[
1 + \cdots + (k+1) = 1 + \cdots + k + (k + 1) = \frac{k(k+1)}{2} + (k + 1) = \frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}
\]

So \(P(k + 1) \) holds.

Conclusion: Thus \(P(n) \) holds for all integers \(n \geq 1 \) by induction.
Claim: For all integers $n \geq 1$, $1 + \cdots + n = \frac{n(n+1)}{2}$.

Proof: Let $P(n)$ be "$1 + \cdots + n = \frac{n(n+1)}{2}$ for all integers $n \geq 1"$. We prove by induction.

Base Case: Plugging in $n = 1$, we have $1 = \frac{1(1+1)}{2}$. So $1 = \frac{2}{2}$. So $1 = 1$. Since this is true, the base case holds.

IH: Suppose $1 + \cdots + k = \frac{k(k+1)}{2}$ for an arbitrary integer k.

IS: We aim to show $P(k + 1)$. Observe that:

$$1 + \cdots + (k + 1) = 1 + \cdots + k + (k + 1) = \frac{k(k+1)}{2} + (k + 1) = \frac{k(k+1)+2(k+1)}{2} = \frac{(k+1)(k+2)}{2}.$$

So $P(k + 1)$ holds.

Conclusion: Thus $P(n)$ holds for all integers $n \geq 1$ by induction.
Avoiding Backwards Reasoning in the Base Case

Incorrect Technique: Backwards reasoning
Plugging in $n = 1$, we have $1 = \frac{1(1+1)}{2}$. So $1 = \frac{2}{2}$. So $1 = 1$. Since this is true, the base case holds.

Valid Technique 1: Separating LHS and RHS
The LHS evaluates to 1. The RHS evaluates to $\frac{1(1+1)}{2} = \frac{2}{2} = 1$. Since 1 = 1, the base case holds.

Valid Technique 2: Start from Left, convert to the Right
Observe that $1 = \frac{2}{2} = \frac{1\cdot2}{2} = \frac{1(1+1)}{2}$. So the base case holds.
Induction Big Picture

Weak and Strong Induction: Prove statements over the natural numbers.

“Prove that $P(n)$ holds for all natural numbers n."

Structural Induction: In CS, we deal with Strings, Lists, Trees, and other objects. Now we prove statements about these objects.

“Prove that $P(T)$ holds for all trees T.”

“Prove that $P(x)$ holds for all strings x. “
Recursively Defined Sets
Recursively Defined Sets

- In order to prove a fact about all trees or all lists, we need rigorous mathematical definitions for these sets.

- We will define these sets *recursively*. A *recursively defined set* has 3 components:
 - Basis Step
 - Recursive Step
 - Exclusion Rule
Recursively Defined Sets

For example, define a set S as follows:

Basis Step: $0 \in S$

Recursive Step: If $x \in S$ then $x + 2 \in S$.

Exclusion Rule: Every element of S follows from the basis step or a finite number of recursive steps.

What is S? The set of all non-negative even integers. $\{0, 2, 4,\ldots\}$

Why do we need the exclusion rule? To clarify that there aren’t any other elements in the set. In practice this isn’t usually written.
Recursively Defined Sets

Natural Numbers (\mathbb{N})

Integers (\mathbb{Z})

Integer coordinates in the line $y = x$
Recursively Defined Sets

Natural Numbers (\mathbb{N})
Basis Step: $0 \in S$
Recursive Step: If $x \in S$ then $x + 1 \in S$.

Integers (\mathbb{Z})
Basis Step: $0 \in S$
Recursive Step: If $x \in S$ then $x + 1 \in S$ and $x - 1 \in S$.

Integer coordinates in the line $y = x$
Basis Step: $(0,0) \in S$
Recursive Step: If $(x, y) \in S$ then $(x + 1, y + 1) \in S$ and $(x - 1, y - 1) \in S$.
Recursively Defined Sets

Q1: Write a recursive definition for the set of positive even integers
Basis Step:
Recursive Step:

Q2: Write a recursive definition for the set of powers of 3 \(\{1,3,9,27, \ldots \} \)
Basis Step:
Recursive Step:
Recursively Defined Sets

Q1: Write a recursive definition for the set of positive even integers
Basis Step: $2 \in S$
Recursive Step: If $x \in S$ then $x + 2 \in S$

Q2: Write a recursive definition for the set of powers of 3 \{1,3,9,27, ... \}
Basis Step: $1 \in S$
Recursive Step: If $n \in S$, then $3n \in S$
Structural Induction
On Sets of Numbers
Claim about a Recursively Defined Set

Let S be the set defined:

Basis Step: $6 \in S, 15 \in S$

Recursive Step: if $x, y \in S$ then $x + y \in S$.

Claim: Every element of S is divisible by 3.

How would we prove this?
Structural Induction Idea

To show $P(s)$ for all $s \in S$...

Base Case: Show $P(b)$ for all elements b in the basis step.

Inductive Hypothesis: Assume $P()$ holds for arbitrary element(s) that we’ve already constructed.

Inductive Step: Prove that $P()$ holds for a new element constructed using the recursive step.

Basis: $6 \in S, 15 \in S$
Recursive: if $x, y \in S$ then $x + y \in S$.
Structural Induction Idea

To show $P(s)$ for all $s \in S$...

- Here, $P(s)$ is "$3 \mid s$".

Base Case: Show $P(b)$ for all elements b in the basis step.
- Show $P(6)$ and $P(15)$ hold.

Inductive Hypothesis: Assume $P()$ holds for arbitrary element(s) that we’ve already constructed.
- Assume $P(x)$ and $P(y)$ for arbitrary $x, y \in S$.

Inductive Step: Prove that $P()$ holds for a new element constructed using the recursive step.
- Show $P(x + y)$ holds.
Structural Induction

1. Let $P(s)$ be “s is divisible by 3”. We show $P(s)$ holds for all $s \in S$ by structural induction.

2. Base Case(s): $6 = 2 \cdot 3$ so $3|6$, and $P(6)$ holds. $15 = 5 \cdot 3$, so $3|15$ and $P(15)$ holds.

3. Inductive Hypothesis: Suppose $P(x)$ and $P(y)$ for arbitrary $x, y \in S$.

4. Inductive Step: \[\text{Goal: } P(x + y) \text{ holds} \]
 By IH $3 | x$ and $3 | y$. So by definition of divides, $x = 3n$ and $y = 3m$ for integers m, n.

 Adding the equations: $x + y = 3(n + m)$. Since n, m are integers $n + m$ is an integer. Thus by definition of divides, $3 | (x + y)$. So $P(x + y)$ holds.

5. Conclusion: Thus $P(s)$ for all $s \in S$ by structural induction.
How does this work?

S

6 15

12 21 30

18 27

24...

Basis: $6 \in S, 15 \in S$

Recursive: if $x, y \in S$ then $x + y \in S$.

We proved:

Base Case: $P(6)$ and $P(15)$

$IH \rightarrow IS$: If $P(x)$ and $P(y)$, then $P(x+y)$
Weak Induction is a special case of Structural

\[\begin{align*}
\mathbb{N} & \quad 1 \quad 2 \\
0 & \quad 1 \\
3 & \quad 4 \quad 5 \\
6 & \quad 7 \\
8 & \ldots
\end{align*} \]

- **Basis:** \(0 \in \mathbb{N} \)
- **Recursive:** if \(k \in \mathbb{N} \) then \(k + 1 \in \mathbb{N} \).

We proved:
- **Base Case:** \(P(0) \)
- **IH \rightarrow IS:** If \(P(k) \), then \(P(k+1) \)
Wait a minute! Why can we do this?

Think of each element of S as requiring k “applications of a rule” to get in

$P(\text{base cases})$ is true

$P(\text{base cases}) \rightarrow P(\text{one application}) \circ P(\text{one application})$

$P(\text{one application}) \rightarrow P(\text{two applications}) \circ P(\text{two applications})$

...

It’s the same principle as regular induction. You’re just inducting on “how many steps did we need to get this element?”

You’re still only assuming the IH about a domino you’ve knocked over.
Wait a minute! Why can we do this?

Imagine building S “step-by-step”

\[
S_0 = \{6, 15\} \\
S_1 = \{12, 21, 30\} \\
S_2 = \{18, 24, 27, 36, 42, 45, 60\}
\]

IS can always of the form “suppose $P(x) \forall x \in (S_0 \cup \cdots \cup S_k)$” and show $P(y)$ for some $y \in S_{k+1}$

We use the structural induction phrasing assuming our reader knows how induction works and so don’t phrase it explicitly in this form.
1. Define $P()$. Claim that $P(s)$ holds for all $s \in S$. State your proof is by structural induction.

2. Base Case: Show $P(b_1), ..., P(b_n)$ holds for each basis step $b_1, ..., b_n$ in S.

3. Inductive Hypothesis: Suppose $P(x_1), ..., P(x_m)$ for all values listed in the recursive rules.

4. Inductive Step: Show $P()$ holds for the “new element” given by the recursive step. You will need a separate step for every rule.

5. Conclusion: Conclude that $P(s)$ holds for all $s \in S$ by structural induction.
Structural Induction

On Strings
String Terminology

\(\Sigma\) is the **alphabet**, i.e. the set of all letters you can use in strings.

For example: \(\Sigma = \{0,1\}\) or \(\Sigma = \{a, b, c, \ldots, z, _\}\)

\(\Sigma^*\) is the set of **all strings** you can build from the letters in the alphabet.

For example: If \(\Sigma = \{0,1\}\) then \(01001 \in \Sigma^*\). If \(\Sigma = \{a, b, c, \ldots, z, _\}\), then \(i_love_induction \in \Sigma^*\)

- \(\varepsilon\) is the **empty string**

 Analogous to "" in Java
Recursive definition of Strings

The set of all strings Σ^* can be defined recursively (using Σ, ε):

Basis Step: $\varepsilon \in \Sigma^*$

Recursive Step: If $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

wa here means the string w with the character a appended on to it.

Σ is the alphabet
Σ^* is the set of all strings
ε is the empty string
Functions on Strings

To prove interesting facts about strings, we need functions on strings.

Length:
\[\text{len}(\varepsilon) = 0 \]
\[\text{len}(wa) = \text{len}(w) + 1 \quad \text{for } w \in \Sigma^*, a \in \Sigma \]

Reversal:
\[\varepsilon^R = \varepsilon \]
\[(wa)^R = aw^R \quad \text{for } w \in \Sigma^*, a \in \Sigma \]
Claim about Strings

Claim: For any string $s \in \Sigma^*$, $\text{len}(s^R) = \text{len}(s)$
Proof

1. Let $P(s)$ be induction.

2. Base Case(s):

3. Inductive Hypothesis:

4. Inductive Step:

5. Conclusion:

We prove $P(s)$ for all strings s by structural
Proof

1. Let $P(s)$ be $\text{len}(s^R) = \text{len}(s)$. We prove $P(s)$ for all strings s by structural induction.

2. Base Case(s):

3. Inductive Hypothesis:

4. Inductive Step:

5. Conclusion:
Proof

1. Let $P(s)$ be $\text{len}(s^R) = \text{len}(s)$. We prove $P(s)$ for all strings s by structural induction.

2. Base Case(s): ($s = \varepsilon$). LHS: Since $\varepsilon^R = \varepsilon$, $\text{len}(\varepsilon^R) = \text{len}(\varepsilon) = 0$. RHS: $\text{len}(\varepsilon) = 0$. Since $0 = 0$, the base case holds.

3. Inductive Hypothesis:

4. Inductive Step:

5. Conclusion:
1. Let $P(s)$ be $\text{len}(s^R) = \text{len}(s)$. We prove $P(s)$ for all strings s by structural induction.

2. Base Case(s): ($s = \varepsilon$). LHS: Since $\varepsilon^R = \varepsilon$, $\text{len}(\varepsilon^R) = \text{len}(\varepsilon) = 0$. RHS: $\text{len}(\varepsilon) = 0$. Since $0 = 0$, the base case holds.

3. Inductive Hypothesis: Suppose $P(w)$ for some arbitrary string w. Then $\text{len}(w^R) = \text{len}(w)$

4. Inductive Step: $\text{Goal: } \text{len}((wa)^R) = \text{len}(wa)$

5. Conclusion:
Proof

1. Let $P(s)$ be $\text{len}(s^R) = \text{len}(s)$. We prove $P(s)$ for all strings s by structural induction.

2. Base Case(s): $(s = \varepsilon)$. LHS: Since $\varepsilon^R = \varepsilon$, $\text{len}(\varepsilon^R) = \text{len}(\varepsilon) = 0$. RHS: $\text{len}(\varepsilon) = 0$. Since $0 = 0$, the base case holds.

3. Inductive Hypothesis: Suppose $P(w)$ for some arbitrary string w. Then $\text{len}(w^R) = \text{len}(w)$

4. Inductive Step: \(\text{Goal: len}((wa)^R) = \text{len}(wa) \)

 Let a be an arbitrary character. Observe:

 $\text{len}((wa)^R) = \text{len}(aw^R)$

 By definition of reverse

5. Conclusion:
1. Let \(P(s) \) be \(\text{len}(s^R) = \text{len}(s) \). We prove \(P(s) \) for all strings \(s \) by structural induction.

2. Base Case(s): \((s = \varepsilon)\). LHS: Since \(\varepsilon^R = \varepsilon \), \(\text{len}(\varepsilon^R) = \text{len}(\varepsilon) = 0 \). RHS: \(\text{len}(\varepsilon) = 0 \). Since \(0 = 0 \), the base case holds.

3. Inductive Hypothesis: Suppose \(P(w) \) for some arbitrary string \(w \). Then \(\text{len}(w^R) = \text{len}(w) \)

4. Inductive Step: \textbf{Goal: } \text{len}((wa)^R) = \text{len}(wa) \)

 Let \(a \) be an arbitrary character. Observe:

 \[
 \begin{align*}
 \text{len}((wa)^R) &= \text{len}(aw^R) & \text{By definition of reverse} \\
 &= \text{len}(w^R) + 1 & \text{By definition of length} \\
 &= \text{len}(w) + 1 & \text{By IH} \\
 &= \text{len}(wa) & \text{By definition of length}
 \end{align*}
 \]

5. Conclusion: Thus \(P(s) \) holds for all strings \(s \) by structural induction.
Trees!
More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.

Recursive Step: If \(T_1 \) and \(T_2 \) are rooted binary trees with roots \(r_1 \) and \(r_2 \), then a tree rooted at a new node, with children \(r_1, r_2 \) is a binary tree.

\[
\begin{array}{c}
\text{Root} \\
T_1 \\
T_2
\end{array}
\]
Functions on Binary Trees

size(•) = 1

size() = size(T_1) + size(T_2) + 1

height() = 0

height() = 1 + \max(\text{height}(T_1), \text{height}(T_2))
Binary Trees

Basis: A single node is a rooted binary tree.

Recursive Step: If T_1 and T_2 are rooted binary trees with roots r_1 and r_2, then a tree rooted at a new node, with children r_1, r_2 is a binary tree.

- $size(\bullet) = 1$
- $size(T) = size(T_1) + size(T_2) + 1$
- $height(\bullet) = 0$
- $height(T) = 1 + \max(height(T_1), height(T_2))$
Claim

We want to show that trees of a certain height can’t have too many nodes. Specifically our claim is this:

For all trees T, $\text{size}(T) \leq 2^{\text{height}(T)+1} - 1$

Take a moment to absorb this formula, then we’ll do induction!
Structural Induction on Binary Trees

Let $P(T)$ be true for all binary trees T by structural induction.

Base Case:

Inductive Hypothesis:
Structural Induction on Binary Trees

Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)+1} - 1$“. We show $P(T)$ for all binary trees T by structural induction.

Base Case: Let $T = \bullet$. $\text{size}(T) = 1$ and $\text{height}(T) = 0$, so $\text{size}(T) = 1 \leq 2 - 1 = 2^{0+1} - 1 = 2^{\text{height}(T)+1} - 1$.

Inductive Hypothesis:
Structural Induction on Binary Trees

Let $P(T)$ be "$\text{size}(T) \leq 2^{\text{height}(T)+1} - 1$". We show $P(T)$ for all binary trees T by structural induction.

Base Case: Let $T = \bullet$. $\text{size}(T)=1$ and $\text{height}(T) = 0$, so $\text{size}(T)=1 \leq 2 - 1 = 2^{0+1} - 1 = 2^{\text{height}(T)+1} - 1$.

Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for arbitrary trees L, R. Let T be the tree

Inductive step: Figure out, (1) what we must show (2) a formula for height and a formula for size of T.

![Tree Diagram]
Let $P(T)$ be \("size(T) \leq 2^{\text{height}(T)} + 1 - 1\". We show $P(T)$ for all binary trees T by structural induction.

Let T be a binary tree with children L and R.

- \(\text{height}(T) = 1 + \max\{\text{height}(L), \text{height}(R)\}\)
- \(\text{size}(T) = 1 + \text{size}(L) + \text{size}(R)\)

So $P(T)$ holds, and we have $P(T)$ for all binary trees T by the principle of induction.
Let \(P(T) \) be "size(\(T \)) \leq 2^{\text{height}(\(T \)) + 1} - 1". We show \(P(T) \) for all binary trees \(T \) by structural induction.

\[
T = \begin{array}{c}
\text{L} \\
\text{R}
\end{array}
\]

height(\(T \)) = 1 + \max\{\text{height}(L), \text{height}(R)\}

size(\(T \)) = 1 + \text{size}(L) + \text{size}(R)

size(\(T \)) = 1 + \text{size}(L) + \text{size}(R) \leq 1 + 2^{\text{height}(L) + 1} - 1 + 2^{\text{height}(R) + 1} - 1 \quad \text{(by IH)}

\leq 2^{\text{height}(L) + 1} + 2^{\text{height}(R) + 1} - 1 \quad \text{(cancel 1's)}

\leq 2^{\text{height}(T)} + 2^{\text{height}(T)} - 1 = 2^{\text{height}(T) + 1} - 1 \quad \text{\(T \) taller than subtrees)

So \(P(T) \) holds, and we have \(P(T) \) for all binary trees \(T \) by the principle of induction.