me once i see that I have to prove something for all $n \in \mathbb{N}$

Strong Induction

CSE 311: Foundations of Computing I Lecture 14

Announcements

- HW4 due Friday at 11:59 pm
- There are 2 submission spots on Gradescope:

Feedback before the midterm is only guaranteed if you don't use late days

- Midterm this Monday in class
- Homework 5 releases on Monday

Midterm

- The reference sheets will be provided
- One practice midterm and solutions are posted
- Optional review session this Saturday, July 20th at 11:00am

Strong Induction

Let's Try Another Induction Proof

Fundamental Theorem of Arithmetic
Every positive integer greater than 1 has a unique prime factorization.

Uniqueness is hard. Let's just show existence.
I.e.

Claim: Every positive integer greater than 1 can be written as a product of primes.

Prime Factorizations

Some examples

$$
\begin{gathered}
12=2^{2} \cdot 3 \\
35=5 \cdot 7 \\
36=2^{2} \cdot 3^{2} \\
7=7
\end{gathered}
$$

Notice, for prime numbers the product is just the one number.

Induction on Primes.

Let $P(n)$ be " n can be written as a product of primes."
We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case $(\boldsymbol{n}=\mathbf{2})$: 2 is a product of just itself. Since 2 is prime, it is written as a product of primes.
Inductive Hypothesis:
Inductive Step:
Case $1, k+1$ is prime:
Case $2, k+1$ is composite:

Therefore $P(k+1)$.
$P(n)$ holds for all $n \geq 2$ by the principle of induction.

Induction on Primes.

Let $P(n)$ be " n can be written as a product of primes."
We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case $(\boldsymbol{n}=\mathbf{2})$: 2 is a product of just itself. Since 2 is prime, it is written as a product of primes.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary integer $k \geq 2$.
Inductive Step:
Case $1, k+1$ is prime: then $k+1$ is automatically written as a product of primes.
Case $2, k+1$ is composite:

Therefore $P(k+1)$.
$P(n)$ holds for all $n \geq 2$ by the principle of induction.

We're Stuck

We can divide $k+1$ up into smaller pieces (say s, t such that $s t=k+1$ with $2 \leq s<k+1$ and $2 \leq t<k+1$

Is $P(s)$ true? Is $P(t)$ true?
I mean...it would be...
But in the inductive step we don't have it...
Let's add it to our inductive hypothesis.

Recall: Induction

Induction relied on the fact that:

$$
\forall n \mathrm{P}(n) \equiv \mathrm{P}(0) \wedge \forall k(\mathrm{P}(k) \rightarrow \mathrm{P}(k+1))
$$

Inductive Step
Prove that $\mathrm{P}(k+1)$ holds (using $\mathrm{P}(k)$)

Recall: Induction

Check that the formula holds for $n=0$

Show that the assumption implies that the formula holds for $n=k+1$.

Assume the formula holds for $n=k$.

Conclude that the formula holds for all $n \in \mathbb{N}$.

Another Equivalence

There are other statements that are stronger but still useful to $\forall n \mathrm{P}(n)$. In particular:

$$
\begin{aligned}
\forall n \mathrm{P}(n) \equiv & \mathrm{P}(0) \wedge \mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \mathrm{P}(3) \ldots \\
\equiv & \mathrm{P}(0) \wedge(\mathrm{P}(0) \rightarrow \mathrm{P}(1)) \wedge((\mathrm{P}(0) \wedge P(1)) \rightarrow \mathrm{P}(2)) \wedge \\
& ((\mathrm{P}(0) \wedge P(1) \wedge \mathrm{P}(2)) \rightarrow \mathrm{P}(3)) \ldots \\
\equiv & \mathrm{P}(0) \wedge \forall k((\mathrm{P}(0) \wedge \cdots \wedge \mathrm{P}(k)) \rightarrow \mathrm{P}(k+1))
\end{aligned}
$$

The Principle of Strong Induction

Strong Induction

That hypothesis where we assume P (base case),..,$P(k)$ instead of just $P(k)$ is called a strong inductive hypothesis.

Strong induction is the same fundamental idea as weak ("regular") induction.
$P(0)$ is true.
And $P(0) \rightarrow P(1)$, so $P(1)$.
And $P(1) \rightarrow P(2)$, so $P(2)$.
And $P(2) \rightarrow P(3)$, so $P(3)$.
And $P(3) \rightarrow P(4)$, so $P(4)$.

```
P(0) is true.
And P(0) ->P(1), so P(1).
And [P(0)^P(1)]->P(2), so P(2).
And [P(0)^\cdots\wedgeP(2)]->P(3), so P(3).
And[P(0)^\cdots\wedgeP(3)] ->P(4), so P(4).
```


Strong Induction

Induction on Primes

Let $P(n)$ be " n can be written as a product of primes."
We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case $(\boldsymbol{n}=\mathbf{2})$: 2 is a product of just itself. Since 2 is prime, it is written as a product of primes.
Inductive Hypothesis:
Inductive Step:
Case $1, k+1$ is prime: then $k+1$ is automatically written as a product of primes.
Case $2, k+1$ is composite:

Therefore $P(k+1)$.
$P(n)$ holds for all $n \geq 2$ by the principle of induction.

Induction on Primes

Let $P(n)$ be " n can be written as a product of primes."
We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case $(\boldsymbol{n}=\mathbf{2}): 2$ is a product of just itself. Since 2 is prime, it is written as a product of primes.
Inductive Hypothesis: Suppose $P(2), \ldots, P(k)$ hold for an arbitrary integer $k \geq 2$. Inductive Step:
Case $1, k+1$ is prime: then $k+1$ is automatically written as a product of primes.
Case $2, k+1$ is composite: We can write $k+1=s t$ for s, t nontrivial divisors (i.e. $2 \leq s<k+1$ and $2 \leq t<k+1$). By inductive hypothesis, we can write s as a product of primes $p_{1} \ldots \ldots p_{j}$ and t as a product of primes $q_{1} \cdots q_{\ell}$. Multiplying these representations, $k+1=p_{1} \cdots p_{j} \cdot q_{1} \cdots q_{\ell}$, which is a product of primes.
Therefore $P(k+1)$.
$P(n)$ holds for all $n \geq 2$ by the principle of induction.

Strong Induction vs. Weak Induction

- "Normal" Induction is otherwise known as Weak Induction
- All induction proofs could be written by Strong Induction instead. It's a stronger hypothesis to use. There is more to work with.
- However, there's often the philosophy to only use a stronger hypothesis when needed to make your inductive step more clear.

Making Induction Proofs Pretty

All of our strong induction proofs will come in 5 easy(?) steps!

1. Define $P(n)$. State that your proof is by induction on n.
2. Base Case: Show $P(b)$ i.e. show the base case
3. Inductive Hypothesis: Suppose $\mathrm{P}(\mathrm{b}) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq b$.
4. Inductive Step: Show $P(k+1)$ (i.e. get $[\mathrm{P}(\mathrm{b}) \wedge \cdots \wedge P(k)] \rightarrow P(k+1)$)
5. Conclude by saying $P(n)$ is true for all $n \geq b$ by the principle of induction.

Practical Advice

How many base cases do you need?

- Always at least one.
- If you're analyzing recursive code or a recursive function, at least one for each base case of the code/function.
- If you always go back s steps, at least s consecutive base cases.
- Enough to make sure every case is handled.

Strong Induction Example

Stamp Collection

Stamp Collection

- I have a collection of 4Φ and $5 \llbracket$ stamps. Prove that for all $n \geq 12$, I can make $n ₫$ worth of stamps.
- Examples:
- $13 \ddagger=5 \ddagger+4 \Phi+4 \rrbracket$
- $22 \Phi=5 \ddagger+5 \ddagger+4 \Phi+4 \Phi+4 \Phi$

[Attempted Proof by Strong Induction]

Prove that for all $n \geq 12$, I can make $n \phi$ worth of stamps.

1. Let $\mathrm{P}(n)$ be "I can make $n ₫$ worth of stamps with just 4Φ and $5 \ddagger$ stamps." We prove $\mathrm{P}(n)$ for all integers $n \geq 12$ by strong induction.
2. Base Case: 12Φ can be made with three 4Φ stamps. Thus $P(12)$ is true.
3. IH: Suppose $\mathrm{P}(12) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $k \geq 12$. I.e. we can make $12 \Phi, 13 \Phi, \ldots, k \Phi$ worth of stamps with just $4 \$$ and $5 \$$ stamps.
4. IS:
5. Conclusion: Thus $\mathrm{P}(n)$ holds for all integers $n \geq 12$ by strong induction.

[Attempted Proof by Strong Induction]

Prove that for all $n \geq 12$, I can make $n \phi$ worth of stamps.

1. Let $\mathrm{P}(n)$ be "I can make $n ₫$ worth of stamps with just 4Φ and $5 \ddagger$ stamps." We prove $\mathrm{P}(n)$ for all integers $n \geq 12$ by strong induction.
2. Base Case: 12Φ can be made with three 4Φ stamps. Thus $P(12)$ is true.
3. IH: Suppose $\mathrm{P}(12) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $k \geq 12$. I.e. we can make $12 \Phi, 13 \Phi, \ldots, k \ddagger$ worth of stamps with just $4 \$$ and $5 \ddagger$ stamps.
4. IS: We aim to show $\mathrm{P}(k+1)$, i.e. that we can make $k+1$ cents in stamps. By the IH , we can make $k-3$ cents in stamps. Adding another 4Φ stamp gives exactly $k+1$ cents.
5. Conclusion: Thus $\mathrm{P}(n)$ holds for all integers $n \geq 12$ by strong induction.

What was the problem?

- We don't know $\mathrm{P}(13)$ holds.
- When $k=12$, and $k+1=13$:
- Our IH assumes just P(12)
- In the IS, we say since $\mathrm{P}(9)$ holds (going back to $k-3$), then $\mathrm{P}(13)$ holds.
- But we don't know anything about $\mathrm{P}(9)$! It might not even be true!
- Lesson: If we go back s steps in the IS, we need s base cases.

Tower Visualization

[Proof by Strong Induction]

Prove that for all $n \geq 12$, I can make $n \phi$ worth of stamps.

1. Let $\mathrm{P}(n)$ be "I can make $n ₫$ worth of stamps with just 4Φ and 5Φ stamps." We prove $P(n)$ for all integers $n \geq 12$ by strong induction.
2. Base Cases:
12Φ can be made with three $4 \llbracket$ stamps. Thus $\mathrm{P}(12)$ is true.
13Φ can be made with two 4Φ stamps and one $5 \$$ stamps. Thus $P(13)$ is true.
14Φ can be made with one 4Φ stamp and two $5 \$$ stamps. Thus $P(14)$ is true.
$15 \$$ can be made with three $5 \$$ stamps. Thus $\mathrm{P}(15)$ is true.
3. IH : Suppose $\mathrm{P}(12) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $\boldsymbol{k} \geq \mathbf{1 5}$. I.e. we can make $12 \Phi, 13 \Phi, \ldots, k \Phi$ worth of stamps with just 4Φ and $5 \ddagger$ stamps.
4. IS: We aim to show $\mathrm{P}(k+1)$, i.e. that we can make $k+1$ cents in stamps. By the IH , we can make $k-3$ cents in stamps. Adding another 4Φ stamp gives exactly $k+1$ cents.
[Note: Now $k+1 \geq 16$, so $k-3 \geq 12$. We're in the clear!]
5. Conclusion: Thus $\mathrm{P}(n)$ holds for all integers $n \geq 12$ by strong induction.

Strong Induction Lesson

Strong Induction Template

Strong Induction Template

1. Define $\mathrm{P}(n)$. State that your proof is by strong induction on n.
2. Base Case: Show your base cases $\mathrm{P}\left(b_{\min }\right), \ldots, \mathrm{P}\left(b_{\text {max }}\right)$ are true.
3. Inductive Hypothesis: Suppose $\mathrm{P}\left(b_{\min }\right) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $k \geq b_{\text {max }}$.
4. Inductive Step: Prove $\mathrm{P}(k+1)$ using the IH.
5. Conclusion: Conclude by saying $\mathrm{P}(n)$ holds for all integers $n \geq b_{\text {min }}$ by strong induction.

Practical Tip

- If you aren't sure how many steps you'll go back, leave space for the base cases.
- Do the IH / IS, and then fill in the base cases later.

Strong Induction Example

Fibonacci Sequence

Fibonacci Numbers

- The Fibonacci Numbers are defined as follows:
$f_{0}=0$
$f_{1}=1$
$f_{n}=f_{n-1}+f_{n-2} \quad$ for all $n \geq 2$
- I.e. $0,1,1,2,3,5,8, \ldots$

Fibonacci Numbers Claim

- We claim that $f_{n}<2^{n}$ for all $n \geq 0$.
- $f_{0}=0 \quad 2^{0}=1$
- $f_{1}=1 \quad 2^{1}=2$
- $f_{2}=1 \quad 2^{2}=4$
- $f_{3}=2 \quad 2^{3}=8$
- $f_{4}=3 \quad 2^{4}=16$
- We prove by strong induction!

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be " $f_{n}<2^{n "}$ We prove $\mathrm{P}(n)$ for all $n \in \mathbb{N}$ by strong induction.
2. Base Cases:

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be " $f_{n}<2^{n "}$ We prove $\mathrm{P}(n)$ for all $n \in \mathbb{N}$ by strong induction.
2. Base Cases:
$f_{0}=0$ and $2^{0}=1$. Since $0<1, \mathrm{P}(0)$ holds.
$f_{1}=1$ and $2^{1}=2$. Since $1<2, \mathrm{P}(1)$ holds.
3. $\mathrm{IH}:$

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be " $f_{n}<2^{n "}$ We prove $\mathrm{P}(n)$ for all $n \in \mathbb{N}$ by strong induction.
2. Base Cases:
$f_{0}=0$ and $2^{0}=1$. Since $0<1, \mathrm{P}(0)$ holds.
$f_{1}=1$ and $2^{1}=2$. Since $1<2, \mathrm{P}(1)$ holds.
3. IH : Suppose $\mathrm{P}(0) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $\boldsymbol{k} \geq \mathbf{1}$.
4. IS:

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be " $f_{n}<2^{n "}$ We prove $\mathrm{P}(n)$ for all $n \in \mathbb{N}$ by strong induction.
2. Base Cases:
$f_{0}=0$ and $2^{0}=1$. Since $0<1, \mathrm{P}(0)$ holds.
$f_{1}=1$ and $2^{1}=2$. Since $1<2, \mathrm{P}(1)$ holds.
3. IH: Suppose $\mathrm{P}(0) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $\boldsymbol{k} \geq \mathbf{1}$.
4. IS: We aim to show $\mathrm{P}(k+1)$, i.e. that $f_{k+1}<2^{k+1}$.

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be " $f_{n}<2^{n "}$ We prove $\mathrm{P}(n)$ for all $n \in \mathbb{N}$ by strong induction.
2. Base Cases:
$f_{0}=0$ and $2^{0}=1$. Since $0<1, \mathrm{P}(0)$ holds.
$f_{1}=1$ and $2^{1}=2$. Since $1<2, \mathrm{P}(1)$ holds.
3. IH : Suppose $\mathrm{P}(0) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $\boldsymbol{k} \geq \mathbf{1}$.
4. IS: We aim to show $\mathrm{P}(k+1)$, i.e. that $f_{k+1}<2^{k+1}$. Observe:

$$
\begin{aligned}
f_{k+1} & =f_{k}+f_{k-1} \\
& \leq 2^{k}+f_{k-1} \\
& \leq 2^{k}+2^{k-1} \\
& \leq 2^{k}+2^{k} \\
& =2^{k+1}
\end{aligned}
$$

$$
\text { Since } k+1 \geq 2
$$

$$
\text { By } \mathrm{IH} \text {, since } \mathrm{P}(k) \text { is assumed }
$$

$$
\text { By } \mathrm{IH} \text {, since } \mathrm{P}(k-1) \text { is assumed }
$$

$$
\text { Since } 2^{k-1}=\frac{1}{2} \cdot 2^{k} \leq 2^{k}
$$

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be " $f_{n}<2^{n "}$ We prove $\mathrm{P}(n)$ for all $n \in \mathbb{N}$ by strong induction.
2. Base Cases:
$f_{0}=0$ and $2^{0}=1$. Since $0<1, \mathrm{P}(0)$ holds.
$f_{1}=1$ and $2^{1}=2$. Since $1<2, \mathrm{P}(1)$ holds.
3. IH: Suppose $\mathrm{P}(0) \wedge \cdots \wedge \mathrm{P}(k)$ hold for an arbitrary integer $\boldsymbol{k} \geq \mathbf{1}$.
4. IS: We aim to show $\mathrm{P}(k+1)$, i.e. that $f_{k+1}<2^{k+1}$. Observe:

$$
\begin{aligned}
f_{k+1} & =f_{k}+f_{k-1} & & \text { Since } k+1 \geq 2 \\
& \leq 2^{k}+f_{k-1} & & \text { By IH, since } \mathrm{P}(k) \text { is assumed } \\
& \leq 2^{k}+2^{k-1} & & \text { By IH, since } \mathrm{P}(k-1) \text { is assumed } \\
& \leq 2^{k}+2^{k} & & \text { Since } 2^{k-1}=\frac{1}{2} \cdot 2^{k} \leq 2^{k} \\
& =2^{k+1} & &
\end{aligned}
$$

5. Conclusion: Thus $\mathrm{P}(n)$ holds for all $n \in \mathbb{N}$ by strong induction.

Fibonacci Tower

How many base cases?

- Always at least one base case.
- If you're analyze a recursive function, at least one for each base case of the function.
- If you go back s steps in the proof, at least s base cases.

Prove that for all $n \in \mathbb{N}, f_{n}<2^{n}$.

$$
\begin{aligned}
& \text { Definition: } \\
& f_{0}=0, f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for } n \geq 2
\end{aligned}
$$

1. Let $\mathrm{P}(n)$ be
2. Base Cases:
3. $\mathrm{IH}:$
4. IS:

5. Conclusion:

