
Set Theory Part 2 CSE 311: Foundations of
Computing I
Lecture 11

Sets

• Definition:
• A set is an unordered collection of distinct objects, called elements.

• Set is a subset of if every element of is also in .
- In predicate logic, is defined as:
-

 Union: Intersection:

Set Operations

A B A B

 Set Difference: Set Complement: ௖

(with respect to the universe)

Set Operations

A B BA

 Powerset: Cartesian Product:

Set Operations

Claim 1

Claim 1: For all sets , we have .

Proof
Let be arbitrary sets. Let be arbitrary. Then by definition
of intersection, and . So certainly or . Thus by
definition of union, . Since was arbitrary, .
Since were arbitrary sets, the claim holds for all sets .

Definitions
𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)
𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}

Proving Subsets

To prove that , we let be arbitrary and prove that .

Claim 2

Claim 2: For all sets if then

• Intuition (Example)

Claim 2

• Claim 2: For all sets if then
• Proof
• Let be arbitrary sets. Suppose . Let be arbitrary.
Then by definition of powerset, .

• We know and . We aim to show that . Let be
arbitrary. Since and , then . Since and ,
then . Since was arbitrary, .

• Now since we have that , by definition of powerset .
Since was arbitrary, we have shown that

Definitions
𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)
𝒫(𝐴) = {𝐵 ∶ 𝐵 ⊆ 𝐴}

Symbols and Sets

• Note that when writing set proofs, we follow various conventions.

• We DO tend use symbols like etc. (instead of writing out the
symbol in English).
• E.g. “Let be arbitrary”

• We DO NOT tend to use symbols like (but rather write them out in
English).**
• E.g. “Then and ”

• **There are exceptions to this if logical symbols provide clarity when
applying equivalence rules (Absorption, DeMorgan’s Laws, etc.). The proof of
Claim 3 will be an example of that.

Set Equality Proofs

Claim 3 (DeMorgan’s Law for Sets)

Claim 3: For all sets ,

Intuition (Venn Diagram)

A B BA

Definitions
𝐴 = 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴
𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
𝐴̅ = {𝑥 ∈ 𝒰: 𝑥 ∉ 𝐴}

Claim 3

• Claim 3: For all sets ,

• Proof Strategy
• Let be arbitrary sets.
• Prove that .
• Prove that .

Definitions
𝐴 = 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴
𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
𝐴̅ = {𝑥 ∈ 𝒰: 𝑥 ∉ 𝐴}

Claim 3
Claim 3: For all sets ,
Proof (Method 1)
Let be arbitrary sets.

First we show that . Let be arbitrary. By definition of
complement, we have that . Then by definition of union,

. So by DeMorgan’s Law, . Then by definition of complement,
and . By definition of intersection, . Since was arbitrary,

.
Now we show that . Let be arbitrary. By definition of

intersection, we have that and . By definition of complement, we have
. Apply DeMorgan’s Law, we have . Then by

definition of union, . Then by definition of complement, .
Since was arbitrary, .

Thus we have shown that . Since were arbitrary, the claim holds.

Definitions
𝐴 = 𝐵 ≡ 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴
𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}
𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
𝐴̅ = {𝑥 ∈ 𝒰: 𝑥 ∉ 𝐴}

Claim 4

• Claim 4: For all sets ,
• Intuition (Diagram)

Definitions
𝐴 × 𝐵 = 𝑎, 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵
𝐴 ∪ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵}

First Direction (Other way is an exercise)
Let A, B, C, be arbitrary sets.
Assume that is arbitrary. We therefore know by
definition of cartesian product that there exists an and a
such that
Therefore, by definition of intersection, and . Therefore, we
have that and and and . Since , we
have by definition of cartesian product that and .
Thus, by definition of intersection, .
Since x was arbitrary, we have that .

Prove for all integers n, or

Let n be an arbitrary integer. We will argue by cases:
Case 1: n is even

If n is even, that means that n=2k for some integer k. squaring both
sides, we get ଶ ଶ. By definition of divides, we have that ଶ

which means that ଶ
ସ

Case 2: n is odd
If n is odd, this means that n = 2k + 1 for some integer k. Squaring
both sides, we get ଶ ଶ , simplifying, we get

ଶ ଶ . By definition of divides and congruence, we get
that ଶ

ସ .
Therefore, ଶ

ସ or ଶ
ସ

Example Proof By Contradiction
Prove: “No integer is both even and odd.”
Suppose that x is an integer that is both even and odd.
Then, x=2a for some integer a, and x=2b+1 for some
integer b. This means 2a=x=2b+1 and hence 2a-2b=1
and so a-b=½. But a-b is an integer while ½ is not, so
they cannot be equal. This is a contradiction.

Proof Strategies so Far

• Direct Proof
• Proof by Contrapositive
• Proof of Biconditional
• Proof by Cases
• Existence Proof

There are claims we
cannot prove using
these strategies!

Induction CSE 311 Winter 2024
Lecture 12

How do we know recursion works?
//Assume i is a nonnegative integer
//returns 2^i.
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}

Why does CalculatesTwoToTheI(4) calculate 2^4?
Convince the people around you!

How do we know recursion works?
Something like this:

Well, as long as CalculatesTwoToTheI(3) = 8, we get 16…
Which happens as long as CalculatesTwoToTheI(2) = 4
Which happens as long as CalculatesTwoToTheI(1) = 2
Which happens as long as CalculatesTwoToTheI(0) = 1
And it is! Because that’s what the base case says.

How do we know recursion works?
There’s really only two cases.

CalculatesTwoToTheI(0) = 1 (which it should!)

And that means CalculatesTwoToTheI(1) = 2, (like it should)
And that means CalculatesTwoToTheI(2) = 4, (like it should)
And that means CalculatesTwoToTheI(3) = 8, (like it should)
And that means CalculatesTwoToTheI(4) = 16, (like it should)

The Base Case is Correct

IF the recursive call we make is correct
THEN our value is correct.

How do we know recursion works?
The code has two big cases,
So our proof had two big cases

“The base case of the code produces the correct output”
“IF the calls we rely on produce the correct output THEN the current call
produces the right output”

A bit more formally…
“The base case of the code produces the correct output”
“IF the calls we rely on produce the correct output THEN the current call
produces the right output”
Let be “CalculatesTwoToTheI(i) returns ௜.”
How do we know ?

is true.
And , so
And , so
And , so
And , so

A bit more formally…
This works alright for .

What about ?
At this point, we’d need to show that implication for A
BUNCH of values of .
But the code is the same each time.
And so was the argument!

We should instead show .

Induction
Your new favorite proof technique!
How do we show ?

Show
Show

Induction

Let be “CalculatesTwoToTheI(i) returns ௜.”
Note that if the input is 0, then the if-statement evaluates to true, and

is returned, so is true.
Suppose holds for an arbitrary

So holds.
Therefore holds for all by the principle of induction.

//Assume i is a nonnegative integer
public int CalculatesTwoToTheI(int i){

if(i == 0)
return 1;

else
return 2*CaclulatesTwoToTheI(i-1);

}

Consider the code run on Since and we are in the else
branch. By inductive hypothesis, CalculatesTwoToTheI() returns ௞ , so the
code run on returns ௞ ௞ାଵ.

Making Induction Proofs Pretty

Let be the predicate “CalculatesTwoToTheI(i) returns ௜.” We
prove holds holds for all natural numbers by induction on .
Base Case (Note that if the input is 0, then the if-statement
evaluates to true, and is returned, so is true.
Inductive Hypothesis: Suppose holds for an arbitrary
Inductive Step: Since , so the code goes to the recursive
case. We will return CalculatesTwoToTheI(k). By Inductive
Hypothesis,
CalculatesTwoToTheI(k)= ௞. Thus we return ௞ ௞ାଵ.
So holds.
Therefore holds for all by the principle of induction.

Making Induction Proofs Pretty
All of our induction proofs will come in 5 easy(?) steps!
1. Define . State that your proof is by induction on .
2. Show i.e. show the base case
3. Suppose for an arbitrary .
4. Show (i.e. get)
5. Conclude by saying is true for all by induction.

Some Other Notes
Always state where you use the inductive hypothesis when you’re using
it in the inductive step.
It’s usually the key step, and the reader really needs to focus on it.

Be careful about what values you’re assuming the Inductive Hypothesis
for – the smallest possible value of should assume the base case but
nothing more.

The Principle of Induction (formally)

Informally: if you knock over one domino, and every domino knocks
over the next one, then all your dominoes fell over.

Principle of
Induction

More induction!

More Induction
Induction doesn’t only work for code!
Show that ௜௡

௜ୀ଴
௡ ௡ାଵ .

More Induction
Induction doesn’t only work for code!
Show that ௜௡

௜ୀ଴
௡ ௡ାଵ .

Let “ ௜௡
௜ୀ଴

௡ାଵ .”
We show holds for all natural numbers by induction on .
Base Case (
Inductive Hypothesis:
Inductive Step:

holds for all by the principle of induction.

More Induction
Induction doesn’t only work for code!
Show that ௜௡

௜ୀ଴
௡ ௡ାଵ .

Let “ ௜௡
௜ୀ଴

௡ାଵ .”
We show holds for all natural numbers by induction on .
Base Case (௜଴

௜ୀ଴
଴ାଵ .

Inductive Hypothesis: Suppose holds for an arbitrary .
Inductive Step: We show . Consider the summation ௜௞ାଵ

௜ୀ଴
୩ାଵ ௜ ௞ାଵ ௞ାଵ௞

௜ୀ଴ where the last step is by IH.
Simplifying, we get: ௜௞ାଵ

௜ୀ଴
௞ାଵ ௞ାଵ ௞ାଵ

௞ାଵ ାଵ

holds for all by the principle of induction.

