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Number Theory Lecture 9




Extended Euclidean algorithm

Can use Euclid’s Algorithm to find s, ¢t such that

gcd(a,b) = sa+tb



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa+tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r

gcd(35,27) =ged(27,35 mod 27) =gcd(27,8) |35=1*27+8




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):
a b b amodb =r b r a=q*b +r

gcd(35,27) =ged(27,35 mod 27) =gcd(27,8) [35=1*27+8
=gcd(8,27mod 8) =gcd(8, 3) 27=3*8 +3
= gcd(3, 8 mod 3) =gcd(3, 2) 8 =2*3 +2
=gcd(2,3mod2) =gcd(2,1) |3 =1*2 {1

=gcd(1,2mod 1) =gcd(1, 0)



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1%27+8 8=35-1%27
27=3*8 +3

8 =2*3 +2

3 =1*2 +1




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1%27+8 8=35-1%27
27=3*8 +3 3=27-3%*8
8 =2%3 +2 2=8-2%3

3 =1*2 1 D=3 -1*2



Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb
Step 3 (Backward Substitute Equations):

8=35-1%*27
3=27-3*8
2=8 -2%*3

D=3 -1*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb

Step 3 (Backward Substitute Equations): Plug in the def of 2

8=35-1%27 1= 3-1*(8-2%3)

= 3-8+2*3 Re-arrange into
3=27-3%8 =(-1)*8+3*3 3’'sand 8's
2=8-2%*3

1=3-1%*2




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb

Step 3 (Backward Substitute Equations): Plug in the def of 2

8=35-1%27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into
3=27-3%8 =(-1)*8+3*3 3’'sand 8's

Plug in the def of 3
=(-1)*8+3*(27-3*8)
=(-1)*8+3%27+(-9)*8

= 3*27 +(-10)*8
1=3 -1%2 Re-arrange into

8’'s and 27’s

2=8 -2%*3




Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb

Step 3 (Backward Substitute Equations): Plug in the def of 2

8§=35-1%27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into
3=27-3%8 :(_1)*8+3*3 3’'sand 8's
Plug in the def of 3
2 g - 2%3 =(-1)*8 +3*(27-3*8)

=(-1)*8+3*27+(-9)*8

= 3*27 4+ (-10) * 8 Re-arrange into
1=3 -1%2 ( ) 8’s and 27’s
3*27 + (-10) * (35-1*27)
3%27 + (-10)*35 + 10 * 27
13 *27 4+ (-10) * 35

Re-arrange into
27’s and 35’s
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Multiplicative inverse mod m
Suppose gcd(a,m) = 1

By Bézout’s Theorem, there exist integers s and t
such that sa +tm = 1.

s is the multiplicative inverse of a (modulo m):

1=sa+tm=, sa

So... we can compute multiplicative inverses with the
extended Euclidean algorithm

These inverses let us solve modular equations...



Example: Solve a Modular Equation

Solve: 7x =,¢ 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

Solve: 7x =,¢ 3 Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1



Example: Solve a Modular Equation

Solve: 7x =,, 3  Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3*7 + 5
7 =1x5 + 2
5 =2%x2 +1



Example: Solve a Modular Equation
Solve: 7x =26 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3%7 + 5 5=26-3%7
7 =15+ 2 2=7-1%5
5 =224+ 1 1=5- 2%2



Example: Solve a Modular Equation

Solve: 7x =26 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3%7 + 5 5=26-3%7
7 =15+ 2 2=7-1%5
5 =224+ 1 1=5- 2%2

1 = 5 - 2%x(7-1%5)

= (-2)*7 + 3%5
(-2)*7 + 3x(26-3x7)
(=11)x7 + 326



Example: Solve a Modular Equation

Solve: 7x =26 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3%7 + 5 5=26-3%7
7 =15+ 2 2=7-1%5
5 =22+ 1 1=5- 2%2

1 = 5 - 2x(7-1%5)
= (-2)*7 + 3%5
(-2)*7 + 3x(26-3x7)

(=11)*7 + 3 %26
“the” multiplicative inverse

Now (—11) mod 26 = 15. (—11 is also “a” multiplicative inverse)



Example: Solve a Modular Equation

Solve: 7x =, 3
Find multiplicative inverse of 7 modulo 26... it’s 15.
Multiplying both sides by 15 gives

15-7x =, 15+ 3

Simplify on both sides to get

So, all solutions of this congruence are
numbers of the form x = 19 + 26k for some k € Z.



Example: Solve a Modular Equation

Solve: 7x =, 3

Conversely, suppose that x =,, 19.

Multiplying both sides by 7 gives
7X =56 719

Simplify on right to get

So, all numbers of form x = 19 + 26k for any k € Z are
solutions of this equation.



Example: Solve a Modular Equation

Solve: 7x =,4 3 (on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26

1 = ..= (-11)*7 + 3%26

Since (—11) mod 26 = 15, the inverse of 7 is 15.
Step 2. Multiply both sides and simplify

Multiplying by 15, we get x =, 15+ 7x =, 15+ 3 =, 19.
Step 3. State the full set of solutions

So, the solutions are 19 + 26k forany k € Z
(must be of the form a + mk forall k € Zwith 0 < a < m)
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Multiplicative Inverses and Algebra

Adding to both sides easily reversible:

—C(‘D X =m YE-I-C

x+c=,y+c

The same is not true of multiplication...
unless we have a multiplicative inverse cd =, 1

x%wxzmy:fc

cX =, CY



Modular Exponentiation mod 7
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Exponentiation

« Compute 78365814>3

 Compute 783658143 mod 104729

 Qutput is small
- need to keep intermediate results small



Small Multiplications
Since b = gm + (b mod m), we have b mod m =,,, b.

And since ¢ = tm + (¢ mod m), we have c mod m =,,, c.
Multiplying these gives (b mod m)(c mod m) =,,, bc.

By the Lemma from a few lectures ago, this tells us
bc mod m = (b mod m)(c mod m) mod m.

Okay to mod b and ¢ by m before multiplying if we are
planning to mod the result by m



Repeated Squaring — small and fast

Since bmodm =,, bandcmodm =,,, ¢
we have bc mod m = (b mod m)(c mod m) mod m

So

and
and
and
and

a’?modm = (a modm)? modm
a*mod m = (a? mod m)? mod m
a8 mod m = (a* mod m)? mod m
al®* mod m = (a® mod m)? mod m
a2 mod m = (a'® mod m)? mod m

Can compute a* mod m for k = 2 in only i steps
What if k is not a power of 2?



Fast Exponentiation Algorithm
81453 in binary is 10011111000101101

81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25+ 23 + 22 + 20

16 13 12 11 10 9 5 3 2 0
a81453= a2 - a2 - a2 - a2 . az . az . a2 . a2 . az . a2

a81453 mod m=
(...((((@2"* mod m -
22" mod m ) mod m -
a2'* mod m) mod m -
22" mod m) mod m -
22" mod m) mod m -
a2° mod m) mod m -
a2> mod m) mod m -
a2 mod m) mod m -
a2* mod m) mod m -
a2’ mod m) mod m

The fast exponentiation algorithm computes
a” mod m using < 2log k multiplications mod m



Fast Exponentiation: a“ mod m for all k

Another way....

. . 2
a’’mod m = (af mod m) mod m

a*’*Imodm = ((a mod m) - (a¥ mod m)) mod m



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

. . 2
a’’modm = (af mod m) mod m

a*’*Imodm = ((a mod m) - (a¥ mod m)) mod m



Using Fast Modular Exponentiation

* Your e-commerce web transactions use SSL (Secure Socket Layer)
based on RSA encryption

* RSA

- Vendor chooses random 512-bit or 1024-bit primes p, q and 512/1024-bit
exponent e. Computesm =p -q

- Vendor broadcasts (m, e)

- To send a to vendor, you compute € = a® mod m using fast modular
exponentiation and send C to the vendor.

- Using secret p, q the vendor computes d that is the multiplicative inverse of e
mod (p —1)(q — 1).
- Vendor computes €% mod m using fast modular exponentiation.

- Fact: a=C%modm for 0 < a < munless p|a or qla
Great Resource




Proof By Contradiction ‘



In real life!

* Claim: My Tire is Leaking

* Suppose that this tire was not
leaking

* This means the tire pressure should
be constant

* | observe the pressure is dropping
at a moderate rate

* But there should be constant
pressure if it was not leaking

* Therefore, it must be leaking




Proof by Contradiction Skeleton
Claim: p is true.

Suppose for the sake of contradiction —p.
Then some statement s must hold.

And some statement —s must hold.
But s and —s is a contradiction. So p must be true.



Why does this work?

Let's say the claim you are trying to prove is p.
A proof by contradiction shows the following implication:
-p = False

Why does this implication show p? Hint think

contrapositive

The contrapositive is True — p which simplifies to just p.
This means that by proving =p — False, you have proved p is True!



Graph Example

Can we travel on every road, without going on a road twice*?

There is no path, let’s
prove itl

*Starting and ending at a different place



Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.

Consider how many times each landmark would be passed through on this path.

However [] is a contradiction!

Therefore, it must be impossible to visit every road exactly once




We enter and exit a landmark




Graph Example




We enter and exit a landmark

Notice that this means there are an

even number of roads that we drove
on connected to this landmark



a landmark

We enter and ex

Even if we go through it again on new
roads, this holds



We Start at the Landmark

Notice we drove on only one road, (as we started in the landmark)
making it have an odd number of roads that connect to it



We End at the Landmark

Notice we drove on only one road, (as we ended in the landmark)
making it have an odd number of roads that connect to it



Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each landmark would be passed through on this path.

As we observed, all of the landmarks on our path must have an even number of roads, except for the
starting and ending one, making us have exactly 2 landmarks with an odd number of connecting
roads.

However [] is a contradiction!

Therefore, it must be impossible to visit every road exactly once




Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each landmark would be passed through on this path.

As we observed, all of the landmarks on our path must have an even number of roads, except for the
starting and ending one, making us have exactly 2 landmarks with an odd number of connecting
roads.

However, our graph has 4 landmarks with an odd number of roads coming out of it.

However [] is a contradiction!

Therefore, it must be impossible to visit every road exactly once




Graph Example

Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each landmark would be passed through on this path.

As we observed, all of the landmarks on our path must have an even number of roads, except for the
starting and ending one, making us have exactly 2 landmarks with an odd number of connecting
roads.

However, our graph has 4 landmarks with an odd number of roads coming out of it.

But since 2 is not 4, this is a contradiction!

Therefore, it must be impossible to visit every road exactly once




=  Proof by Contradiction Examples



Proof By Contradiction

Claim:v/2 is irrational (i.e not rational)

Proof:



Proof By Contradiction L

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational

Notice target is

unknown

But []Y%s a contradiction! Thus, we can conclude that v2 is irrational.



Proof By Contradiction e beem i

even

Claimn/2 is irrational (i.e not rational)

S

By definition «  .ional, thire are integers s, t such that t # 0 and V2 = p

But [] is a contradiction! Thus, we can that v/2 is irrational.



What is “Without Loss of Generality”?

You can use this when it looks like you are introducing a new
assumption, but you are not, and the claim is still general. Only use if it
would be immediately obvious to the reader why it is the case

In this case: if s and t share a factor other than 1, i.e k, we can just cancel

out their common factor and continue the proof. (i.e % =)

Another example:
Let x,y be integers; without loss of generality, assume x > y.



Proof By Contradiction L

even

Claim:v/2 is irrational (i.e not rational)

Proof:
Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction L

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.
S

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
\/Z_=E

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction L

even

Claim:v/2 is irrational (i.e not rational)

Proof:
Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction e ECE e

even

Claim:v/2 is irrational (i.e not rational)

Proof:
Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction e ECE e

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.
S

By definition of rational, there are integers s, t such that t # 0 and V2 = .
Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
\/Z_=;

SZ
2=t_2

Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction e ECE e

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

s
vz =13

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k

Squaring both sides, we get s? = 4k?

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction bE bera et

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that v/2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

s
vz =13

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k

Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction bE bera et

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
vz =1

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k
Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?

Dividing both sides by two, we get t? = 2k?

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction bE bera et

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
vz =1

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k
Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?

Dividing both sides by two, we get t* = 2k?, making t? is even, making t even by our lemma.

But [] is a contradiction! Thus, we can conclude that /2 s irrational.



Proof By Contradiction bE bera et

even

Claim:v/2 is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that ¥2 is rational.

N

By definition of rational, there are integers s, t such that t # 0 and V2 = .

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1is s, t greatest common
factor)

S
vz =1

t

SZ

2 = t—z
Thus: 2t? = s2 So s2 is even, making s even by our lemma. This means that s = 2k for some integer k
Squaring both sides, we get s? = 4k?, which we can plug back into 2t? = s? to get 2t? = 4k?
Dividing both sides by two, we get t* = 2k?, making t? is even, making t even by our lemma.

But if both s and t are even, they must have a common factor of 2. But we said that the fraction %Was irreducible.

This is a contradiction! Thus, we can conclude that V2 is irrational.



Proof by Contradiction

Proof by contradiction is a strategy for proving statements of any form.

The general strategy to prove p is to assume —p and derive False.

Examples:

The strategy to prove p — q is to assume p A =q and derive False.
The strategy to prove p V q is to assume —=p A =q and derive False.

The strategy to prove Vx(P(x)) is to assume 3x(—=P(x)) and derive False.
The strategy to prove 3x(P(x)) is to assume Vx(—=P(x)) and derive False.



Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:



Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-

Where can we find a contradiction?

» Show our list is non inclusive (i.e create a different prime number)
« Show one of the numbers in our list is not prime

« Create a contradiction with facts about prime factorization
 Show1=2

» Show p is odd and even at the same time

 Proof by cases with a mix of the above

But [] is a contradiction! So, there must be infinitely many primes.



Proof by Contradiction: Remarks

« Unlike other proof techniques, we don’t know where we're going.
We're trying to find any contradiction. That can make it harder.

« Contradiction is a sledge-hammer.
It can be used to prove many things. But it makes a mess.

* You can find a contradiction directly with your assumption



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Notice that g is prime and must be larger that every prime in py, pa, ..., px. But every prime was in the list, therefore
this is a contradiction!

Case 2: g is not prime (i.e composite):

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:
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This means that g % p; equals both 1 and 0, which is impossible!
In both cases, this is a contradiction! So, there must be infinitely many primes.



Bonus Proof!

Claim: if a? is even, than a is even.

Proof:

Suppose for the sake of contradiction that a? is even and a is odd for some integer a.
This means that a = 2k + 1 for some k.

Substituting this in, we have a? = (2k + 1)? = 4k? + 4k + 1 = 2(2k? + 2k) + 1
Since 2k? + 2k is an integer, we have that a? is odd!

This is a contradiction however as a? cannot be both even and odd. Therefore through proof by contradiction, if a? is even,
than a is even.



Another Proof by Contradiction

Claim: There are infinitely many primes

Proof:

Suppose for the sake of contradiction, there are only finitely many primes. Call them p4, p,, ..., Pk-
Consider the numberq = p; *py - .- + 1

Case 1. q is prime:

Case 2: g is not prime (i.e composite):
Since g is composite, we know that some prime p; must divide g. This means that g % p; = 0.

Also, notice that q % p; = (p1 - P2 - .- Px) + 1 % p; using the definition of g, which gives us:
qQ%p; = (p1-pz - ) +1%p;

In both cases, this is a contradiction! So, there must be infinitely many primes.



