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Announcements

 HW4 due Friday at 11:59 pm

- There are 2 submission spots on Gradescope:

Feedback before the midterm is only guaranteed if you don't use

late days
« Midterm this Monday in class

 Homework 5 releases on Monday



Midterm

« The reference sheets will be provided
* One practice midterm and solutions are posted

« Optional review session this Saturday, July 20th at 11:00am



. Strong Induction



Let's Try Another Induction Proof

Fundamental Theorem of Arithmetic
Every positive integer greater than 1 has a unique

prime factorization.

Uniqueness is hard. Let's just show existence.

|.e.

Claim: Every positive integer greater than 1 can be written as a product
of primes.



Prime Factorizations

Some examples
12 =22-3
35=5-7
36 = 2% .32
7=7

Notice, for prime numbers the product is just the one number.



Induction on Primes.

Let P(n) be “n can be written as a product of primes.”
We show P(n) for all integers n = 2 by induction on n.

Base Case (n = 2): 2 is a product of just itself. Since 2 is prime, it is written as
a product of primes.

Inductive Hypothesis:

Inductive Step:
Case 1, k+ 1is prime:

Case 2, k + 1 is composite:

Therefore P(k + 1).
P(n) holds for all n = 2 by the principle of induction.



Induction on Primes.

Let P(n) be “n can be written as a product of primes”
We show P(n) for all integers n = 2 by induction on n.

Base Case (n = 2): 2 is a product of just itself. Since 2 is prime, it is written as a
product of primes.

Inductive Hypothesis: Suppose P (k) holds for an arbitrary integer k > 2.

Inductive Step:
Case 1, k + 1is prime: then k + 1 is automatically written as a product of primes.

Case 2, k + 1 is composite:

Therefore P(k + 1).
P(n) holds for all n = 2 by the principle of induction.



We're Stuck

We can divide k + 1 up into smaller pieces (say s, t suchthatst =k + 1
with2<s<k+land2<t<k+1

Is P(s) true? Is P(t) true?

| mean...it would be...

But in the inductive step we don't have it...
Let’s add it to our inductive hypothesis.



Recall: Induction

Induction relied on the fact that:

vn P(n) = P(0) AVk (P(k) - P(k + 1))
T ‘. A

Base Case
Prove P(0) holds.

Inductive Hypothesis
Let k = 0 be an
arbitrary integer.

Suppose P(k) holds.

Inductive Step
Prove that P(k + 1)
holds (using P(k))




Recall: Induction

UL A

Check that the formula holds forn = 0 Assume the formula holds forn = k.
Show that the assumption implies that Conclude that the formula holds for alln € N.

the formula holds forn = k + 1.



Another Equivalence

There are other statements that are stronger but still useful to vn P(n).
In particular:

vn P(n) = P(0) AP(1) AP(2) AP(3) ...
= P(0) A (P(0) - P(1)) A ((P(0) AP(1)) - P(2)) A
((P©) AP(1) AP(2)) - P(3))...
= P(0) AVk ((P(0) A+ AP(K)) > P(k + 1))



The Principle of Strong Induction

P(0) AVEk

|

|

Base Case
Prove P(0) holds.

|

((P@) A -

-

Inductive Hypothesis
Let k > 0 be an

P(0) A--- A P(k) hold.

~

arbitrary integer. Suppose

J

-AP(K)) > P(k + 1))

|

Inductive Step
Prove that P(k + 1)
holds

|




Strong Induction

That hypothesis where we assume P(base case), ..., P(k) instead of just
P(k) is called a strong inductive hypothesis.

Strong induction is the same fundamental idea as weak (“regular”)
induction.

P(0) is true. P(0) is true.

And P(0) - P(1), so P(1). And P(0) — P(1), so P(1).

And P(1) = P(2), so P(2). And [P(0) A P(1)] = P(2), so P(2).
And P(2) = P(3), so P(3). And [P(0) A=A P(2)] = P(3), so P(3).

And P(3) = P(4), so P(4). And[P(0) A ---AP(3)] = P(4), so P(4).



Strong Induction

Induction: kK = k+ 1
(e
0 k k+1

Strong Induction: 0..k = k + 1

>
0 k k+1



Induction on Primes

Let P(n) be “n can be written as a product of primes”
We show P(n) for all integers n = 2 by induction on n.

Base Case (n = 2): 2 is a product of just itself. Since 2 is prime, it is written as a
product of primes.

Inductive Hypothesis:

Inductive Step:
Case 1, k + 1is prime: then k + 1 is automatically written as a product of primes.

Case 2, k + 1 is composite:

Therefore P(k + 1).
P(n) holds for all n = 2 by the principle of induction.



Induction on Primes

Let P(n) be “n can be written as a product of primes”
We show P(n) for all integers n = 2 by induction on n.

Base Case (n = 2): 2 is a product of just itself. Since 2 is prime, it is written as a
product of primes.

Inductive Hypothesis: Suppose P(2), ..., P(k) hold for an arbitrary integer k > 2.

Inductive Step: . . . _
Case 1, k + 1'is prime: then k + 1 is automatically written as a product of primes.

Case 2, k + 1 is composite: We can write k + 1 = st for s, t nontrivial divisors (i.e.
2<s<k+1and2<t<k+1).Byinductive hypothesis, we can write s as a

product of primes p; - ...p; and t as‘a product of_prlmesc?1 -+ @p. Multiplying these
representations, k + 1 =p; -~ p; - q, *** q¢ Which is a product ofgprlmes.

Therefore P(k + 1).
P(n) holds for all n = 2 by the principle of induction.



Strong Induction vs. Weak Induction

« “Normal” Induction is otherwise known as Weak Induction

« All induction proofs could be written by Strong Induction instead.
It's a stronger hypothesis to use. There is more to work with.

« However, there’s often the philosophy to only use a stronger
hypothesis when needed to make your inductive step more clear.



Making Induction Proofs Pretty

All of our strong induction proofs will come in 5 easy(?) steps!

1. Define P(n). State that your proof is by induction on n.

2. Base Case: Show P(b) i.e. show the base case

3. Inductive Hypothesis: Suppose P(b) A --- A P(k) for an arbitrary k > b.
4. Inductive Step: Show P(k + 1) (i.e. get [P(b) A---AP(k)] = P(k + 1))

5. Conclude by saying P(n) is true for all n = b by the principle of
induction.



Practical Advice

How many base cases do you need?
« Always at least one.

« If you're analyzing recursive code or a recursive function, at least one for each
base case of the code/function.

* If you always go back s steps, at least s consecutive base cases.
« Enough to make sure every case is handled.



[~ Strong Induction Example

Stamp Collection



Stamp Collection

* | have a collection of 4¢ and 5¢ stamps. Prove that for alln > 12, | can
make n¢ worth of stamps.

* Examples:
 13¢ =5¢ + 44+ 4¢

e 22¢ =5¢ +5¢ +44¢ + 44+ 4¢



[Attempted Proof by Strong Induction]
Prove that for all n > 12, | can make n ¢ worth of stamps.

Let P(n) be "l can make n ¢ worth of stamps with just 4¢ and 5¢ stamps.” We prove
P(n) for all integers n = 12 by strong induction.

Base Case: 12¢ can be made with three 4¢ stamps. Thus P(12) is true.

. IH: Suppose P(12) A --- A P(k) hold for an arbitrary integer k = 12. l.e. we can make
12¢,13¢, ..., k¢ worth of stamps with just 4¢ and 5¢ stamps.

|S:

. Conclusion: Thus P(n) holds for all integers n = 12 by strong induction.



[Attempted Proof by Strong Induction]
Prove that for all n > 12, | can make n ¢ worth of stamps.

Let P(n) be "l can make n ¢ worth of stamps with just 4¢ and 5¢ stamps.” We prove
P(n) for all integers n = 12 by strong induction.

Base Case: 12¢ can be made with three 4¢ stamps. Thus P(12) is true.

IH: Suppose P(12) A --- A P(k) hold for an arbitrary integer k > 12. l.e. we can make
124,134, ..., k¢ worth of stamps with just 4¢ and 5¢ stamps.

4. IS: We aim to show P(k + 1), i.e. that we can make k + 1 cents in stamps. By the IH,
we can make k — 3 cents in stamps. Adding another 4¢ stamp gives exactly k + 1
cents.

. Conclusion: Thus P(n) holds for all integers n = 12 by strong induction.




What was the problem?

« We don't know P(13) holds.

« Whenk =12, andk+1=13:
Our IH assumes just P(12)

In the IS, we say since P(9) holds (going back to k — 3), then P(13)
holds.

But we don't know anything about P(9)! It might not even be true!

 Lesson: If we go back s steps in the IS, we need s base cases.



BAD

P(17) |

 P(16) |

 P(15) |

( P(14) |

' P(13) |

P(12)

Tower Visualization

base case

GOOD

P(17) |

' P(16) |

P(15) |

P(14) |

' P(13) |

' P(12)

base cases



1.

2.

[Proof by Strong Induction]
Prove that for all n > 12, | can make n ¢ worth of stamps.

Let P(n) be "l can make n ¢ worth of stamps with just 4¢ and 5¢ stamps.” We prove
P(n) for all integers n = 12 by strong induction.

Base Cases:

12¢ can be made with three 4¢ stamps. Thus P(12) is true.

13¢ can be made with two 4¢ stamps and one 5¢ stamps. Thus P(13) is true.
144¢ can be made with one 4¢ stamp and two 5¢ stamps. Thus P(14) is true.
15¢ can be made with three 5¢ stamps. Thus P(15) is true.

IH: Suppose P(12) A --- A P(k) hold for an arbitrary integer k = 15. l.e. we can make
12¢,13¢, ..., k¢ worth of stamps with just 4¢ and 5¢ stamps.

IS: We aim to show P(k + 1), i.e. that we can make k + 1 cents in stamps. By the IH,
we can make k — 3 cents in stamps. Adding another 4¢ stamp gives exactly k + 1
cents.

[Note: Now k+1 > 16,s0 k —3 = 12. We're in the clear!]

Conclusion: Thus P(n) holds for all integers n = 12 by strong induction.



Strong Induction Lesson

"WITH GREAT POWER
COMES GREAT
RESPONSIRILITY "

Ben Parker

_,_[,

Be careful about
base casesl!

|




I~ Strong Induction Template



Strong Induction Template

1. Define P(n). State that your proof is by strong induction on n.
2. Base Case: Show your base cases P(byip), -, P(bmax) are true.

3. Inductive Hypothesis: Suppose P(byin) A -+ A P(k) hold for an
arbitrary integer k = by a5 -

4. Inductive Step: Prove P(k + 1) using the IH.

5. Conclusion: Conclude by saying P(n) holds for all integers
n = byin by strong induction.



Practical Tip

 If you aren’t sure how many steps you'll go back, leave space for
the base cases.

e DothelH /IS, and then fill in the base cases later.



[~ Strong Induction Example

Fibonacci Sequence



Fibonacci Numbers

 The Fibonacci Numbers are defined as follows:

fo=0
fi=1
o = Jfn-1t+ fn2 foralln > 2

 1.0,1,1,2,3,5,8, ...




Fibonacci Numbers Claim

 We claimthat f,, < 2™ foralln = 0.

°f0=0 20=1
- fi=1 21 = 2
°f2=1 22=4‘
°f3:2 23:8
°f4:3 24:16

We prove by strong induction!



fa = fa-1t+ fa—z forn =2

Definition:
Prove that foralln € N, f, < 2", [fo =0,f,=1 }

1. Let P(n) be



= fno1 + frn_p forn =2

Definition:
Prove that foralln € N, f, < 2", [fo =0,f,=1 }

1. Let P(n) be “f,, < 2™" We prove P(n) for all n € N by strong induction.
2. Base Cases:



n=fon-1+ fnzforn=2

Definition:
Prove that foralln € N, f, < 2", [fo =0,f,=1 }

Let P(n) be “f,, < 2™" We prove P(n) for all n € N by strong induction.

2. Base Cases:
fo =0and 2° = 1. Since 0 < 1, P(0) holds.

fi = 1and 2! = 2. Since 1 < 2, P(1) holds.
3. IH:



Definition:
Prove that foralln € N, f, < 2", [fo =0,f,=1 }

= fno1 + frn_p forn =2

Let P(n) be “f,, < 2™" We prove P(n) for all n € N by strong induction.

. Base Cases:
fo =0and 2° = 1. Since 0 < 1, P(0) holds.
fi = 1and 2! = 2. Since 1 < 2, P(1) holds.

. IH: Suppose P(0) A--- A P(k) hold for an arbitrary integer k > 1.
S



= fno1 + frn_p forn =2

Definition:
Prove that foralln € N, f, < 2", [fo =0,f,=1 }

Let P(n) be “f,, < 2™" We prove P(n) for all n € N by strong induction.

. Base Cases:
fo =0and 2° = 1. Since 0 < 1, P(0) holds.
fi = 1and 2! = 2. Since 1 < 2, P(1) holds.

. IH: Suppose P(0) A--- A P(k) hold for an arbitrary integer k > 1.
. IS: We aim to show P(k + 1), i.e. that fi,; < 2%*1.



Definition:
Prove that foralln € N, f, < 2", [fo =0,f,=1 }

= fno1 + frn_p forn =2

Let P(n) be “f,, < 2™" We prove P(n) for all n € N by strong induction.

. Base Cases:
fo =0and 2° = 1. Since 0 < 1, P(0) holds.
fi = 1and 2! = 2. Since 1 < 2, P(1) holds.

. IH: Suppose P(0) A--- A P(k) hold for an arbitrary integer k > 1.
4. 1S: We aim to show P(k + 1), i.e. that fi4; < 2%*1. Observe:

fr+1 = frx + [i—1 Sincek+12=2
<2+ fi_4 By IH, since P(k) is assumed
< 2k 4 2k-1 By IH, since P(k — 1) is assumed
< 2k 4 2k Since 2k~1 = % L 2k < 2k

— 2k+1



Definition:
Prove that foralln € N, f, < 2", [fo =0,f,=1 }

= fno1 + frn_p forn =2

Let P(n) be “f,, < 2™" We prove P(n) for all n € N by strong induction.

. Base Cases:
fo =0and 2° = 1. Since 0 < 1, P(0) holds.
fi = 1and 2! = 2. Since 1 < 2, P(1) holds.

. IH: Suppose P(0) A--- A P(k) hold for an arbitrary integer k > 1.
4. 1S: We aim to show P(k + 1), i.e. that fi4; < 2%*1. Observe:

fr+1 = frx + [i—1 Sincek+12=2
<2+ fi_4 By IH, since P(k) is assumed
< 2k 4 2k-1 By IH, since P(k — 1) is assumed
< 2k 4 2k Since 2k~1 = % L 2k < 2k
— 2k+1

Conclusion: Thus P(n) holds for all n € N by strong induction.



Fibonacci Tower

- P(4)

- P@3)

- P2)

- P(D)

~ P(0)

base cases



How many base cases?

« Always at least one base case.

 |f you're analyze a recursive function, at least one for each base
case of the function.

 If you go back s steps in the proof, at least s base cases.



fa = fa-1t+ fa—z forn =2

Definition:
Prove that foralln € N, f, < 2", {ff;”('),'?f =1 }

Let P(n) be
Base Cases:

. Conclusion:



