
Proof By Contradiction



In real life!

• Claim: My Tire is Leaking
• Suppose that this tire was not 

leaking
• This means the tire pressure should 

be constant
• I observe the pressure is dropping 

at a moderate rate
• But there should be constant 

pressure if it was not leaking
• Therefore, it must be leaking



Proof by Contradiction Skeleton
Claim: p is true.
• Suppose for the sake of contradiction .
• …

• Then some statement must hold.
• …

• And some statement must hold.
• But and is a contradiction. So must be true.

Suppose my tire is not leaking

The tire pressure must be constant

The tire pressure is decreasing

My Tire is leaking

My tire is leaking



Why does this work?
Let’s say the claim you are trying to prove is .

A proof by contradiction shows the following implication:

Why does this implication show ?

The contrapositive is which simplifies to just . 
This means that by proving , you have proved is True!

Hint think 
contrapositive



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

If is even, then a is 
even



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even

Notice target is 
unknown



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If 𝑎 is even, then a is even
If is even, then a is 

even



What is “Without Loss of Generality”?
You can use this when it looks like you are introducing a new 
assumption, but you are not, and the claim is still general. Only use if it 
would be immediately obvious to the reader why it is the case

In this case: if s and t share a factor other than 1, i.e k, we can just cancel 
out their common factor and continue the proof. (i.e )

Another example:
Let x,y be integers; without loss of generality, assume .
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Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡

2 =  
𝑠

𝑡

Thus: 2𝑡 = 𝑠

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡

2 =  
𝑠
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Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡

2 =  
𝑠

𝑡

Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  
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Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘 , which we can plug back into 2𝑡 = 𝑠  to get 2t = 4𝑘

But [] is a contradiction! Thus, we can conclude that 2  is irrational.
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Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  
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Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘 , which we can plug back into 2𝑡 = 𝑠  to get 2t = 4𝑘

Dividing both sides by two, we get t = 2𝑘

But [] is a contradiction! Thus, we can conclude that 2  is irrational.
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Proof:
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Squaring both sides, we get 𝑠 = 4𝑘 , which we can plug back into 2𝑡 = 𝑠  to get 2t = 4𝑘

Dividing both sides by two, we get t = 2𝑘 , making 𝑡 is even, making 𝑡 even by our lemma. 

But [] is a contradiction! Thus, we can conclude that 2  is irrational.
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Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡
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Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘 , which we can plug back into 2𝑡 = 𝑠  to get 2t = 4𝑘

Dividing both sides by two, we get t = 2𝑘 , making 𝑡 is even, making 𝑡 even by our lemma. 

But if both 𝑠 and 𝑡 are even, they must have a common factor of 2. But we said that the fraction was irreducible.

This is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even



Proof by Contradiction

Proof by contradiction is a strategy for proving statements of any form.
• The general strategy to prove is to assume and derive .
Examples:
• The strategy to prove is to assume and derive .
• The strategy to prove is to assume and derive .
• The strategy to prove is to assume and derive .
• The strategy to prove is to assume and derive .



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

But [] is a contradiction! So, there must be infinitely many primes.

Where can we find a contradiction?
• Show our list is non inclusive (i.e create a different prime number)
• Show one of the numbers in our list is not prime
• Create a contradiction with facts about prime factorization
• Show 1 = 2
• Show p is odd and even at the same time
• Proof by cases with a mix of the above



Proof by Contradiction: Remarks
• Unlike other proof techniques, we don’t know where we’re going. 

We’re trying to find any contradiction. That can make it harder.
• Contradiction is a sledge-hammer. 

It can be used to prove many things. But it makes a mess.
• You can find a contradiction directly with your assumption



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

But [] is a contradiction! So, there must be infinitely many primes.
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Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:

But [] is a contradiction! So, there must be infinitely many primes.
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Claim: There are infinitely many primes
Proof:
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Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 

But [] is a contradiction! So, there must be infinitely many primes.
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Claim: There are infinitely many primes
Proof:
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Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .
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But [] is a contradiction! So, there must be infinitely many primes.
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Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1
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Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
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q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 𝑝 ⋅ … 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 1 
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Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, which gives us:

q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 𝑝 ⋅ … 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 1 

This means that 𝑞 % 𝑝 equals both 1 and 0, which is impossible!
In both cases, this is a contradiction! So, there must be infinitely many primes.



Set Theory CSE 311: Foundations of 
Computing I
Lecture 10



Motivation

• Set theory is widely regarded as the foundation for all of mathematics.

• In computing, there are applications in:

• Data Structures

• Databases

• Programming Languages
Father of Modern 
Set Theory
Georg Cantor
(1845 – 1918)



Sets

• Definition: 
• A set is an unordered collection of distinct objects, called elements.

• We write to say that is an element of the set .

• We write to say that is not an element of the set .



Set Notation

• We’ll write a set as a collection of elements inside curly braces .
• Sets are often given variable names with capital letters.

• Sets are unordered
• Sets can contain any object
• Repeat elements are listed 
once
• Sets can be finite or infinite



Common Sets

• is the set of Real Numbers. E.g. 

• is the set of Integers.

• is the set of Natural Numbers.

• is the set of Rational Numbers (fractions) E.g. 

• is the Empty Set has no elements



Common Sets

Real Numbers

Rational Numbers

Integers

Natural 
Numbers



Sets can be elements of other sets

• For example:
•

•

• Then And .



Sets Builder Notation

• Another way to describe a set is using set-builder notation.

• means is the set of all for which is true.

• For example:
• is the set of all positive integers.

• is the set .

• is the set of rational numbers.



Set Cardinality
• The cardinality of a set is the number of elements in a set (its size). 
The cardinality of a set is often denoted .

• What is the cardinality of the following sets?
•

•

•



Relationships Between Sets



Set Equality

• Sets and are equal if they have the same elements.

• In predicate logic, is defined as: 
•

• Which sets are equal?



Subset

• Set is a subset of if every element of is also in .

• In predicate logic, is defined as: 
•

• Which sets are subsets?
• , , , etc.



Sets
Be careful about these two operations:
If 

, but 

asks: is this item in that box?
asks: is everything in this box also in that box?



Set Equality and Subsets

•

A
B

A is a subset of B

B
A

B is a subset of A



vs. 

•

• ? Yes.
• ? No. though!
• ? No. though!
• ? Yes.
• ? No. though!
• ? Yes.



Set Operations
Combining Sets



 Union:  Intersection: 

Set Operations

A B A B



 Set Difference:  Set Complement: 
(with respect to the universe )

Set Operations

A B BA



Set Operations



Exercises

•

• Using only and set operations, make the following sets. The 
universe is all integers.

•

•

•

Definitions
𝐴 ∪ 𝐵 = 𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵
𝐴 ∩ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵}
𝐴 \ 𝐵 = {𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵}
�̅� = 𝑥 ∶ 𝑥 ∉ 𝐴



 Powerset: 

The powerset of is the set of all subsets of .

Powerset



 Cartesian Product: 

The cartesian product of with is the set of ordered pairs of the form 
, where and .

If and then:

the real plane. This is often denoted .

Cartesian Product



Exercises

Compute the following:



Set Proofs



Two Claims
Determine if the following claims are true or false.
Claim 1: For all sets , if then or .
False.

Claim 2: For all sets it holds that .
True.



Claim 1
Claim 1: For all sets , if then or .
We disprove this claim.  Let , let and . Then 

, but and .



Claim 2
Claim 2: For all sets it holds that .
Proof Strategy
• Let be arbitrary sets.
• Let be arbitrary.
• Prove that .

Definition
𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)



Claim 2

Claim 2: For all sets it holds that .
Proof
Let sets be arbitrary. Let be an arbitrary element. 
Then by definition of intersection, and and . Then 
certainly .  So or .  So by definition of union, . 
Since was arbitrary, .

Definition
𝐴 ⊆ 𝐵 ≡ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)


