

Number Theory
CSE 311
Lecture 7

What we have proven so far:

- Let a, b, c, d and $m>0$ be integers.
- If $a \equiv_{m} b$, then $b \equiv_{m} a$.
- If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a+c \equiv_{m} b+d$.
- If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a c \equiv_{m} b d$.
- If $a \equiv_{m} b$ and $b \equiv_{m} c$, then $a \equiv_{m} c$.

Todo:

- $a \equiv_{m} b$ if and only if $a \% m=b \% m$.

Claim 5:

Claim 5: For integers a, b and $m>0, a \equiv_{m} b$ if and only if $a \% m=$ b \% m.

For integers a, b and $m>0, a \equiv_{m} b$ if and only if $a \% m=b \% m$.
\Rightarrow Let $a, b, m>0$ be arbitrary integers, and suppose $a \equiv_{m} b$. Then m ($a-$ $b)$. So there exists some integer k such that $a-b=k m$. So $a=k m+b$.

By the Division Theorem, $a=q m+(a \% m)$ for some integer q, where $0 \leq$ $a \% m<m$. Thus:

$$
\begin{aligned}
& k m+b=q m+(a \% m) \\
& b=q m-k m+(a \% m) \\
& b=(q-k) m+(a \% m)
\end{aligned}
$$

By the Division Theorem again, we have that $b \% m=a \% m$.
Since a, b, m were arbitrary, the claim holds.

For integers a, b and $m>0, a \equiv_{m} b$ if and only if $a \% m=b \% m$.
\Leftarrow Let $a, b, m>0$ be arbitrary integers, and suppose $a \% m=b \% m$. By the Division Theorem, $a=m q+(a \% m)$ for some integer q, and $b=$ $m s+(b \% m)$ for some integer s. Thus:

$$
\begin{gathered}
a-b=(m q+(a \% m))-(m s+(b \% m)) \\
a-b=m q-m s+(a \% m)-(b \% m) \\
a-b=m(q-s)
\end{gathered}
$$

Since q, s are integers, $q-s$ is an integer. So $m \mid(a-b)$. So $a \equiv_{m} b$. Since a, b, m were arbitrary, the claim holds.

Summary: Properties of Mod

- Let a, b, c, d and $m>0$ be integers.
- If $a \equiv_{m} b$, then $b \equiv_{m} a$.
- If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a+c \equiv_{m} b+d$.
- If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a c \equiv_{m} b d$.
- If $a \equiv_{m} b$ and $b \equiv_{m} c$, then $a \equiv_{m} c$.
- $a \equiv_{m} b$ if and only if $a \% m=b \% m$.

Another contrapositive example

Another Proof

For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.
Proof:
Let a, b, c be arbitrary integers, and suppose $a \nmid(b c)$.
Then there is not an integer z such that $a z=b c$

So $a \nmid b$ or $a \nmid c$

Another Proof

For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.
Proof:
Let a, b, c be arbitrary integers, and suppose $a \nmid(b c)$.
Then there is not an integer z such that $a z=b c$

So $a \nmid b$ or $a \nmid c$

Another Proof

For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.

There has to be a better way!
If only there were some equivalent implication...
One where we could negate everything...

Take the contrapositive of the statement:
For all integers, a, b, c : Show if $a \mid b$ and $a \mid c$ then $a \mid(b c)$.

By contrapositive

Claim: For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$. We argue by contrapositive.
Let a, b, c be arbitrary integers, and suppose $a \mid b$ and $a \mid c$.

Therefore $a \mid b c$

By contrapositive

Claim: For all integers, a, b, c : Show that if $a \nmid(b c)$ then $a \nmid b$ or $a \nmid c$.
We argue by contrapositive.
Let a, b, c be arbitrary integers, and suppose $a \mid b$ and $a \mid c$.
By definition of divides, $a x=b$ and $a y=c$ for integers x and y.
Multiplying the two equations, we get $a x a y=b c$
Since a, x, y are all integers, xay is an integer. Applying the definition of divides, we have $a \mid b c$.

F Logical Ordering

Logical Ordering

- When doing a proof, we often work from both sides...
- But we have to be careful!
- When you read from top to bottom, every step has to follow only from what's before it, not after it.
- Suppose our target is q and I know $q \rightarrow p$ and $r \rightarrow q$.
- What can I put as a "new target?"

Logical Ordering

- So why have all our prior steps been ok backward?
- They've all been either:
- A definition (which is always an "if and only if")
- An algebra step that is an "if and only if"
- Even if your steps are "if and only if" you still have to put everything in order - start from your assumptions, and only assert something once it can be shown.

A bad proof (Backwards Proof)

Claim: if x is positive then $x+5=-x-5$.

$$
\begin{gathered}
x+5=-x-5 \\
x+5=-x-5 \\
|x+5|=|-x-5| \\
|x+5|=|-(x+5)| \\
|x+5|=|x+5| \\
0=0
\end{gathered}
$$

This claim is false - if you're trying to do algebra, you need to start with an equation you know (say $x=x$ or $2=2$ or $0=0$) and expand to the equation you want.

F Primes \& GCD

Algorithmic Problems

- Multiplication
- Given primes $p_{1}, p_{2}, \ldots, p_{k}$, calculate their product $p_{1} p_{2} \ldots p_{k}$
- Factoring
- Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272 077285356959533479219732245215172640 050726365751874520219978646938995647 494277406384592519255732630345373154 826850791702612214291346167042921431 160222124047927473779408066535141959 7459856902143413

123018668453011775513049495838496272077285356959 533479219732245215172640050726365751874520219978 646938995647494277406384592519255732630345373154 826850791702612214291346167042921431160222124047 9274737794080665351419597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 430876426760322838157396665112792333734171433968 10270092798736308917

Famous Algorithmic Problems

- Factoring
- Given an integer n, determine the prime factorization of n
- Primality Testing
- Given an integer n, determine if n is prime
- Factoring is hard
- (on a classical computer)
- Primality Testing is easy

Prime and Composite

- Definition:

An integer $p>1$ is prime iff its only positive divisors are 1 and p.

- An integer $p>1$ is composite iff it is not prime.

Fundamental Theorem of Arithmetic

Every Positive integer greater than 1 has a "unique" prime factorization:
e.g: $42=2 * 2 * 2 * 2 * 3,591=3 * 197$, ect...

Greatest Common Divisor

- Definition:

The Greatest Common Divisor of integers a and b (denoted $\operatorname{gcd}(a, b)$) is the largest integer c such that $c \mid a$ and $c \mid b$.

- Useful Fact: Let a be a positive integer. The GCD $(a, 0)=a$
- For Example:

$$
\begin{aligned}
& \operatorname{gcd}(99,18)=9 \\
& \operatorname{gcd}(100,125)=25
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{gcd}(7,11)=1 \\
& \operatorname{gcd}(13,0)=13
\end{aligned}
$$

Calculating the GCD: Approach 1

- Fundamental Theorem of Arithmetic: Every positive integer greater than 1 has a unique prime factorization.
- Approach 1 to finding $\operatorname{gcd}(a, b)$:

1. Find the prime factorization of a
2. Find the prime factorization of b
3. Identify all common prime factors.
4. Multiply the common prime factors together. This is the GCD.

Calculating the GCD: Approach 2

- Claim: For positive integers $a, b, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.
- For example:
- $\operatorname{gcd}(10,6)=\operatorname{gcd}(6,4)$
- $\operatorname{gcd}(110,30)=\operatorname{gcd}(30,20)$
- We'll prove this in a minute. But first: how can we use this fact to devise an algorithm for computing $\operatorname{gcd}(a, b)$?

Calculating the GCD: Approach 2

- Euclid's Algorithm. To find $\operatorname{gcd}(a, b)$:
- Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$ to reduce numbers
- Stop once you reach $\operatorname{gcd}(g, 0)$. Return g.
- For Example:

$$
\begin{aligned}
\operatorname{gcd}(660,126) & =\operatorname{gcd}(126,30) \\
& =\operatorname{gcd}(30,6) \\
& =\operatorname{gcd}(6,0) \\
& =6
\end{aligned}
$$

Euclid's Algorithm in Java

- // assumes $a \operatorname{~>~} 0$ and $b>=0$
- public int gcd(int a, int b) \{
- if (b == 0) \{
- return a;
- \} else \{
- return $\operatorname{gcd}(b, a \% b)$;
- $\}$
- \}

Proof of Claim

- Claim: For positive integers $a, b, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.
- How do you show that two GCDs are equal?
- First consider some arbitrary common divisor of a and b, call it d. Prove that d is a divisor of $a \% b$.
- Then consider some arbitrary common divisor of b and $a \% b$, call it d. Prove that d is a divisor of a.
- Thus a and b have the same common divisors as b and $a \% b$. So their GCDs are equal.

Claim: For positive integers $a, b, \operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$.

Let a, b be arbitrary positive integers. By the Division Theorem, $a=q b+(a \% b)$ for some int q.
Let d be arbitrary. Suppose $d \mid b$ and $d \mid a \% b$. We aim to show that $d \mid a$. By definition of divides, $b=k d$ and $a \% b=j d$ for some integers k, j. Then it follows that:

$$
a=q b+(a \% b)=q \cdot k d+j d=d(q k+j)
$$

Since q, k, j are integers, $q k+j$ is an integer. So $d \mid a$.
Now suppose $d \mid a$ and $d \mid b$. We aim to show that $d \mid a \% b$. By definition of divides, $a=m d$ and $b=n d$ for some integers m, n. Then it follows that:

$$
a \% b=a-q b=m d-q n d=d(m-q n)
$$

Since q, m, n are integers, $m-q n$ is an integer. So $d \mid a \% b$.
Thus a and b have the same common divisors as b and $a \% b$. So $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \% b)$. Since a, b were arbitrary, the claim holds.

Bézout's theorem

If a and b are positive integers, then there exist integers s and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

$$
\forall \mathrm{a} \forall \mathrm{~b}((\mathrm{a}>0 \wedge \mathrm{~b}>0) \rightarrow \exists \mathrm{s} \exists \mathrm{t}(\operatorname{gcd}(\mathrm{a}, \mathrm{~b})=\mathrm{sa}+\mathrm{tb}))
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

a b	b \quad a $\bmod b=r$	$b \quad r$	$a=q * b+r$
$\operatorname{gcd}(35,27)=\operatorname{gcd}(27,35 \bmod 27)=\operatorname{gcd}(27,8)$	$35=1 * 27+8$		

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

$$
\begin{aligned}
& \\
& =\operatorname{gcd}(1,2 \bmod 1) \quad=\operatorname{gcd}(1,0)
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{|ll|}
\hline a=q * b+r \\
35=1 * 27+8 \\
27=3 * 8+3 \\
8=2 * 3+2 \\
3=1 * 2+1 & r=a-q * b \\
\hline
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{ll}
a=q * b+r & r=a-q * b \\
35=1 * 27+8 & 8=35-1 * 27 \\
27=3 * 8+3 & 3=27-3 * 8 \\
8=2 * 3+2 & 2=8-2 * 3 \\
3=1 * 2+1 & 1=3-1 * 2
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 3=27-3 * 8 \\
& 2=8-2 * 3 \\
& (1=3-1 * 2
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

$8=35-1 * 27$	$1=3-1 *(8-2 * 3)$
$3=27-3 * 8$	
$2=8-2 * 3$	$\begin{aligned} & =(-1) * 8+3 *(27-3 * 8) \\ & =(-1) * 8+3 * 27+(-9) * 8 \end{aligned}$
$1=3-1 * 2$	$=3 * 27+(-10) * 8$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Multiplicative inverse $\bmod m$

Let $0 \leq a, b<m$. Then, b is the multiplicative inverse of a (modulo m) iff $a b \equiv_{m} 1$.

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

Multiplicative inverse $\bmod m$

Suppose $\operatorname{gcd}(a, m)=1$

By Bézout's Theorem, there exist integers s and t
such that $s a+t m=1$.
s is the multiplicative inverse of a (modulo m):

$$
1=s a+t m \equiv_{m} s a
$$

So... we can compute multiplicative inverses with the extended Euclidean algorithm

These inverses let us solve modular equations...

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$
Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3 \quad$ Find multiplicative inverse of 7 modulo 26

$$
\operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

$$
\begin{aligned}
\operatorname{gcd}(26,7) & =\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
26 & =3 * 7+5 \\
7 & =1 * 5+2 \\
5 & =2 * 2+1
\end{aligned}
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3 \quad$ Find multiplicative inverse of 7 modulo 26

$$
\begin{gathered}
\operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
26=3 * 7+5 \\
7=1 * 5+2 \\
7 \\
5=2 * 2+1 \\
5
\end{gathered}
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$
Find multiplicative inverse of 7 modulo 26

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=3 * 7+5 \quad 5=26-3 * 7 \\
& 7=1 * 5+2 \quad 2=7-1 * 5 \\
& 5=2 * 2+1 \quad 1=5-2 * 2 \\
& 1=\quad 5 \quad-2 *(7-1 * 5) \\
& \begin{array}{l}
5=(-2) * 7+3 * 5 \\
\\
=(-2) * 7+3 *(26-3 * 7) \\
\\
=(-11) * 7+3 * 26
\end{array}
\end{aligned}
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3 \quad$ Find multiplicative inverse of 7 modulo 26

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=3 * 7+5 \quad 5=26-3 * 7 \\
& 7=1 * 5+2 \quad 2=7-1 * 5 \\
& 5=2 * 2+1 \quad 1=5-2 * 2 \\
& 1=5-2 *(7-1 * 5) \\
& =(-2) * 7 \quad+3 * 5 \\
& =(-2) * 7+3 *(26-3 * 7) \\
& =(-11) * 7+3 * 26 \\
& \text { Now }(-11) \bmod 26=15 . \quad(-11 \text { is also "a" multiplicative inverse) }
\end{aligned}
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$
Find multiplicative inverse of 7 modulo 26 ... it's 15 .
Multiplying both sides by 15 gives

$$
15 \cdot 7 x \equiv_{26} 15 \cdot 3
$$

Simplify on both sides to get

$$
x \equiv_{26} 15 \cdot 7 x \equiv_{26} 15 \cdot 3 \equiv_{26} 19
$$

So, all solutions of this congruence are numbers of the form $x=19+26 k$ for some $k \in \mathbb{Z}$.

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$
Conversely, suppose that $x \equiv_{26} 19$.
Multiplying both sides by 7 gives

$$
7 x \equiv_{26} 7 \cdot 19
$$

Simplify on right to get

$$
7 x \equiv_{26} 7 \cdot 19 \equiv_{26} 3
$$

So, all numbers of form $x=19+26 k$ for any $k \in \mathbb{Z}$ are solutions of this equation.

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$
(on HW or exams)
Step 1. Find multiplicative inverse of 7 modulo 26
$1=\ldots=(-11) * 7+3 * 26$
Since (-11) mod $26=15$, the inverse of 7 is 15 .
Step 2. Multiply both sides and simplify
Multiplying by 15 , we get $x \equiv_{26} 15 \cdot 7 x \equiv_{26} 15 \cdot 3 \equiv_{26} 19$.
Step 3. State the full set of solutions
So, the solutions are $19+26 k$ for any $k \in \mathbb{Z}$
(must be of the form $a+m k$ for all $k \in \mathbb{Z}$ with $0 \leq a<m$)

Math mod a prime is especially nice

 $\operatorname{gcd}(a, m)=1$ if m is prime and $0<a<m$ so can always solve these equations mod a prime.| + | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| 1 | 1 | 2 | 3 | 4 | 5 | 6 | 0 |
| 2 | 2 | 3 | 4 | 5 | 6 | 0 | 1 |
| 3 | 3 | 4 | 5 | 6 | 0 | 1 | 2 |
| 4 | 4 | 5 | 6 | 0 | 1 | 2 | 3 |
| 5 | 5 | 6 | 0 | 1 | 2 | 3 | 4 |
| 6 | 6 | 0 | 1 | 2 | 3 | 4 | 5 |

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

Multiplicative Inverses and Algebra

Adding to both sides easily reversible:

$$
\begin{gathered}
{ }^{-c} \int x \equiv_{m} y>+c \\
x+c \equiv_{m} y+c
\end{gathered}
$$

The same is not true of multiplication...
unless we have a multiplicative inverse $c d \equiv_{m} 1$

$$
\begin{gathered}
\times d \zeta x \equiv_{m} y \nabla^{\times c} \\
c x \equiv_{m} c y
\end{gathered}
$$

Questions?

Modular Exponentiation mod 7

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

- Compute 7836581453
- Compute $78365{ }^{81453} \bmod 104729$
- Output is small
- need to keep intermediate results small

Small Multiplications

Since $b=q m+(b \bmod m)$, we have $b \bmod m \equiv_{m} b$.
And since $c=t m+(c \bmod m)$, we have $c \bmod m \equiv_{m} c$.

Multiplying these gives $(b \bmod m)(c \bmod m) \equiv_{m} b c$.

By the Lemma from a few lectures ago, this tells us $b c \bmod m=(b \bmod m)(c \bmod m) \bmod m$.

Okay to $\bmod b$ and c by m before multiplying if we are planning to mod the result by m

Repeated Squaring - small and fast

Since $b \bmod m \equiv_{m} b$ and $c \bmod m \equiv_{m} c$ we have $b c \bmod m=(b \bmod m)(c \bmod m) \bmod m$

So	$a^{2} \bmod m=(a \bmod m)^{2} \bmod m$
and	$a^{4} \bmod m=\left(a^{2} \bmod m\right)^{2} \bmod m$
and	$a^{8} \bmod m=\left(a^{4} \bmod m\right)^{2} \bmod m$
and	$a^{16} \bmod m=\left(a^{8} \bmod m\right)^{2} \bmod m$
and	$a^{32} \bmod m=\left(a^{16} \bmod m\right)^{2} \bmod m$

Can compute $a^{k} \bmod m$ for $k=2^{i}$ in only i steps
What if k is not a power of 2 ?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
$81453=2^{16}+2^{13}+2^{12}+2^{11}+2^{10}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}$ $a^{81453}=a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}$
$a^{81453} \bmod m=$

$\left.a^{2^{13}} \bmod m\right) \bmod m$.
$\left.a^{2^{12}} \bmod m\right) \bmod m$.
$\left.a^{2^{11}} \bmod m\right) \bmod m$.

Uses only $16+9=$ 25 multiplications

The fast exponentiation algorithm computes
$a^{k} \bmod m$ using $\leq 2 \log k$ multiplications $\bmod m$

Fast Exponentiation: $a^{k} \bmod m$ for all k

Another way....

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a,k/2,modulus);
        return (temp * temp) % modulus;
        } else {
        long temp = FastModExp(a,k-1,modulus);
        return (a * temp) % modulus;
    }
}
```

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA
- Vendor chooses random 512-bit or 1024-bit primes $\boldsymbol{p}, \boldsymbol{q}$ and $512 / 1024$-bit exponent \boldsymbol{e}. Computes $\boldsymbol{m}=\boldsymbol{p}$. q
- Vendor broadcasts ($\boldsymbol{m}, \boldsymbol{e}$)
- To send \boldsymbol{a} to vendor, you compute $\boldsymbol{C}=\boldsymbol{a}^{\boldsymbol{e}} \bmod \boldsymbol{m}$ using fast modular exponentiation and send \boldsymbol{C} to the vendor.
- Using secret $\boldsymbol{p}, \boldsymbol{q}$ the vendor computes \boldsymbol{d} that is the multiplicative inverse of $\boldsymbol{e} \bmod (\boldsymbol{p}-\mathbf{1})(\boldsymbol{q}-\mathbf{1})$.
- Vendor computes $\boldsymbol{C}^{d} \bmod \boldsymbol{m}$ using fast modular exponentiation.
- Fact: $\boldsymbol{a}=\boldsymbol{C}^{\boldsymbol{d}} \bmod \boldsymbol{m}$ for $\mathbf{0}<\boldsymbol{a}<\boldsymbol{m}$ unless $\boldsymbol{p} \mid \boldsymbol{a}$ or $\boldsymbol{q} \mid \boldsymbol{a}$

