
Number Theory CSE 311
Lecture 7



What we have proven so far:

- Let and be integers.

• If ௠ , then ௠ .

• If ௠ and ௠ , then ௠ .

• If ௠ and ௠ , then ௠ .

• If ௠ and ௠ , then ௠ .

Todo:

• ௠ if and only if .



Claim 5:

Claim 5: For integers and , ௠ if and only if 
.



For integers and , ௠ if and only if .

Let  be arbitrary integers, and suppose ௠ . Then 
. So there exists some integer  such that . So .

By the Division Theorem,  for some integer , where 
. Thus:

By the Division Theorem again, we have that . 
Since  were arbitrary, the claim holds.



For integers and , ௠ if and only if .

Let be arbitrary integers, and suppose . By 
the Division Theorem, for some integer , and 

for some integer . Thus:

Since are integers, is an integer. So . So ௠ . 
Since were arbitrary, the claim holds.



Summary: Properties of Mod

- Let and be integers.

• If ௠ , then ௠ .

• If ௠ and ௠ , then ௠ .

• If ௠ and ௠ , then ௠ .

• If ௠ and ௠ , then ௠ .

• ௠ if and only if .



Another contrapositive example



Another Proof
For all integers, Show that if then or .
Proof:
Let be arbitrary integers, and suppose 
Then there is not an integer such that 
…

So or 



Another Proof
For all integers, Show that if then or .
Proof:
Let be arbitrary integers, and suppose 
Then there is not an integer such that 
…

So or 



Another Proof
For all integers, Show that if then or .

There has to be a better way! 
If only there were some equivalent implication…
One where we could negate everything…

Take the contrapositive of the statement:
For all integers, Show if and then .



By contrapositive
Claim: For all integers, Show that if then or .
We argue by contrapositive.
Let be arbitrary integers, and suppose and . 

Therefore 



By contrapositive
Claim: For all integers, Show that if then or .
We argue by contrapositive.
Let be arbitrary integers, and suppose and . 
By definition of divides, and for integers and .
Multiplying the two equations, we get 
Since are all integers, is an integer. Applying the definition of 
divides, we have .



Logical Ordering



Logical Ordering
• When doing a proof, we often work from both sides…
• But we have to be careful!
• When you read from top to bottom, every step has to follow only 

from what’s before it, not after it.

• Suppose our target is and I know and .
• What can I put as a “new target?”



Logical Ordering
• So why have all our prior steps been ok backward?

• They’ve all been either:
- A definition (which is always an “if and only if”)
- An algebra step that is an “if and only if”

• Even if your steps are “if and only if” you still have to put everything 
in order – start from your assumptions, and only assert something 
once it can be shown. 



A bad proof (Backwards Proof)
Claim: i is positive then .

.

This claim is false – if you’re trying to do algebra, you need to start with 
an equation you know (say or or ) and expand to the 
equation you want.



Primes & GCD



Algorithmic Problems

• Multiplication
- Given primes ଵ, ଶ, …, ௞, calculate their product ଵ ଶ ௞

• Factoring
- Given an integer , determine the prime factorization of 



Factoring
Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272
077285356959533479219732245215172640
050726365751874520219978646938995647
494277406384592519255732630345373154
826850791702612214291346167042921431
160222124047927473779408066535141959
7459856902143413



123018668453011775513049495838496272077285356959
533479219732245215172640050726365751874520219978
646938995647494277406384592519255732630345373154
826850791702612214291346167042921431160222124047
9274737794080665351419597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Famous Algorithmic Problems
• Factoring

- Given an integer , determine the prime factorization 
of 

• Primality Testing
- Given an integer , determine if is prime

• Factoring is hard
– (on a classical computer)

• Primality Testing is easy



Prime and Composite

- Definition: 
An integer is prime iff its only positive divisors are and .

- An integer is composite iff it is not prime.



Fundamental Theorem of Arithmetic
Every Positive integer greater than 1 has a “unique” prime factorization:

e.g: 42 = 2 * 2 * 2 * 2 * 3, 591 = 3 * 197, ect…



Greatest Common Divisor

- Definition: 
The Greatest Common Divisor of integers and (denoted ) is 
the largest integer such that and .

- Useful Fact: Let a be a positive integer. The GCD(a, 0) = a
- For Example:



Calculating the GCD: Approach 1

- Fundamental Theorem of Arithmetic: Every positive integer greater 

than has a unique prime factorization.

- Approach 1 to finding :
1. Find the prime factorization of 
2. Find the prime factorization of 
3. Identify all common prime factors. 
4. Multiply the common prime factors together. 

This is the GCD.
VERY 

INEFFICIENT



Calculating the GCD: Approach 2

- Claim: For positive integers , .

- For example:
-
-

- We’ll prove this in a minute. But first: how can we use this fact to 
devise an algorithm for computing ?



Calculating the GCD: Approach 2

- Euclid’s Algorithm. To find :
• Repeatedly use to reduce numbers
• Stop once you reach . Return .

- For Example:

Efficient



Euclid’s Algorithm in Java

- // assumes a >= 0 and b >= 0
- public int gcd(int a, int b) {
- if (b == 0) {
- return a;
- } else {
- return gcd(b, a % b);
- }
- }



Proof of Claim

- Claim: For positive integers , .

- How do you show that two GCDs are equal?
• First consider some arbitrary common divisor of and , call it . 

Prove that is a divisor of .
• Then consider some arbitrary common divisor of and , call it 

. Prove that is a divisor of .
• Thus and have the same common divisors as and . So

their GCDs are equal.



Let be arbitrary positive integers. By the Division Theorem, for some int .

Let be arbitrary. Suppose and .  We aim to show that . By definition of
divides, and for some integers . Then it follows that:

Since are integers, is an integer. So .

Now suppose and . We aim to show that . By definition of divides, 
and for some integers . Then it follows that:

Since are integers, is an integer. So .

Thus and have the same common divisors as and . So . 
Since were arbitrary, the claim holds.

Claim: For positive integers , .



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 1 (Compute GCD & Keep Tableau Information):

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Step 1 (Compute GCD & Keep Tableau Information):

a b b a  mod b    = r b r a  = q * b  + r



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 2 (Solve the equations for r):
a   =  q * b  + r r  =  a  -- q * b



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 2 (Solve the equations for r):
a   =  q * b  + r r  =  a  -- q * b



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 3 (Backward Substitute Equations):



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s



Extended Euclidean algorithm
• Can use Euclid’s Algorithm to find such that

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Let . Then, is the multiplicative inverse of 
(modulo )  iff ௠ .   

Multiplicative inverse 

6543210X

00000000

65432101

53164202

41526303

36251404

24613505

12345606

mod 7

9876543210X

00000000000

98765432101

86420864202

74185296303

62840628404

50505050505

48260482606

36925814707

24680246808

12345678909

mod 10



Multiplicative inverse 
Suppose 

By Bézout’s Theorem, there exist integers and 

such that 

is the multiplicative inverse of (modulo ):

௠

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm

These inverses let us solve modular equations…



Example: Solve a Modular Equation
Solve:  ଶ଺ Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  ଶ଺ Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  ଶ଺ Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation
Solve:  ଶ଺ Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

Now .   

“the” multiplicative inverse

Solve:  ଶ଺ Find multiplicative inverse of 7 modulo 26

(−11 is also “a” multiplicative inverse)



Example: Solve a Modular Equation

Find multiplicative inverse of modulo … it’s .

Multiplying both sides by gives

ଶ଺

Simplify on both sides to get

ଶ଺ ଶ଺ ଶ଺

So, all solutions of this congruence are
numbers of the form for some .

Solve:  



Example: Solve a Modular Equation

Conversely, suppose that ଶ଺ .

Multiplying both sides by gives

ଶ଺

Simplify on right to get

ଶ଺ ଶ଺

So, all numbers of form for any are 
solutions of this equation.

Solve:  



Example: Solve a Modular Equation

Since , the inverse of is .

Solve:  ଶ଺ (on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26

(must be of the form for all with )

Multiplying by , we get ଶ଺ ଶ଺ ଶ଺

Step 2. Multiply both sides and simplify

Step 3. State the full set of solutions

So, the solutions are for any 



Math mod a prime is especially nice

6543210+

65432100

06543211

10654322

21065433

32106544

43210655

54321066

6543210X

00000000

65432101

53164202

41526303

36251404

24613505

12345606

if is prime and so can 
always solve these equations mod a prime.

mod 7



Adding to both sides easily reversible:

௠

௠

The same is not true of multiplication…
unless we have a multiplicative inverse ௠

௠

௠

Multiplicative Inverses and Algebra



Questions?



Modular Exponentiation mod 7

654321X

6543211

5316422

4152633

3625144

2461355

1234566

a6a5a4a3a2a1a

1111111

1421 422

1546233

1241244

1326455

1616166



Exponentiation

• Compute 7836581453

• Compute 7836581453 mod 104729

• Output is small
- need to keep intermediate results small



Small Multiplications
Since , we have ௠ .

And since , we have ௠ .

Multiplying these gives ௠ .

By the Lemma from a few lectures ago, this tells us 
.

Okay to mod and by before multiplying if we are 
planning to mod the result by 



Repeated Squaring – small and fast
Since ௠ and ௠

we have 

So            2 ଶ

and          4 2 ଶ

and          8 4 ଶ

and          16 8 ଶ

and          32 16 ଶ

Can compute 𝑘 for 𝑖 in only steps
What if is not a power of ?



Fast Exponentiation Algorithm 
81453 in binary is 10011111000101101

81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 
௞ using multiplications 

a81453 = a2
16

· a2
13

· a2
12

· a2
11

· a2
10

· a2
9

· a2
5

· a2
3

· a2
2

· a2
0

a81453 mod m= 
(…(((((a2

16
mod m ·
a2

13
mod m ) mod m · 
a2

12
mod m) mod m · 

a2
11

mod m) mod m · 
a2

10
mod m) mod m · 

a2
9

mod m) mod m · 
a2

5
mod m) mod m · 

a2
3

mod m) mod m · 
a2

2
mod m) mod m · 

a2
0

mod m)  mod m 

Uses only 16 + 9 = 
25 multiplications



Fast Exponentiation:  for all 

ଶ௝ ௝ ଶ

ଶ௝ାଵ 2𝑗

Another way....



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

}
}

ଶ௝ ௝ ଶ

ଶ௝ାଵ 2𝑗



Using Fast Modular Exponentiation
• Your e-commerce web transactions use SSL 

(Secure Socket Layer) based on RSA encryption
• RSA

- Vendor chooses random 512-bit or 1024-bit primes 
and 512/1024-bit exponent .  Computes 

- Vendor broadcasts 
- To send to vendor, you compute 𝒆

using fast modular exponentiation and send to the 
vendor.

- Using secret the vendor computes that is the 
multiplicative inverse of mod .

- Vendor computes 𝒅 using fast modular 
exponentiation.

- Fact:   𝒅 for unless or 


