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Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Let . Then, is the multiplicative inverse of 
(modulo )  iff .   

Multiplicative inverse 

6543210X

00000000

65432101

53164202

41526303

36251404

24613505

12345606

mod 7

9876543210X

00000000000

98765432101

86420864202

74185296303

62840628404

50505050505

48260482606

36925814707

24680246808

12345678909

mod 10



Multiplicative inverse 
Suppose 

By Bézout’s Theorem, there exist integers and 

such that 

is the multiplicative inverse of (modulo ):

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm

These inverses let us solve modular equations…



Example: Solve a Modular Equation
Solve:  Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

Now .   

“the” multiplicative inverse

Solve:  Find multiplicative inverse of 7 modulo 26

(−11 is also “a” multiplicative inverse)



Example: Solve a Modular Equation

Find multiplicative inverse of modulo … it’s .

Multiplying both sides by gives

Simplify on both sides to get
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Example: Solve a Modular Equation

Conversely, suppose that .

Multiplying both sides by gives

Simplify on right to get

So, all numbers of form for any are 
solutions of this equation.

Solve:  



Example: Solve a Modular Equation

Since , the inverse of is .

Solve:  (on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26

(must be of the form for all with )

Multiplying by , we get 

Step 2. Multiply both sides and simplify

Step 3. State the full set of solutions

So, the solutions are for any 



Math mod a prime is especially nice

6543210+

65432100

06543211

10654322

21065433

32106544

43210655

54321066

6543210X

00000000

65432101

53164202

41526303

36251404

24613505

12345606

if is prime and so can 
always solve these equations mod a prime.

mod 7



Adding to both sides easily reversible:

The same is not true of multiplication…
unless we have a multiplicative inverse 

Multiplicative Inverses and Algebra



Modular Exponentiation mod 7

654321X

6543211

5316422

4152633

3625144

2461355

1234566

a6a5a4a3a2a1a

1111111

1421 422

1546233

1241244

1326455

1616166



Exponentiation

• Compute 7836581453

• Compute 7836581453 mod 104729

• Output is small
- need to keep intermediate results small



Small Multiplications
Since , we have .

And since , we have .

Multiplying these gives .

By the Lemma from a few lectures ago, this tells us 
.

Okay to mod and by before multiplying if we are 
planning to mod the result by 



Repeated Squaring – small and fast
Since and 
we have 

So            2

and          4 2

and          8 4

and          16 8

and          32 16

Can compute 𝑘 for 𝑖 in only steps
What if is not a power of ?



Fast Exponentiation Algorithm 
81453 in binary is 10011111000101101

81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 
using multiplications 

a81453 = a2
16

· a2
13

· a2
12

· a2
11

· a2
10

· a2
9

· a2
5

· a2
3

· a2
2

· a2
0

a81453 mod m= 
(…(((((a2

16
mod m ·
a2

13
mod m ) mod m · 
a2

12
mod m) mod m · 

a2
11

mod m) mod m · 
a2

10
mod m) mod m · 

a2
9

mod m) mod m · 
a2

5
mod m) mod m · 

a2
3

mod m) mod m · 
a2

2
mod m) mod m · 

a2
0

mod m)  mod m 

Uses only 16 + 9 = 
25 multiplications



Fast Exponentiation:  for all 

2𝑗

Another way....



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

}
}

2𝑗



Using Fast Modular Exponentiation
• Your e-commerce web transactions use SSL (Secure Socket Layer) 

based on RSA encryption
• RSA

- Vendor chooses random 512-bit or 1024-bit primes and 512/1024-bit 
exponent .  Computes 

- Vendor broadcasts 
- To send to vendor, you compute 𝒆 using fast modular 

exponentiation and send to the vendor.
- Using secret the vendor computes that is the multiplicative inverse of 

mod .
- Vendor computes 𝒅 using fast modular exponentiation.
- Fact:   𝒅 for unless or 
- Great Resource



Proof By Contradiction



In real life!

• Claim: My Tire is Leaking
• Suppose that this tire was not 

leaking
• This means the tire pressure should 

be constant
• I observe the pressure is dropping 

at a moderate rate
• But there should be constant 

pressure if it was not leaking
• Therefore, it must be leaking



Proof by Contradiction Skeleton
Claim: p is true.
- Suppose for the sake of contradiction .
- …

- Then some statement must hold.
- …

- And some statement must hold.
- But and is a contradiction. So must be true.

Suppose my tire is not leaking

The tire pressure must be constant

The tire pressure is decreasing

My Tire is leaking

My tire is leaking



Why does this work?
Let’s say the claim you are trying to prove is .

A proof by contradiction shows the following implication:

Why does this implication show ?

The contrapositive is which simplifies to just . 
This means that by proving , you have proved is True!

Hint think 
contrapositive



Graph Example
Can we travel on every road, without going on a road twice*?

There is no path, let’s 
prove it!

Start

Stuck!

*Starting and ending at a different place



Graph Example
Claim: it is impossible to travel on every road visiting each road exactly once
Proof: Suppose that it is possible to travel on every road visiting each road exactly once.
Consider how many times each landmark would be passed through on this path.

However [] is a contradiction! 
Therefore, it must be impossible to visit every road exactly once



We enter and exit a landmark



Graph Example



We enter and exit a landmark

Notice that this means there are an 
even number of roads that we drove 
on connected to this landmark



We enter and exit a landmark

Even if we go through it again on new 
roads, this holds



We Start at the Landmark

Notice we drove on only one road, (as we started in the landmark) 
making it have an odd number of roads that connect to it



We End at the Landmark

Notice we drove on only one road, (as we ended in the landmark) 
making it have an odd number of roads that connect to it
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However [] is a contradiction! 
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Graph Example
Claim: it is impossible to travel on every road visiting each road exactly once

Proof: Suppose that it is possible to travel on every road visiting each road exactly once.

Consider how many times each landmark would be passed through on this path.

As we observed, all of the landmarks on our path must have an even number of roads, except for the 
starting and ending one, making us have exactly 2 landmarks with an odd number of  connecting 
roads.

However, our graph has 4 landmarks with an odd number of roads coming out of it.

But since 2 is not 4, this is a contradiction! 

Therefore, it must be impossible to visit every road exactly once



Proof by Contradiction Examples



Proof By Contradiction
• Claim: 2  is irrational (i.e not rational)

• Proof:

If is even, then a is 
even



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even

Notice target is 
unknown



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If 𝑎 is even, then a is even
If is even, then a is 

even



What is “Without Loss of Generality”?
You can use this when it looks like you are introducing a new 
assumption, but you are not, and the claim is still general. Only use if it 
would be immediately obvious to the reader why it is the case

In this case: if s and t share a factor other than 1, i.e k, we can just cancel 
out their common factor and continue the proof. (i.e )

Another example:
Let x,y be integers; without loss of generality, assume .
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Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡

2 =  
𝑠

𝑡

Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  
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Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡
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𝑠

𝑡

Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘 , which we can plug back into 2𝑡 = 𝑠  to get 2t = 4𝑘

Dividing both sides by two, we get t = 2𝑘

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even



Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡
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Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘 , which we can plug back into 2𝑡 = 𝑠  to get 2t = 4𝑘

Dividing both sides by two, we get t = 2𝑘 , making 𝑡 is even, making 𝑡 even by our lemma. 

But [] is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
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Proof By Contradiction
Claim: 2  is irrational (i.e not rational)

Proof:

Suppose for the sake of contradiction that 2 is rational.

By definition of rational, there are integers s, t such that 𝑡 ≠ 0 and 2 =  

Without loss of generality, suppose that s, t are in lowest terms (i.e it is the reduced fraction and 1 is s, t greatest common 
factor)

2 =  
𝑠

𝑡

2 =  
𝑠

𝑡

Thus: 2𝑡 = 𝑠 So 𝑠 is even, making 𝑠 even by our lemma. This means that 𝑠 = 2𝑘 for some integer 𝑘
Squaring both sides, we get 𝑠 = 4𝑘 , which we can plug back into 2𝑡 = 𝑠  to get 2t = 4𝑘

Dividing both sides by two, we get t = 2𝑘 , making 𝑡 is even, making 𝑡 even by our lemma. 

But if both 𝑠 and 𝑡 are even, they must have a common factor of 2. But we said that the fraction was irreducible.

This is a contradiction! Thus, we can conclude that 2  is irrational.

If is even, then a is 
even



Proof by Contradiction
Proof by contradiction is a strategy for proving statements of any form.
• The general strategy to prove is to assume and derive .
Examples:
• The strategy to prove is to assume and derive .
• The strategy to prove is to assume and derive .
- The strategy to prove is to assume and derive .
- The strategy to prove is to assume and derive .



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

But [] is a contradiction! So, there must be infinitely many primes.

Where can we find a contradiction?
• Show our list is non inclusive (i.e create a different prime number)
• Show one of the numbers in our list is not prime
• Create a contradiction with facts about prime factorization
• Show 1 = 2
• Show p is odd and even at the same time
• Proof by cases with a mix of the above



Proof by Contradiction: Remarks
• Unlike other proof techniques, we don’t know where we’re going. 

We’re trying to find any contradiction. That can make it harder.
• Contradiction is a sledge-hammer. 

It can be used to prove many things. But it makes a mess.
• You can find a contradiction directly with your assumption



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:

But [] is a contradiction! So, there must be infinitely many primes.
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Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

But [] is a contradiction! So, there must be infinitely many primes.
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Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q.

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, 

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, which gives us:

q % 𝑝 =

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, which gives us:

q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 =

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, which gives us:

q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 𝑝 ⋅ … 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, which gives us:

q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 𝑝 ⋅ … 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 1 

But [] is a contradiction! So, there must be infinitely many primes.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:
Notice that q is prime and must be larger that every prime in 𝑝 , 𝑝 , … , 𝑝 . But every prime was in the list, therefore 
this is a contradiction!

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, which gives us:

q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 𝑝 ⋅ … 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝 = 1 

This means that 𝑞 % 𝑝 equals both 1 and 0, which is impossible!
In both cases, this is a contradiction! So, there must be infinitely many primes.



Bonus Proof!
Claim: if 𝑎 is even, than 𝑎 is even.

Proof:

Suppose for the sake of contradiction that 𝑎 is even and 𝑎 is odd for some integer a.

This means that a = 2𝑘 + 1 for some k. 

Substituting this in, we have 𝑎 = 2𝑘 + 1 = 4𝑘 + 4𝑘 + 1 = 2 2𝑘 + 2𝑘 + 1

Since 2𝑘 + 2𝑘 is an integer, we have that 𝑎 is odd! 

This is a contradiction however as 𝑎 cannot be both even and odd. Therefore through proof by contradiction, if 𝑎 is even, 
than 𝑎 is even.



Another Proof by Contradiction
Claim: There are infinitely many primes
Proof:
Suppose for the sake of contradiction, there are only finitely many primes. Call them 𝑝 , 𝑝 , … , 𝑝 .

Consider the number q =  𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1

Case 1: 𝑞 is prime:

Case 2: 𝑞 is not prime (i.e composite):
Since q is composite, we know that some prime 𝑝 must divide q. This means that 𝑞 % 𝑝 = 0. 
Also, notice that q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1  % 𝑝 using the definition of q, which gives us:

q % 𝑝 = 𝑝 ⋅ 𝑝 ⋅ … ⋅ 𝑝 + 1 % 𝑝

In both cases, this is a contradiction! So, there must be infinitely many primes.


