IF YOU ASSUME. CONTRADICTHRY HEY, YOURE RIGHT! MRS. LENHART?
AXIOMS, You CAN DERIVE ISTARTEDWITH PA™P | | JAIT THIS /§ HER
ANYTHING. ITSCALLED THE AND DERIVED YOUR NUMBER! HOW-
PRMiPLE OF EXPLOSION. MOMS PHONE NUMBER! HI, I AFRIEND OF = WHY
,C]Nr}?-m,.-'i;‘? THATS NOT HOW YES T AM FEEE. TONIGHT!
THAT LIORKS, /
i . O) ”ﬂﬁ NO Bmurml—:
f SOUNDS LOVELY'

CSE 31

Number Theory | &,

What we have proven so far:

- Leta,b,c,d and m > 0 be integers.
 Ifa=,, b thenb =, a.

e Ifa=,,bandc=,,d, thena+c=,,b+d.
 Ifa=,,bandc=,,d, thenac =, bd.

e [fa=,,bandb =,,c, thena=,,c.

Todo:

e a=, bifandonlyifa% m=>b % m.

Claim 5;:

Claim 5: For integers a,b and m > 0,a =, bifand only if a % m =

b % m.

For integersa,band m >0,a=,,, bifandonlyifa% m = b % m.

= Let a,b,m > 0 be arbitrary integers, and suppose a =,,, b. Thenm | (a —

b). So there exists some integer k such thata —b = km. Soa = km + b.

By the Division Theorem, a = gm + (a % m) for some integer q, where 0 <

a % m < m. Thus:
km+b=qgm+ (a % m)
b=qgm-—km+ (a% m)
b=(q—k)m+ (a%m)

By the Division Theorem again, we have that b % m = a % m.

Since a, b, m were arbitrary, the claim holds.

For integersa,band m >0,a=,,, bifandonlyifa% m = b % m.

& Let a,b,m > 0 be arbitrary integers, and suppose a % m = b % m. By
the Division Theorem, a = mq + (a % m) for some integer g, and b =

ms + (b % m) for some integer s. Thus:
a—b = (mq+ (a%m))— (ms+ (b%m))
a—b=mqg—ms+(@a%m)—(b%m)
a—b=m(q—>s)
Since g, s are integers, g — s is an integer. Som | (a — b). So a =, b.

Since a, b, m were arbitrary, the claim holds.

Summary: Properties of Mod

- Leta,b,c,d and m > 0 be integers.

Ifa =, b, thenb =, a.

e lfa=,,bandc=,,d, thena+c=,,b+d.
 Ifa=,,bandc=,,d, thenac =, bd.

e [fa=,,bandb =,,c, thena=,,c.

c a=, bifandonlyifa% m=>b % m.

I~ Another contrapositive example

Another Proof

For all integers, a, b, c: Show thatif a + (bc) thena t b ora tc.
Proof:

Let a, b, c be arbitrary integers, and suppose a t (bc).
Then there is not an integer z such that az = bc

Soatboratc

Another Proof

For all integers, a, b, c: Show thatif a + (bc) thena t b ora tc.
Proof:

Let a, b, c be arbitrary integers, and suppose a t (bc).
Then there is not an integer z such that az = bc

Soatboratc

Another Proof

For all integers, a, b, c: Show thatif a + (bc) thena t b ora tc.

There has to be a better way!
If only there were some equivalent implication...

One where we could negate everything...

Take the contrapositive of the statement:

For all integers, a, b, c: Show if a|b and a|c then a|(bc).

By contrapositive

Claim: For all integers, a, b, c: Show thatif a { (bc) thena t b ora t c.
We argue by contrapositive.
Let a, b, c be arbitrary integers, and suppose a|b and a|c.

Therefore a|bc

By contrapositive

Claim: For all integers, a, b, c: Show thatif a { (bc) thena t b ora t c.
We argue by contrapositive.

Let a, b, c be arbitrary integers, and suppose a|b and a|c.

By definition of divides, ax = b and ay = c for integers x and y.
Multiplying the two equations, we get axay = bc

Since a, x,y are all integers, xay is an integer. Applying the definition of
divides, we have a|bc.

‘ Logical Ordering

Logical Ordering

« When doing a proof, we often work from both sides...
« But we have to be careful!

« When you read from top to bottom, every step has to follow only
from what's before it, not after it.

« Suppose our targetis g and | know g - p andr — g.
« What can | put as a "new target?”

Logical Ordering

« So why have all our prior steps been ok backward?

* They've all been either:
- A definition (which is always an “if and only if")

- An algebra step that is an “if and only it”

« Even if your steps are “if and only if” you still have to put everything
in order — start from your assumptions, and only assert something

once it can be shown.

A bad proof (Backwards Proof)

Claim: if x is positive then x + 5 = —x — 5.

x+5=—-—x-—05.
xX+5=—-—x-5

|x + 5| = |—x — 5]
lx +5]=|—(x+5)|
|x + 5| = |x + 5|
0=0

This claim is false — if you're trying to do algebra, you need to start with
an equation you know (say x = x or 2 = 2 or 0 = 0) and expand to the
equation you want.

. Primes & GCD

Algorithmic Problems

 Multiplication
- Given primes p4, p», ..., Pk, calculate their product p;p, ... pi

* Factoring
- Given an integer n, determine the prime factorization of n

Factoring
Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272
077285356959533479219732245215172640
050726365751874520219978646938995647
494277406384592519255732630345373154
826850791702612214291346167042921431
160222124047927473779408066535141959
7459856902143413

123018668453011775513049495838496272077285356959
533479219732245215172640050726365751874520219978
646938995647494277406384592519255732630345373154
826850791702612214291346167042921431160222124047
9274737794080665351419597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

X

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917

Famous Algorithmic Problems

 Factoring
- Given an integer n, determine the prime factorization

of n
* Primality Testing
- Given an integer n, determine if n is prime

* Factoring is hard
— (on a classical computer)

* Primality Testing is easy

Prime and Composite

- Definition:
An integer p > 1 is prime iff its only positive divisors are 1 and p.

- Aninteger p > 1 is composite iff it is not prime.

Fundamental Theorem of Arithmetic

Every Positive integer greater than 1 has a "unique” prime factorization:

eqg:d2=2%2%2*2%3,591=3*197, ect...

Greatest Common Divisor

- Definition:
The Greatest Common Divisor of integers a and b (denoted gcd(a, b)) is

the largest integer ¢ such that ¢ | a and c | b.

- Useful Fact: Let a be a positive integer. The GCD(a, 0) = a
- For Example:

gcd(99,18) =9 gcd(7,11) =1
gcd(100,125) = 25 gcd(13,0) =13

Calculating the GCD: Approach 1

- Fundamental Theorem of Arithmetic: Every positive integer greater

than 1 has a unique prime factorization.

Approach 1 to finding gcd(a, b):
Find the prime factorization of a
Find the prime factorization of b
Identify all common prime factors.

Multiply the common prime factors together.
This is the GCD.

=

Calculating the GCD: Approach 2

Claim: For positive integers a, b, gcd(a, b) = gcd(b,a % b).

For example:
gcd(10,6) = gcd(6,4)
gcd(110,30) = gcd(30,20)

- We'll prove this in a minute. But first: how can we use this fact to
devise an algorithm for computing ged(a, b)?

Calculating the GCD: Approach 2

- Euclid’s Algorithm. To find gcd(a, b):

Repeatedly use gcd(a, b) = gecd(b, a % b) to reduce numbers
Stop once you reach ged(g, 0). Return g.

- For Example:
gcd(660,126) = gcd(126,30)

= gcd(30,6) /\
= gcd(6,0)

=6

Efficient

Euclid’s Algorithm in Java

// assumes a >= 0 and b >= 0
public int gcd(int a, int b) {
- if (b == 0) {

- return a;

- } else {

- return gcd(b, a % b);

Proof of Claim

- Claim: For positive integers a, b, gcd(a, b) = gcd(b, a % b).

- How do you show that two GCDs are equal?

 First consider some arbitrary common divisor of a and b, call it d.
Prove that d is a divisor of a % b.

* Then consider some arbitrary common divisor of b and a % b, call it
d. Prove that d is a divisor of a.

* Thus a and b have the same common divisors as b and a % b. So
their GCDs are equal.

Claim: For positive integers a, b, gcd(a, b) = gcd(b, a % b).

Let a, b be arbitrary positive integers. By the Division Theorem, a = gb + (a % b) for some int q.

Let d be arbitrary. Suppose d | b and d | a % b. We aim to show that d | a. By definition of

divides, b = kd and a % b = jd for some integers k, j. Then it follows that:
a=qb+(@%b)=q- kd+jd=d(qgk +))

Since q, k, j are integers, gk + j is an integer. So d | a.

Now suppose d | a and d | b. We aim to show that d | a % b. By definition of divides, a = md
and b = nd for some integers m,n. Then it follows that:

a%b=a—qb=md —qnd = d(m — qn)
Since g, m, n are integers, m — qn is an integer. So d | a % b.

Thus a and b have the same common divisors as b and a % b. So gcd(a, b) = gcd(b,a % b).
Since a, b were arbitrary, the claim holds.

Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.

Vavb ((a>0Ab>0)—-3ds3t(gcd(a,b) =sa+th))

Extended Euclidean algorithm

Can use Euclid’s Algorithm to find s, ¢t such that

gcd(a,b) = sa+tb

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa+tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r

gcd(35,27) =ged(27,35 mod 27) =gcd(27,8) |35=1*27+8

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, t such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):
a b b amodb =r b r a=q*b +r

gcd(35,27) =ged(27,35 mod 27) =gcd(27,8) [35=1*27+8
=gcd(8,27mod 8) =gcd(8, 3) 27=3*8 +3
= gcd(3, 8 mod 3) =gcd(3, 2) 8 =2*3 +2
=gcd(2,3mod2) =gcd(2,1) |3 =1*2 {1

=gcd(1,2mod 1) =gcd(1, 0)

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1%27+8 8=35-1%27
27=3*8 +3

8 =2*3 +2

3 =1*2 +1

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1%27+8 8=35-1%27
27=3*8 +3 3=27-3%*8
8 =2%3 +2 2=8-2%3

3 =1*2 1 D=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb
Step 3 (Backward Substitute Equations):

8=35-1%*27
3=27-3*8
2=8 -2%*3

D=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb

Step 3 (Backward Substitute Equations): Plug in the def of 2

8=35-1%27 1= 3-1*(8-2%3)

= 3-8+2*3 Re-arrange into
3=27-3%8 =(-1)*8+3*3 3’'sand 8's
2=8-2%*3

1=3-1%*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb

Step 3 (Backward Substitute Equations): Plug in the def of 2

8=35-1%27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into
3=27-3%8 =(-1)*8+3*3 3’'sand 8's

Plug in the def of 3
=(-1)*8+3*(27-3*8)
=(-1)*8+3%27+(-9)*8

= 3*27 +(-10)*8
1=3 -1%2 Re-arrange into

8’'s and 27’s

2=8 -2%*3

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢t such that
gcd(a,b) = sa +tb

Step 3 (Backward Substitute Equations): Plug in the def of 2

8§=35-1%27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into
3=27-3%8 :(_1)*8+3*3 3’'sand 8's
Plug in the def of 3
2 g - 2%3 =(-1)*8 +3*(27-3*8)

=(-1)*8+3*27+(-9)*8

= 3*27 4+ (-10) * 8 Re-arrange into
1=3 -1%2 () 8’s and 27’s
3*27 + (-10) * (35-1*27)
3%27 + (-10)*35 + 10 * 27
13 *27 4+ (-10) * 35

Re-arrange into
27’s and 35’s

d m

Ve iInverse mo

Multiplicat

oJo|lo|o|N|O|[lv|IT |||~
r_nw olo|lw|lo|v|~n|o|ow|O|]|
QL NlolIN| Y| =]l O] ™
'l
) ojJo|lo|n|o|T|o|lOo| || <
>~
C vwjolv|OjVIO|lVIO|BV|O|W
W <lo|x|o|n|o|lo| ||| 0
._m mjJo|lm|lo|loco|N|wv|o|—=| T N
K cajJo|la|Y|o|ow|o|la|<|0]| ©
Q.
= —lo|l ||| <T|v]|O|N|®0]| O
—
W olo|o|o|o|o|o|o|lo|o|o
“JO| = N[O || O|O|N|0]| O
Q
h
-+
So
—
bm NN e N RNe] M| N -
n_np___ wlo|wv O | < |
<3 |<e|ol~ | oo
y Y— mJ]o | »m 7o) 47
mw_H - ©
~N]o |~ ™| v =
V = - S
bm —_ 1O | - x| wou | O
;m
aU olJo|o o|lo|o
<_:w “lo| = < |[wvn| o
Om
i
Q
1

mod 10

Multiplicative inverse mod m
Suppose gcd(a,m) = 1

By Bézout’s Theorem, there exist integers s and t
such that sa +tm = 1.

s is the multiplicative inverse of a (modulo m):

1=sa+tm=, sa

So... we can compute multiplicative inverses with the
extended Euclidean algorithm

These inverses let us solve modular equations...

Example: Solve a Modular Equation

Solve: 7x =,¢ 3 Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

Solve: 7x =,¢ 3 Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

Example: Solve a Modular Equation

Solve: 7x =,, 3 Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3*7 + 5
7 =1x5 + 2
5 =2%x2 +1

Example: Solve a Modular Equation
Solve: 7x =26 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3%7 + 5 5=26-3%7
7 =15+ 2 2=7-1%5
5 =224+ 1 1=5- 2%2

Example: Solve a Modular Equation

Solve: 7x =26 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3%7 + 5 5=26-3%7
7 =15+ 2 2=7-1%5
5 =224+ 1 1=5- 2%2

1 = 5 - 2%x(7-1%5)

= (-2)*7 + 3%5
(-2)*7 + 3x(26-3x7)
(=11)x7 + 326

Example: Solve a Modular Equation

Solve: 7x =26 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = ged(2,1) = 1

26=3%7 + 5 5=26-3%7
7 =15+ 2 2=7-1%5
5 =22+ 1 1=5- 2%2

1 = 5 - 2x(7-1%5)
= (-2)*7 + 3%5
(-2)*7 + 3x(26-3x7)

(=11)*7 + 3 %26
“the” multiplicative inverse

Now (—11) mod 26 = 15. (—11 is also “a” multiplicative inverse)

Example: Solve a Modular Equation

Solve: 7x =, 3
Find multiplicative inverse of 7 modulo 26... it’s 15.
Multiplying both sides by 15 gives

15-7x =, 15+ 3

Simplify on both sides to get

So, all solutions of this congruence are
numbers of the form x = 19 + 26k for some k € Z.

Example: Solve a Modular Equation

Solve: 7x =, 3

Conversely, suppose that x =,, 19.

Multiplying both sides by 7 gives
7X =56 719

Simplify on right to get

So, all numbers of form x = 19 + 26k for any k € Z are
solutions of this equation.

Example: Solve a Modular Equation

Solve: 7x =,4 3 (on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26

1 = ..= (-11)*7 + 3%26

Since (—11) mod 26 = 15, the inverse of 7 is 15.
Step 2. Multiply both sides and simplify

Multiplying by 15, we get x =, 15+ 7x =, 15+ 3 =, 19.
Step 3. State the full set of solutions

So, the solutions are 19 + 26k forany k € Z
(must be of the form a + mk forall k € Zwith 0 < a < m)

ICE

lally n

gcd(a,m)=1ifmisprimeand 0 < a <m so can

always solve these equations mod a prime.

ime is espec

Math mod a pr

3

4

O |0 |0 |O |O |O O (O

6]0 |6 |5

5

6 |0

5

4

mod 7

Multiplicative Inverses and Algebra

Adding to both sides easily reversible:

—C(‘D X =m YE-I-C

x+c=,y+c

The same is not true of multiplication...
unless we have a multiplicative inverse cd =, 1

x%wxzmy:fc

cX =, CY

IONS?

Quest

Modular Exponentiation mod 7

5

2

6| 4

2

5(14]6

5

3

6 |6 |5 |4

Exponentiation

« Compute 78365814>3

 Compute 783658143 mod 104729

 Qutput is small
- need to keep intermediate results small

Small Multiplications
Since b = gm + (b mod m), we have b mod m =,,, b.

And since ¢ = tm + (¢ mod m), we have c mod m =,,, c.
Multiplying these gives (b mod m)(c mod m) =,,, bc.

By the Lemma from a few lectures ago, this tells us
bc mod m = (b mod m)(c mod m) mod m.

Okay to mod b and ¢ by m before multiplying if we are
planning to mod the result by m

Repeated Squaring — small and fast

Since bmodm =,, bandcmodm =,,, ¢
we have bc mod m = (b mod m)(c mod m) mod m

So

and
and
and
and

a’?modm = (a modm)? modm
a*mod m = (a? mod m)? mod m
a8 mod m = (a* mod m)? mod m
al®* mod m = (a® mod m)? mod m
a2 mod m = (a'® mod m)? mod m

Can compute a* mod m for k = 2 in only i steps
What if k is not a power of 2?

Fast Exponentiation Algorithm
81453 in binary is 10011111000101101

81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25+ 23 + 22 + 20

16 13 12 11 10 9 5 3 2 0
a81453= a2 - a2 - a2 - a2 . az . az . a2 . a2 . az . a2

a81453 mod m=
(...((((@2"* mod m -
22" mod m) mod m -
a2'* mod m) mod m -
22" mod m) mod m -
22" mod m) mod m -
a2° mod m) mod m -
a2> mod m) mod m -
a2 mod m) mod m -
a2* mod m) mod m -
a2’ mod m) mod m

The fast exponentiation algorithm computes
a” mod m using < 2log k multiplications mod m

Fast Exponentiation: a“ mod m for all k

Another way....

. . 2
a’’mod m = (af mod m) mod m

a*’*Imodm = ((a mod m) - (a¥ mod m)) mod m

Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {
long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

. . 2
a’’modm = (af mod m) mod m

a*’*Imodm = ((a mod m) - (a¥ mod m)) mod m

Using Fast Modular Exponentiation

* Your e-commerce web transactions use SSL
(Secure Socket Layer) based on RSA encryption
A

« RS

Vendor chooses random 512-bit or 1024-bit primes
p, q and 512/1024-bit exponent e. Computesm =p -
q

Vendor broadcasts (m, e)

To send a to vendor, you compute € = a® mod m

using fast modular exponentiation and send C to the
vendor.

Using secret p, q the vendor computes d that is the
multiplicative inverse of e mod (p — 1)(q — 1).

Vendor computes €% mod m using fast modular
exponentiation.

Fact: a = €% mod m for 0 < a < m unless p|a or q|a

