
Structural Induction CSE 311: Foundations of
Computing I
Lecture 14

Announcements

• HW4 due tonight at 11:59 pm. Turn it in with no late days to receive

feedback by tomorrow for induction

Find the Bug

Find the Bug
Claim: For every odd integer , ଶ

ସ .

Proof: Let be an arbitrary odd integer. Then by definition of odd, for
some integer . Then consider ଶ

ସ . Plugging in for ଶ:

ଶ
ସ
ଶ

ସ
ଶ

ସ

Then by definition of congruence, ଶ , so ଶ . Since this is
true, the claim holds.

Find the Bug
Claim: For every odd integer , ଶ

ସ .

Proof: Let be an arbitrary odd integer. Then by definition of odd, for
some integer . Then consider ଶ

ସ . Plugging in for ଶ:

ଶ
ସ
ଶ

ସ
ଶ

ସ

Then by definition of congruence, ଶ , so ଶ . Since this is
true, the claim holds.

Backwards Reasoning:
Assumes the statement
we’re trying to prove is
true.

Fixed Proof
Claim: For every odd integer , ଶ

ସ .

Proof: Let be an arbitrary odd integer. Then by definition of odd, for
some integer . Then consider ଶ:

ଶ

Since is an integer, ଶ is an integer. So by definition of divides, ଶ . So by
definition of congruence, ଶ

ସ . Since was arbitrary, the claim holds.

Fixed Proof
Claim: For every odd integer , ଶ

ସ .

Proof: Let be an arbitrary odd integer. Then by definition of odd, for
some integer . Then consider ଶ:

ଶ ଶ ଶ

ଶ ଶ

ଶ ଶ

Since is an integer, ଶ is an integer. So by definition of divides, ଶ . So by
definition of congruence, ଶ

ସ . Since was arbitrary, the claim holds.

Backwards Reasoning

Backwards reasoning is the incorrect proof technique of assuming the
goal is true, and then deriving some other true statement.

This reasoning can be used to incorrectly prove false statements.

Claim: For all integer , if ଶ , then .
Backwards Proof: Let be an arbitrary integer. Suppose ଶ .
Plugging in , we have ଶ . Since this is true, the claim holds.
False! What if ?

Find the 4 Bugs
Claim: For all integers , ାଵ

ଶ
.

Proof: Let be “ ାଵ

ଶ
for all integers ”. We prove by induction.

Base Case: Plugging in , we have ଵ ଵାଵ

ଶ
. So ଶ

ଶ
. So . Since this is true,

the base case holds.

IH: Suppose ାଵ

ଶ
for an arbitrary integer .

IS: We aim to show . Observe that:
 ାଵ

ଶ

 ାଵ ାଶ ାଵ

ଶ

ାଵ ାଶ

ଶ

So holds.

Conclusion: Thus holds for all integers by induction.

Find the 4 Bugs
Claim: For all integers , ାଵ

ଶ
.

Proof: Let be “ ାଵ

ଶ
for all integers ”. We prove by induction.

Base Case: Plugging in , we have ଵ ଵାଵ

ଶ
. So ଶ

ଶ
. So . Since this is true,

the base case holds.

IH: Suppose ାଵ

ଶ
for an arbitrary integer .

IS: We aim to show . Observe that:
 ାଵ

ଶ

 ାଵ ାଶ ାଵ

ଶ

ାଵ ାଶ

ଶ

So holds.

Conclusion: Thus holds for all integers by induction.

Backwards Reasoning:
Assumes the base
case holds

Definition of P(𝑛):
Including the “for all 𝑛”
inside the definition of P.

Should be 𝑘 ≥ 1

Didn’t cite where
we used the IH

Avoiding Backwards Reasoning in the Base Case

Incorrect Technique: Backwards reasoning
Plugging in , we have ଵ ଵାଵ

ଶ
. So ଶ

ଶ
. So . Since this is true,

the base case holds.

Valid Technique 1: Separating LHS and RHS
The LHS evaluates to . The RHS evaluates to ଵ ଵାଵ

ଶ

ଶ

ଶ
. Since , the

base case holds.

Valid Technique 2: Start from Left, convert to the Right
Observe that ଶ

ଶ

ଵ⋅ଶ

ଶ

ଵ ଵାଵ

ଶ
. So the base case holds.

Induction Big Picture

Weak and Strong Induction: Prove statements over the natural numbers.
“Prove that P(n) holds for all natural numbers n.”

Structural Induction: In CS, we deal with Strings, Lists, Trees, and other
objects. Now we prove statements about these objects.

“Prove that P(T) holds for all trees T.”
“Prove that P(x) holds for all strings x.”

Recursively Defined Sets

Recursively Defined Sets

• In order to prove a fact about all trees or all lists, we need rigorous
mathematical definitions for these sets.

• We will define these sets recursively. A recursively defined set has 3
components:

• Basis Step

• Recursive Step

• Exclusion Rule

For example, define a set as follows:
Basis Step:
Recursive Step: If then .
Exclusion Rule: Every element of follows from the basis step or a
finite number of recursive steps.

What is ? The set of all non-negative even integers. {0, 2, 4,…}
Why do we need the exclusion rule? To clarify that there aren’t any other
elements in the set. In practice this isn’t usually written.

Recursively Defined Sets

Natural Numbers ()

Integers ()

Integer coordinates in the line

Recursively Defined Sets

Natural Numbers ()
Basis Step:
Recursive Step: If then .

Integers ()
Basis Step:
Recursive Step: If then and .

Integer coordinates in the line
Basis Step:
Recursive Step: If then and .

Recursively Defined Sets

Q1: Write a recursive definition for the set of positive even integers
Basis Step:
Recursive Step:

Q2: Write a recursive definition for the set of powers of 3
Basis Step:
Recursive Step:

Recursively Defined Sets

Q1: Write a recursive definition for the set of positive even integers
Basis Step:
Recursive Step: If then

Q2: Write a recursive definition for the set of powers of 3
Basis Step:
Recursive Step: If , then

Recursively Defined Sets

Structural Induction
On Sets of Numbers

Claim about a Recursively Defined Set

Let be the set defined:

Basis Step:

Recursive Step: if then .

Claim: Every element of is divisible by .

How would we prove this?

Structural Induction Idea

To show for all …

Base Case: Show for all elements in the basis step.

Inductive Hypothesis: Assume holds for arbitrary element(s) that
we’ve already constructed.

Inductive Step: Prove that holds for a new element constructed using
the recursive step.

Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Structural Induction Idea

To show for all …
• Here, is “ ”.

Base Case: Show for all elements in the basis step.
• Show and hold.

Inductive Hypothesis: Assume holds for arbitrary element(s) that
we’ve already constructed.
• Assume and for arbitrary .

Inductive Step: Prove that holds for a new element constructed using
the recursive step.
• Show holds.

Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

Structural Induction
1. Let be “ is divisible by ”. We show holds for all by
structural induction.
2. Base Case(s): so and holds. , so and

holds.
3. Inductive Hypothesis: Suppose and for arbitrary
4. Inductive Step:
By IH and So by definition of divides, and for
integers .
Adding the equations: . Since are integers is an
integer. Thus by definition of divides, . So holds.
5. Conclusion: Thus for all by structural induction.

Goal: holds

Basis: 6 ∈ S, 15 ∈ 𝑆
Recursive: if 𝑥, 𝑦 ∈ 𝑆 then 𝑥 + 𝑦 ∈ 𝑆.

How does this work?

S

6 15

12 21 30

18 27

24…

Basis:
Recursive: if then .

We proved:
Base Case: P(6) and P(15)

IH IS: If P(x) and P(y), then P(x+y)

Weak Induction is a special case of Structural

1
2

3 4 5

6 7

8…

Basis:
Recursive: if then .

We proved:
Base Case: P(0)

IH IS: If P(k), then P(k+1)

0

Wait a minute! Why can we do this?
Think of each element of as requiring “applications of a rule” to get
in

is true
so

so
…
It’s the same principle as regular induction. You’re just inducting on “how
many steps did we need to get this element?”
You’re still only assuming the IH about a domino you’ve knocked over.

Wait a minute! Why can we do this?
Imagine building “step-by-step”

ଵ

ଶ

IS can always of the form “suppose ” and show
for some ାଵ

We use the structural induction phrasing assuming our reader knows
how induction works and so don’t phrase it explicitly in this form.

Structural Induction Template

1. Define . Claim that holds for all . State your proof is by
structural induction.
2. Base Case: Show ଵ holds for each basis step ଵ in

.
3. Inductive Hypothesis: Suppose ଵ for all values listed in
the recursive rules.
4. Inductive Step: Show holds for the “new element” given by the
recursive step. You will need a separate step for every rule.
5. Conclusion: Conclude that holds for all by structural
induction.

Structural Induction
On Strings

String Terminology

is the alphabet, i.e. the set of all letters you can use in strings.
For example: or

∗ is the set of all strings you can build from the letters in the alphabet.
For example: If then ∗. If , then

∗

• is the empty string
Analogous to “” in Java

Recursive definition of Strings

The set of all strings ∗ can be defined recursively (using):

Basis Step: ∗

Recursive Step: If ∗ and , then ∗

here means the string with the character appended on to it

Σ is the alphabet
Σ∗ is the set of all strings
𝜀 is the empty string

Functions on Strings

To prove interesting facts about strings, we need functions on strings.

Length:

for ∗

Reversal:
ோ

ோ ோ for ∗,

Basis: 𝜀 ∈ Σ∗

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ,
then 𝑤𝑎 ∈ Σ∗

Claim about Strings

Claim: For any string ∗, ோ

1. Let be ோ . We prove for all strings by structural
induction.

2. Base Case(s): . LHS: Since ோ , ோ . RHS: .
Since , the base case holds.
3. Inductive Hypothesis: Suppose for some arbitrary string . Then

ோ

4. Inductive Step:
Let be an arbitrary character. Observe:

ோ ோ By definition of reverse
ோ By definition of length

By IH
By definition of length

5. Conclusion: Thus holds for all strings by structural induction.

Proof

Goal: ோ

Basis: 𝜀 ∈ Σ∗

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ,
then 𝑤𝑎 ∈ Σ∗

len 𝜀 = 0
len 𝑤𝑎 = len 𝑤 + 1

𝜀ோ = 𝜀
𝑤𝑎 ோ = 𝑎𝑤ோ

1. Let be ோ . We prove for all strings by structural
induction.

2. Base Case(s): . LHS: Since ோ , ோ . RHS: .
Since , the base case holds.
3. Inductive Hypothesis: Suppose for some arbitrary string . Then

ோ

4. Inductive Step:
Let be an arbitrary character. Observe:

ோ ோ By definition of reverse
ோ By definition of length

By IH
By definition of length

5. Conclusion: Thus holds for all strings by structural induction.

Proof

Goal: ோ

Basis: 𝜀 ∈ Σ∗

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ,
then 𝑤𝑎 ∈ Σ∗

len 𝜀 = 0
len 𝑤𝑎 = len 𝑤 + 1

𝜀ோ = 𝜀
𝑤𝑎 ோ = 𝑎𝑤ோ

1. Let be ோ . We prove for all strings by structural
induction.

2. Base Case(s): . LHS: Since ோ , ோ . RHS: .
Since , the base case holds.
3. Inductive Hypothesis: Suppose for some arbitrary string . Then

ோ

4. Inductive Step:
Let be an arbitrary character. Observe:

ோ ோ By definition of reverse
ோ By definition of length

By IH
By definition of length

5. Conclusion: Thus holds for all strings by structural induction.

Proof

Goal: ோ

Basis: 𝜀 ∈ Σ∗

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ,
then 𝑤𝑎 ∈ Σ∗

len 𝜀 = 0
len 𝑤𝑎 = len 𝑤 + 1

𝜀ோ = 𝜀
𝑤𝑎 ோ = 𝑎𝑤ோ

1. Let be ோ . We prove for all strings by structural
induction.

2. Base Case(s): . LHS: Since ோ , ோ . RHS: .
Since , the base case holds.
3. Inductive Hypothesis: Suppose for some arbitrary string . Then

ோ

4. Inductive Step:
Let be an arbitrary character. Observe:

ோ ோ By definition of reverse
ோ By definition of length

By IH
By definition of length

5. Conclusion: Thus holds for all strings by structural induction.

Proof

Goal: ோ

Basis: 𝜀 ∈ Σ∗

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ,
then 𝑤𝑎 ∈ Σ∗

len 𝜀 = 0
len 𝑤𝑎 = len 𝑤 + 1

𝜀ோ = 𝜀
𝑤𝑎 ோ = 𝑎𝑤ோ

1. Let be ோ . We prove for all strings by structural
induction.

2. Base Case(s): . LHS: Since ோ , ோ . RHS: .
Since , the base case holds.
3. Inductive Hypothesis: Suppose for some arbitrary string . Then

ோ

4. Inductive Step:
Let be an arbitrary character. Observe:

ோ ோ By definition of reverse
ோ By definition of length

By IH
By definition of length

5. Conclusion: Thus holds for all strings by structural induction.

Proof

Goal: ோ

Basis: 𝜀 ∈ Σ∗

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ,
then 𝑤𝑎 ∈ Σ∗

len 𝜀 = 0
len 𝑤𝑎 = len 𝑤 + 1

𝜀ோ = 𝜀
𝑤𝑎 ோ = 𝑎𝑤ோ

1. Let be ோ . We prove for all strings by structural
induction.

2. Base Case(s): . LHS: Since ோ , ோ . RHS: .
Since , the base case holds.
3. Inductive Hypothesis: Suppose for some arbitrary string . Then

ோ

4. Inductive Step:
Let be an arbitrary character. Observe:

ோ ோ By definition of reverse
ோ By definition of length

By IH
By definition of length

5. Conclusion: Thus holds for all strings by structural induction.

Proof

Goal: ோ

Basis: 𝜀 ∈ Σ∗

Recursive: If 𝑤 ∈ Σ∗ and 𝑎 ∈ Σ,
then 𝑤𝑎 ∈ Σ∗

len 𝜀 = 0
len 𝑤𝑎 = len 𝑤 + 1

𝜀ோ = 𝜀
𝑤𝑎 ோ = 𝑎𝑤ோ

Trees!

More Structural Sets
Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.
Recursive Step: If ଵ and ଶ are rooted binary trees with roots ଵ and ଶ,
then a tree rooted at a new node, with children ଵ ଶ is a binary tree.

ଵ ଶ

Functions on Binary Trees
size()=1
size() = size(ଵ) + size(ଶ) + 1

height() = 0
height() = 1+ height(ଵ),height(ଶ)

ଵ ଶ

ଵ ଶ

Binary Trees
Basis: A single node is a rooted binary tree.

Recursive Step: If ଵ and ଶ are rooted binary
trees with roots ଵ and ଶ, then a tree rooted at
a new node, with children ଵ ଶ is a binary tree.

ଵ ଶ

size()=1
size() =

size(ଵ) + size(ଶ) + 1

height() = 0
height() =

1+ height(ଵ),height(ଶ)

ଵ ଶ

ଵ ଶ

Claim
We want to show that trees of a certain height can’t have too many
nodes. Specifically our claim is this:

For all trees size() ௧ ் ାଵ

Take a moment to absorb this formula, then we’ll do induction!

Structural Induction on Binary Trees
Let be “size() ௧ ் ାଵ . We show for all binary
trees by structural induction.
Base Case: Let . size()=1 and height() = 0, so size()=1
ାଵ ௧ ் ାଵ .

Inductive Hypothesis: Suppose and hold for arbitrary trees
. Let be the tree

Inductive step: Figure out, (1) what we must show (2) a formula for
height and a formula for size of .

Structural Induction on Binary Trees
Let be “size() ௧ ் ାଵ . We show for all binary
trees by structural induction.
Base Case: Let . size()=1 and height() = 0, so size()=1
ାଵ ௧ ் ାଵ .

Inductive Hypothesis: Suppose and hold for arbitrary trees
. Let be the tree

Inductive step: Figure out, (1) what we must show (2) a formula for
height and a formula for size of .

Structural Induction on Binary Trees
Let be “size() ௧ ் ାଵ . We show for all binary
trees by structural induction.
Base Case: Let . size()=1 and height() = 0, so size()=1
ାଵ ௧ ் ାଵ .

Inductive Hypothesis: Suppose and hold for arbitrary trees
. Let be the tree

Inductive step: Figure out, (1) what we must show (2) a formula for
height and a formula for size of .

Structural Induction on Binary Trees (cont.)
Let be “size() ௧ ் ାଵ . We show for all binary trees by
structural induction.

.

height =
size(= size()+size

So holds, and we have for all binary trees by the principle of
induction.

Structural Induction on Binary Trees (cont.)
Let be “size() ௧ ் ାଵ . We show for all binary trees by structural
induction.

.

height =
size(= size()+size
size(=1 size()+size ௧ ାଵ ௧ ோ ାଵ (by IH)

௧ ାଵ ௧ ோ ାଵ (cancel 1’s)
௧(்) ௧(்) ௧ ் ାଵ (taller than subtrees)

So holds, and we have for all binary trees by the principle of induction.

