
Induction CSE 311 Summer 2024
Lecture 12



Midterm Announcements
• Homework 4 is Due this Friday
• Midterm will be in class on Monday Jully 22nd

• An Ed post is going to go out with more of a list of topics, but you can 
expect at least these questions:
- A translation question
- A set theory proof question
- A number theory proof question
- An induction proof question

• You can not expect these things:
- Strong/Structural induction
- Running through the extended Euclidian algorithm
- Anything related to RSA or fast exponentiation
- Write out any propositional logic chains of equivalences more than 1 or 2 steps



How do we know recursion works?
//Assume i is a nonnegative integer
//returns 2^i.
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}

Why does CalculatesTwoToTheI(4) calculate 2^4?
Convince the people around you!



How do we know recursion works?
Something like this:

Well, as long as CalculatesTwoToTheI(3) = 8, we get 16…
Which happens as long as CalculatesTwoToTheI(2) = 4
Which happens as long as CalculatesTwoToTheI(1) = 2
Which happens as long as CalculatesTwoToTheI(0) = 1
And it is! Because that’s what the base case says.



How do we know recursion works?
There’s really only two cases.

CalculatesTwoToTheI(0) = 1 (which it should!)

And that means CalculatesTwoToTheI(1) = 2, (like it should)
And that means CalculatesTwoToTheI(2) = 4, (like it should)
And that means CalculatesTwoToTheI(3) = 8, (like it should)
And that means CalculatesTwoToTheI(4) = 16, (like it should)

The Base Case is Correct

IF the recursive call we make is correct 
THEN our value is correct.



How do we know recursion works?
The code has two big cases,
So our proof had two big cases

“The base case of the code produces the correct output”
“IF the calls we rely on produce the correct output THEN the current call 
produces the right output” 



A bit more formally…
“The base case of the code produces the correct output”
“IF the calls we rely on produce the correct output THEN the current call 
produces the right output” 
Let be “CalculatesTwoToTheI(i) returns ௜.”
How do we know ?

is true.
And , so 
And , so 
And , so 
And , so 



A bit more formally…
This works alright for .

What about ? 
At this point, we’d need to show that implication for A 
BUNCH of values of . 
But the code is the same each time. 
And so was the argument!

We should instead show .



Induction
Your new favorite proof technique!
How do we show ?

Show 
Show 



Induction

Let be “CalculatesTwoToTheI(i) returns ௜.”
Note that if the input is 0, then the if-statement evaluates to true, and 

is returned, so is true.
Suppose holds for an arbitrary 

So holds.
Therefore holds for all by the principle of induction.

//Assume i is a nonnegative integer
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}

Consider the code run on Since and we are in the else 
branch. By inductive hypothesis, CalculatesTwoToTheI( ) returns ௞ , so the 
code run on returns ௞ ௞ାଵ.



Making Induction Proofs Pretty

Let be the predicate “CalculatesTwoToTheI(i) returns ௜.” We 
prove holds holds for all natural numbers by induction on .
Base Case ( Note that if the input is 0, then the if-statement 
evaluates to true, and is returned, so is true.
Inductive Hypothesis: Suppose holds for an arbitrary 
Inductive Step: Since , so the code goes to the recursive 
case. We will return CalculatesTwoToTheI(k). By Inductive 
Hypothesis, 
CalculatesTwoToTheI(k)= ௞. Thus we return ௞ ௞ାଵ.
So holds.
Therefore holds for all by the principle of induction.



Making Induction Proofs Pretty
All of our induction proofs will come in 5 easy(?) steps!
1. Define . State that your proof is by induction on .
2. Show i.e. show the base case
3. Suppose for an arbitrary . 
4. Show (i.e. get )
5. Conclude by saying is true for all by induction. 



Some Other Notes
Always state where you use the inductive hypothesis when you’re using 
it in the inductive step.
It’s usually the key step, and the reader really needs to focus on it.

Be careful about what values you’re assuming the Inductive Hypothesis 
for – the smallest possible value of should assume the base case but 
nothing more. 



The Principle of Induction (formally)

Informally: if you knock over one domino, and every domino knocks 
over the next one, then all your dominoes fell over.

Principle of 
Induction



More induction!



More Induction
Induction doesn’t only work for code!
Show that ௜௡

௜ୀ଴
௡ ௡ାଵ .



More Induction
Induction doesn’t only work for code!
Show that ௜௡

௜ୀ଴
௡ ௡ାଵ .

Let “ ௜௡
௜ୀ଴

௡ାଵ .”
We show holds for all natural numbers by induction on .
Base Case (
Inductive Hypothesis:
Inductive Step: 

holds for all by the principle of induction.



More Induction
Induction doesn’t only work for code!
Show that ௜௡

௜ୀ଴
௡ ௡ାଵ .

Let “ ௜௡
௜ୀ଴

௡ାଵ .”
We show holds for all natural numbers by induction on .
Base Case ( ௜଴

௜ୀ଴
଴ାଵ .

Inductive Hypothesis: Suppose holds for an arbitrary .
Inductive Step: We show . Consider the summation ௜௞ାଵ

௜ୀ଴
୩ାଵ ௜ ௞ାଵ ௞ାଵ௞

௜ୀ଴ where the last step is by IH.
Simplifying, we get: ௜௞ାଵ

௜ୀ଴
௞ାଵ ௞ାଵ ௞ାଵ

௞ାଵ ାଵ

holds for all by the principle of induction.



Induction Template



Induction Template

1. Define . State that your proof is by induction on .

2. Base Case: Show is true for your base case .

3. Inductive Hypothesis: Suppose holds for an arbitrary 
integer .

4. Inductive Step: Prove (using the Inductive Hypothesis).

5. Conclusion: Conclude by saying holds for all integers 
by induction.



Induction Examples



Prove that the sum of the first positive integers is ௡(௡ାଵ)
ଶ

.

Examples
Sum: 
Formula: ଷ ଷାଵ

ଶ

ଷ⋅ସ

ଶ

Sum: 

Formula: ହ ହାଵ

ଶ

ହ⋅଺

ଶ

Carl Friedrich Gauss 
(1777-1855)



Prove that the sum of the first positive integers is ௡(௡ାଵ)
ଶ

.
1. Let be ‘’ ௡ ௡ାଵ

ଶ
”. We prove for all __________________by 

induction.
2. Base Case:

3. Inductive Hypothesis: Suppose holds for 

4. Inductive Step: We aim to show . Observe that:

So holds.
5. Conclusion: Thus holds for all integers by induction.



Prove that the sum of the first positive integers is ௡(௡ାଵ)
ଶ

.
1. Let be ‘’ ௡ ௡ାଵ

ଶ
”. We prove for all integers by 

induction.
2. Base Case: The LHS evaluates to . The RHS evaluates to ଵ ଵାଵ

ଶ
. Since , 

the base case holds.
3. Inductive Hypothesis: Suppose holds for an arbitrary integer . That is, 

௞ ௞ାଵ

ଶ
.

4. Inductive Step: We aim to show . Observe that:

௞ ௞ାଵ

ଶ
By the IH

௞ ௞ାଵ

ଶ

ଶ ௞ାଵ

ଶ
௞ାଵ ௞ାଶ

ଶ
௞ାଵ ௞ାଵ ାଵ

ଶSo holds.
5. Conclusion: Thus holds for all integers by induction.



Prove that ௡ ଶ for all integers .

Not a proof!



1. Let be ‘’ ௡ ଶ ”. We prove for all __________________ by induction.
2. Base Case ( ): 

3. Inductive Hypothesis: Suppose 

4. Inductive Step: We aim to show . Observe that:
௞ାଵ

So holds.
5. Conclusion: Thus holds for all integers by induction.

Prove that ௡ ଶ for all integers .



Checkerboard Tiling

• Imagine a ௡ ௡ checkerboard with a single square removed.
• Can you tile the board with pieces? You may rotate and flip the 
pieces around.

• Claim: All ௡ ௡ boards with one square removed can be tiled with
pieces



Checkerboard Tiling: Base Case

• Consider all boards with one piece missing.

• We can definitely tile these with one piece! 



Checkerboard Tiling: Inductive Hypothesis

• Assume you could tile any ௞ ௞ board with one piece missing.

•



Checkerboard Tiling: Inductive Step

• Now consider a ௞ାଵ ௞ାଵ board with one piece missing.

•



Checkerboard Tiling: Inductive Step

• Now consider a ௞ାଵ ௞ାଵ board with one piece missing.

•

• Divide the board into four quadrants of dimension ௞ ௞.



Checkerboard Tiling: Inductive Step

• Now consider a ௞ାଵ ௞ାଵ board with one piece missing.

•

• Place a single piece to occupy the three quadrants that aren’t missing 
a piece.



Checkerboard Tiling: Inductive Step

• Now consider a ௞ାଵ ௞ାଵ board with one piece missing.

•

• Each quadrant is now a ௞ ௞ board with one piece missing.
We can tile each of these by the IH.



4. Inductive Step: We aim to show . Consider an arbitrary ௞ାଵ

௞ାଵ checkerboard. We can divide the board into four quadrants, with 
one piece missing in one quadrant. Now place a single piece to occupy 
the three quadrants that aren’t missing a piece. We now have four 
௞ ௞ quadrants that are effectively each missing a piece. By the IH, 

we can tile each quadrant. Thus we can tile the entire checkerboard. So 
holds.

4. Inductive Step: We aim to show . Consider an arbitrary ௞ାଵ

௞ାଵ checkerboard. We can divide the board into four quadrants, with 
one piece missing in one quadrant. Now place a single piece to occupy 
the three quadrants that aren’t missing a piece. We now have four 
௞ ௞ quadrants that are effectively each missing a piece. By the IH, 

we can tile each quadrant.

4. Inductive Step: We aim to show . Consider an arbitrary ௞ାଵ

௞ାଵ checkerboard. We can divide the board into four quadrants, with 
one piece missing in one quadrant. Now place a single piece to occupy 
the three quadrants that aren’t missing a piece. We now have four 
௞ ௞ quadrants that are effectively each missing a piece.

4. Inductive Step: We aim to show . Consider an arbitrary ௞ାଵ

௞ାଵ checkerboard. We can divide the board into four quadrants, with 
one piece missing in one quadrant. Now place a single piece to occupy 
the three quadrants that aren’t missing a piece. 

4. Inductive Step: We aim to show . Consider an arbitrary ௞ାଵ

௞ାଵ checkerboard. We can divide the board into four quadrants, with 
one piece missing in one quadrant. 

4. Inductive Step: We aim to show . Consider an arbitrary ௞ାଵ

௞ାଵ checkerboard.
4. Inductive Step: We aim to show . 

1. Let be “all ௡ ௡ boards with one square removed can be tiled with pieces.“
We prove for all integers by induction.

2. Base Case ( ): Observe that we can tile all checkerboards:

So the base case holds.
3. Inductive Hypothesis: Suppose holds for an arbitrary integer . That is, 

assume we can tile all ௞ ௞ checkerboards with one piece missing.

• 5.   Conclusion: Thus holds for all integers by induction.

Checkerboard Tiling

4. Inductive Step:


