Proof By Contradiction ‘



In real life!

* Claim: My Tire is Leaking

* Suppose that this tire was not
leaking

* This means the tire pressure should
be constant

* | observe the pressure is dropping
at a moderate rate

* But there should be constant
pressure if it was not leaking

* Therefore, it must be leaking




Proof by Contradiction Skeleton

Claim: p is true.
* Suppose for the sake of contradiction —p.

Then some statement s must hold.

And some statement —s must hold.
But s and —s is a contradiction. So p must be true.



Why does this work?

Let's say the claim you are trying to prove is p.
A proof by contradiction shows the following implication:
-p = False

Why does this implication show p? Hint think

contrapositive

The contrapositive is True — p which simplifies to just p.
This means that by proving =p — False, you have proved p is True!



Proof By Contradiction

Claim:v/2 is irrational (i.e not rational)

Proof:
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even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational

Notice target is

unknown

But []Y%s a contradiction! Thus, we can conclude that v2 is irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:
Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



What is “Without Loss of Generality”?

You can use this when it looks like you are introducing a new
assumption, but you are not, and the claim is still general. Only use if it
would be immediately obvious to the reader why it is the case

In this case: if s and t share a factor other than 1, i.e k, we can just cancel

out their common factor and continue the proof. (i.e % =)

Another example:
Let x,y be integers; without loss of generality, assume x > y.
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Claim:v/2 is irrational (i.e not rational)

Proof:
Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.
S

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
\/Z_=E

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:
Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:
Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.
S

By definition of rational, there are integers s, t such that t # 0 and V2 = .
Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
\/Z_=;

SZ
2=t_2

Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

s
vz =13

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k

Squaring both sides, we get s? = 4k?

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

s
vz =13

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k

Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
vz =1

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k
Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?

Dividing both sides by two, we get t? = 2k?

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
vz =1

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k
Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?

Dividing both sides by two, we get t* = 2k?, making t? is even, making t even by our lemma.

But [] is a contradiction! Thus, we can conclude that /2 s irrational.
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Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
vz =1

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k
Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?
Dividing both sides by two, we get t* = 2k?, making t? is even, making t even by our lemma.

But if both s and t are even, they must have a common factor of 2. But we said that the fraction %Was irreducible.

This is a contradiction! Thus, we can conclude that V2 is irrational.



Proof by Contradiction

Proof by contradiction is a strategy for proving statements of any form.

* The general strategy to prove p is to assume —p and derive False.
Examples:

« The strategy to prove p — q is to assume p A =q and derive False.

« The strategy to prove p Vv q is to assume —p A =q and derive False.

» The strategy to prove Vx(P(x)) is to assume 3x(—P(x)) and derive False.
« The strategy to prove Ax(P(x)) is to assume Vx(=P(x)) and derive False.



Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:



Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-

Where can we find a contradiction?

» Show our list is non inclusive (i.e create a different prime number)
« Show one of the numbers in our list is not prime

« Create a contradiction with facts about prime factorization
 Show1=2

» Show p is odd and even at the same time

 Proof by cases with a mix of the above

But [] is a contradiction! So, there must be infinitely many primes.



Proof by Contradiction: Remarks

« Unlike other proof techniques, we don’t know where we're going.
We're trying to find any contradiction. That can make it harder.

« Contradiction is a sledge-hammer.
It can be used to prove many things. But it makes a mess.

* You can find a contradiction directly with your assumption



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, p,, ..., Pk But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide q.

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.
Also, notice that q % p; = (p1 - P2 - - Pr) + 1 % p; using the definition of g,

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.

Also, notice that q % p; = (p1 - P2 - - Pr) + 1 % p; using the definition of g, which gives us:
qQ%p; =

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.

Also, notice that q % p; = (p1 - P2 - - Pr) + 1 % p; using the definition of g, which gives us:
qQ%p;= @1 Pz D) +1%p; =

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.

Also, notice that q % p; = (p1 - P2 - - Pr) + 1 % p; using the definition of g, which gives us:
qQ%pi= @1 Pz D) +1%pi = @1 Di o PR) 1%

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.

Also, notice that q % p; = (p1 - P2 - - Pr) + 1 % p; using the definition of g, which gives us:
qQ%pi= @1 Pz D) +1%pi= @1 pi o PR) +1%pi =1

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.

Also, notice that q % p; = (p1 - P2 - - Pr) + 1 % p; using the definition of g, which gives us:
qQ%pi = @1 P2 P)+1%Pi= 1 Piv D) +1%p; =1
This means that g % p; equals both 1 and 0, which is impossible!
In both cases, this is a contradiction! So, there must be infinitely many primes.



Oh so you love the empty set?

Name three of its elements

CSE 311: Foundations of

Set Theory | compuing:

Lecture 10



Motivation

 Set theory is widely regarded as the foundation for all of mathematics.

* |n computing, there are applications in:
« Data Structures

 Databases

* Programming Languages

Father of Modern
Set Theory
Georg Cantor
(1845 - 1918)



Sets

* Definition:
« Asetis an unordered collection of distinct objects, called elements.

« We write x € A to say that x is an element of the set A.

« We write x € A to say that x is not an element of the set A.



Set Notation

« We'll write a set as a collection of elements inside curly braces {}.
 Sets are often given variable names with capital letters.

- A=1{0,5,8,10} = {5,8,0,10} Sets are unordered

« B = {watermelon, apple, pineapple}  Sets can contain any object

« C ={a,b,c,c,b,a}={a,b,c} Repeat elements are listed
once

- D ={0,1,2,3,45, ...} Sets can be finite or infinite



Common Sets

* R is the set of Real Numbers. Fg.1,—-17,m,V2

« 7 is the set of Integers. 7 =
{(..,—2,-1,0,1,2,..}

* N is the set of Natural Numbers. N=1{0,123,..}

* Q is the set of Rational Numbers (fractions) E.g. % —%, 17

o @ = {}is the Empty Set @ has no elements



Common Sets

IR Real Numbers
Q Rational Numbers

Z. Integers

N Natural
Numbers



Sets can be elements of other sets

* For example:

- A={{1},{2},{1,2}, ®}
b= {1! 2}

e Then1 € B,2€B. And @ € A,B € A.



Sets Builder Notation

« Another way to describe a set is using set-builder notation.
« S={x:P(x)} means S is the set of all x for which P(x) is true.

* For example:
 {x €Z:x > 0}is the set of all positive integers.

« {x eN:x=;2}istheset{2,5,8,11,14,..}.

. {% ta,b €Z,b # 0} Is the set of rational numbers.



Set Cardinality

 The cardinality of a set is the number of elements in a set (its size).
The cardinality of a set A is often denoted |A].

« What is the cardinality of the following sets?

e A={x€Z :x=41and —10<x<10}={-7,-3,1,5,9}
|A[ =5



[~ Relationships Between Sets



Set Equality

« Sets A and B are equal if they have the same elements.

* In predicate logic, A = B is defined as:
e Vx(x € Ao x €B)

A=1{1,2,3}
B = {3, 4, 5}
C=1{3,4}

D=14,3,3} |  Which sets are equal?

E={34. 3} - o
reapy | C=D=E




Subset

« Set A is a subset of B if every element of A is also in B.

* In predicate logic, A € B is defined as:
* Vx(x €A —> x €B)

A={1,2,3)
B=1{3,4,5}
C=1{3, 4}

D=14,3,3} | Which sets are subsets?

E=1{3,4,3}
F={4, {3}} C€B,D<CE ECD, etc.




Sets

Be careful about these two operations:
If A = {1,2,3,4,5}

{1} A but{1} ¢ A

€ asks: is this item in that box?

C asks: is everything in this box also in that box?



Set Equality and Subsets

*A=1HB ASBABCEA

A is a subset of B B is a subset of A

O O}



€ Vvs. &

« A={1,2,3} B={2} C=1{0,{2}}

QD CcA? Yes.

* QEA? No. @ € C though!

e 2C B? No. {2} € B though!
c 2€8B? Yes.

« BeA? No. B € A though!

e BeEC(C? Yes.



‘ Set Operations

Combining Sets



Set Operations

Union: AU B Intersection: AN B
AUB={x:x€AVx€B} ANB={x:x€AANx €B}




Set Operations

Set Difference: A\ B Set Complement: A = A€
A\B={x:x€ANAx ¢ B) (with respect to the universe U)

A={x€U: x & A}




Set Operations

Erik Brynjolfsson &
@erikbryn

It's remarkable that as recently as 11 years ago, the
sum of all human knowledge could be provided in just

two books.
MARK H. McCORMACK
What They
S S, DON’T
.\I'_VElz?:LTvgJ Teach You at
AT HARVARD Harvard
BUSINESS Business
LU School @

Notes from a

AULDRON OF CAPITA 1 )
PHILIP DELVES BROUGHTON

Street-Smart Executive
WITH A NIW FOREWORD BY ARIEL EMANUE
AND PATRICK WHITESE




Exercises

- A=1{1,2,3) B=1{3,56}

C={3,4)

/Deﬁnitions

AUB={x:x€AVxE€EB}
ANB={x:x€ANx €B}
A\B={x:x€AAx & B}

@={x:x€A}

~

/

« Using only 4, B, C and set operations, make the following sets. The

universe is all integers.
« {1,2,3,4,5,6} =AUBUC
« {3}=ANB

« {1,2}=A\B=ANB



Powerset

Powerset: P{A}

P(A) ={X:XC A}
The powerset of A is the set of all subsets of A.

P({1,2}) = {0, {13},{2},{1,2}}
P{a,b,c}) ={0,{a}, {b},{c}{a b} {a c},{b,c}{ab,c}}



Cartesian Product

Cartesian Product: A X B

AXB ={(a,b):a€ A, b€ B}

The cartesian product of A with B is the set of ordered pairs of the form
(a,b), wherea € Aand b € B.

If A ={1,2} and B = {a, b, c} then:
AxXB={(1,a),(1,b),(1,¢c),(2,a),(2,b),(2,c)}

R x R = the real plane. This is often denoted R*.



Exercises

Compute the following:
{12} X0 =0

P2} x {1,3}) = {2, {(2, D}, {(2,3)}, {(2,1),(2,3)}}

P2} = {92,{0}}

[P({1,2}) X P({3,4,5})| = 32



. Set Proofs



Two Claims

Determine if the following claims are true or false.
Claim 1: For all sets A,B,C,if A< (BUC)thenAS BorACC.

False.

Claim 2: For all sets A,B,C it holdsthat AN B NC € AU B.

True.



Claim 1

Claim 1: For all sets A,B,C,if A< (BUC)thenAS BorACC.

We disprove this claim. Let A = {1,2}, let B = {1} and C = {2}. Then
AC (BUC), butAZ BandA ¢ C.



. Definiti
Clalm 2 [Aeglnglanx(xeAexEB)}

Claim 2: For all sets A,B, C it holdsthat ANBNC € AUB.

Proof Strategy
* Let A, B, C be arbitrary sets.

 Letx € AN BN C be arbitrary.
* Prove thatx € AU B.




. Definiti
Clalm 2 [Aeglnglanx(xeAexEB)}

Claim 2: For all sets A,B,C it holdsthat AN B NC € AU B.

Proof

Let sets A, B, C be arbitrary. Let x € AN B N C be an arbitrary element.
Then by definition of intersection, x € A and x € B and x € C. Then
certainly x € A. Sox € A or x € B. So by definition of union, x € AU B.
Since x was arbitrary, ANBNC € AUB.



