

Number Theory
CSE 311
Lecture 7

Proof Style for Number Theory

- We use predicate logic to make the proof claim very precise.

However, please write the actual proofs in English, not logic!

- E.g. for all integers x, if x is odd then $x+1$ is even.
- Good: Let x be arbitrary. Suppose x is odd. Then $x=2 k+1$ for some integer k...
- Bad: Let x be arbitrary. Suppose $\operatorname{Odd}(x)$. Then $\exists k(x=2 k+1) \ldots$

Number Theory: Motivation

Number Theory

- Branch of mathematics that deals with the properties and relationships of numbers
- E.g. can we efficiently test if an integer is prime?
- E.g. can we efficiently factor an integer?
- Many significant applications in computing
- Cryptography \& Security
- Hashing
- Playground for practicing proof-writing

Modular Arithmetic

- Arithmetic over a finite domain
- In computing, almost all computations are over a finite domain

Modular Arithmetic

- public class Test\{
final static int SEC_IN_YEAR $=365 * 24 * 60 * 60$;
public static void main(String args[]) \{
System.out.println("I will be alive for at least" + SEC_IN_YEAR * 100 + " seconds.");
\}
- \}

I will be alive for $\mathbf{- 1 1 4 1 3 6 7 2 9 6}$ seconds.
β Divisibility

Divisibility

- Definition:

For integers a, b, we say $a \mid b$ (" a divides b ") iff there exists some integer k such that $b=k a$.

- Informally: " a fits into $b "$ or " a is a factor of $b "$
- Examples: $5|15 \quad-3| 9 \quad 5 \nmid 21$

Divisibility

Definition

$a \mid b:=\exists k \in \mathbb{Z}(b=k a)$

- Which of these is true?

5|1
25 | 5

$-2 \mid 4$
$0 \mid 7$
$4 \mid-2$

Division Theorem

- Division Theorem:

For any integer a and positive integer d, there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

Division Theorem

- Division Theorem:

For any integer a and positive integer d, there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

- q is referred to as the quotient
- r is referred to as the remainder

Division Theorem

- Division Theorem:

For any integer a and positive integer d, there exist unique integers q, r with $0 \leq r<d$ such that $a=q d+r$.

- In Java, q is the result of the operation a / d
- In Java, r is the result of the operation $a \% d$

The mod (\%) operator

- The \% operator is often referred to as "mod"
- $a \% d$ returns the remainder r when you divide a by d

$$
\begin{array}{ll}
22 \% 5=2 & 25 \% 5=0 \\
22=4 \cdot 5+2 & 25=5 \cdot 5+0 \\
& -1 \% 4=3 \\
0 \% 5=0 & -1=-1 \cdot 4+3
\end{array}
$$

Modular Arithmetic

Modular Arithmetic: Like a Clock

- Imagine you can only represent numbers $0, \ldots, 11$. We call this "arithmetic mod 12".
- What's $8+7 ? 3$

Observation The solution is $a \% 12$.

Modular Arithmetic: Like a Clock

- Imagine you can only represent numbers $0, \ldots, 11$. We call this "arithmetic mod 12".
- What's 3 - 5? 10

Observation The solution is $a \% 12$.

Modular Arithmetic: Like a Clock

- Imagine you can only represent numbers $0, \ldots, 11$. We call this "arithmetic mod 12".

What's 3-7? 9

Observation The solution is $a \% 12$.

Modular Arithmetic: Generalizing

- We can extend modular arithmetic to clocks of any positive integer size.
E.g. $3+6$ in arithmetic $\bmod 7$ is 2

"Sameness"

- In modular arithmetic, many numbers have a notion of "sameness".

Arithmetic mod 12:

Arithmetic mod 7:

"Sameness"

- In modular arithmetic, many numbers have a notion of "sameness".
- To say "the same", we don't to use the = symbol.
E.g. $13=1$ is wrong...
- To say same in arithmetic mod m, we use the symbol \equiv_{m}
- Pronounced "congruent mod m "

$$
\begin{array}{lll}
-13 \equiv_{12} 1 & 13 \equiv_{12} 25 & 2 \equiv_{12} 14 \\
- & 3 \equiv_{7} 10 & 0 \equiv_{7} 7
\end{array}
$$

Congruence

- We need a formal definition of $a \equiv_{m} b$.

We can't just say " a and b are on the same place in the m clock $;$ "

- Definition:

For integers a, b and positive integer m, we say $a \equiv_{m} b$ iff $m \mid(a-b)$.

- Note: $a \equiv_{m} b$ is equivalent to $a \% m=b \% m$.

We will actually prove that the two notions are the same. But, the formal definition is much easier to use in proofs.

Intuition

Intuition: Equivalently, $a \equiv_{m} b$ means $a \% m=b \% m$

- Here we have some groups of numbers that are congruent mod 10.

Congruent to 0

Congruent to 3

Congruent to 8

Properties of Congruence

Recall: Familiar Properties of $=$ in algebra

- If $a=b$, then $b=a$.
- If $a=b$ and $c=d$, then $a+c=b+d$.
- If $a=b$ and $c=d$, then $a c=b d$.
- If $a=b$ and $b=c$, then $a=c$.
- These are the facts that allow us to use algebra to solve problems.

We will prove analogous facts for modular arithmetic.

Claim 1

Definitions:

$a \mid b$ iff $\exists k \in \mathbb{Z}(b=k a)$
$a \equiv_{m} b$ iff $m \mid(a-b)$
Claim 1: For integers a, b and positive integer m, if $a \equiv_{m} b$ then $b \equiv_{m} a$. Proof

Let a, b be arbitrary integers and let m be an arbitrary positive integer.
Suppose that $a \equiv_{m} b$. Then by definition of congruence, $m \mid(a-b)$. Then by definition of divides, there exists some integer k such that $a-b=m k$. Then multiplying both sides by -1 , we have $b-a=-m k=m(-k)$. Since k is an integer, $-k$ is an integer. So by definition of divides, $m \mid(b-a)$. Then by definition of congruence, $b \equiv_{m} a$. Since a, b, m were arbitrary, the claim holds.

Note on Claim 1

- You'll see $a \equiv_{m} b$ defined as $m \mid(a-b)$ or $m \mid(b-a)$ depending on where you look.
- Claim 1 proves these definitions are equivalent. From now on, you can use either definition in your proofs.
- In general, once we have proved claims in class, you can use those claims in your homework without proof.

Claim 2

Definitions:

$a \mid b$ iff $\exists k \in \mathbb{Z}(b=k a)$
$a \equiv_{m} b$ iff $m \mid(a-b)$

Claim 2: For integers a, b, c, d and positive integer m, if $a \equiv_{m} b$ and $c \equiv_{m} d$ then $a+c \equiv_{m} b+d$.

Intuition
$3 \equiv_{10} 13$ and $14 \equiv_{10} 24 \quad \Rightarrow \quad 17 \equiv_{10} 37$

Claim 2

Definitions:

$$
\begin{aligned}
& a \mid b \text { iff } \exists k \in \mathbb{Z}(b=k a) \\
& a \equiv_{m} b \text { iff } m \mid(a-b)
\end{aligned}
$$

Claim 2: For integers a, b, c, d and positive integer m, if $a \equiv_{m} b$ and $c \equiv_{m} d$ then $a+c \equiv_{m} b+d$.

Proof
Let a, b, c, d and $m>0$ be arbitrary integers. Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Then by definition of congruence, $m \mid(a-b)$ and $m \mid(c-d)$. Then by definition of divides, there exists some integers k, j such that $a-b=m k$ and $c-d=m j$. Then adding both expressions, we have:

$$
\begin{gathered}
a-b+c-d=m k+m j \\
(a+c)-(b+d)=m(k+j)
\end{gathered}
$$

So by definition of divides, $m \mid(a+c)-(b+d)$. Then by definition of congruence, $a+c \equiv_{m} b+d$. Since a, b, c, d, m were arbitrary, the claim holds.

Claim 3

Definitions:
$a \mid b$ iff $\exists k \in \mathbb{Z}(b=k a)$
$a \equiv_{m} b$ iff $m \mid(a-b)$
Claim 3: For integers a, b, c, d and positive integer m, if $a \equiv_{m} b$ and $c \equiv_{m} d$ then $a c \equiv_{m} b d$.

Intuition
$2 \equiv_{10} 12$ and $3 \equiv_{10} 13 \Rightarrow 6 \equiv_{10} 156$

Claim 3

Definitions:

$$
\begin{aligned}
& a \mid b \text { iff } \exists k \in \mathbb{Z}(b=k a) \\
& a \equiv_{m} b \text { iff } m \mid(a-b)
\end{aligned}
$$

Claim 3: For integers a, b, c, d and positive integer m, if $a \equiv_{m} b$ and $c \equiv_{m} d$ then $a c \equiv_{m} b d$.

Proof (Attempt 1)

Let a, b, c, d and $m>0$ be arbitrary integers. Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Then by definition of congruence, $m \mid(a-b)$ and $m \mid(c-d)$. Then by definition of divides, there exists some integers k, j such that $a-b=m k$ and $c-d=m j$. Then multiplying both expressions, we have:

$$
\begin{gathered}
(a-b)(c-d)=m k \cdot m j \\
a c-b c-a d+b d=m^{2} k j
\end{gathered}
$$

Goal: $a c-b d=m x$

Claim 3

Definitions:

$$
\begin{aligned}
& a \mid b \text { iff } \exists k \in \mathbb{Z}(b=k a) \\
& a \equiv_{m} b \text { iff } m \mid(a-b)
\end{aligned}
$$

Claim 3: For integers a, b, c, d and positive integer m, if $a \equiv_{m} b$ and $c \equiv_{m} d$ then $a c \equiv_{m} b d$. Proof (Attempt 2):
Let a, b, c, d and $m>0$ be arbitrary integers. Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Then by definition of congruence, $m \mid(a-b)$ and $m \mid(c-d)$. Then by definition of divides, there exists some integers k, j such that $a-b=m k$ and $c-d=m j$. Rearranging, we have $a=$ $m k+b$ and $c=m j+d$. Multiplying both expressions, we have:

$$
\begin{gathered}
a c=(m k+b)(m j+d) \\
a c=m^{2} k j+m b j+m d k+b d \\
a c-b d=m^{2} k j+m b j+m d k \\
a c-b d=m(m k j+b j+d k)
\end{gathered}
$$

Since m, k, j, b, d are integers, $m k j+b j+d k$ is an integer. Thus by definition of divides, $m \mid a c-b d$. Then by definition of congruence, $a c \equiv_{m} b d$. Since a, b, c, d, m were arbitrary, the claim holds.

Claim 4

Definitions:

$$
\begin{aligned}
& a \mid b \text { iff } \exists k \in \mathbb{Z}(b=k a) \\
& a \equiv_{m} b \text { iff } m \mid(a-b)
\end{aligned}
$$

- : For integers a, b, c and positive integer m, if $a \equiv_{m} b$ and $b \equiv_{m} c$ then $a \equiv_{m} c$.

Proof

Let a, b, c and $m>0$ be arbitrary integers. Suppose that $a \equiv_{m} b$ and $b \equiv_{m} c$. Then by definition of congruence, $m \mid(a-b)$ and $m \mid(b-c)$. Then by definition of divides, there exists some integers k, j such that $a-b=m k$ and $b-c=m j$. Adding the expressions, we have:

$$
\begin{gathered}
(a-b)+(b-c)=m k+m j \\
a-c=m(k+j)
\end{gathered}
$$

Since k, j are integers, $k+j$ is an integer. Thus by definition of divides, $m \mid a-c$. Then by definition of congruence, $a \equiv_{m} c$. Since a, b, c, m were arbitrary, the claim holds.

Claim 5:

Claim 5: For integers a, b and $m>0, a \equiv_{m} b$ if and only if $a \% m=$ b \% m.

For integers a, b and $m>0, a \equiv_{m} b$ if and only if $a \% m=b \% m$.
\Rightarrow Let $a, b, m>0$ be arbitrary integers, and suppose $a \equiv_{m} b$. Then m ($a-$ $b)$. So there exists some integer k such that $a-b=k m$. So $a=k m+b$.

By the Division Theorem, $a=q m+(a \% m)$ for some integer q, where $0 \leq$ $a \% m<m$. Thus:

$$
\begin{aligned}
& k m+b=q m+(a \% m) \\
& b=q m-k m+(a \% m) \\
& b=(q-k) m+(a \% m)
\end{aligned}
$$

By the Division Theorem again, we have that $b \% m=a \% m$.
Since a, b, m were arbitrary, the claim holds.

For integers a, b and $m>0, a \equiv_{m} b$ if and only if $a \% m=b \% m$.
\Leftarrow Let $a, b, m>0$ be arbitrary integers, and suppose $a \% m=b \% m$. By the Division Theorem, $a=m q+(a \% m)$ for some integer q, and $b=$ $m s+(b \% m)$ for some integer s. Thus:

$$
\begin{gathered}
a-b=(m q+(a \% m))-(m s+(b \% m)) \\
a-b=m q-m s+(a \% m)-(b \% m) \\
a-b=m(q-s)
\end{gathered}
$$

Since q, s are integers, $q-s$ is an integer. So $m \mid(a-b)$. So $a \equiv_{m} b$. Since a, b, m were arbitrary, the claim holds.

Summary: Properties of Mod

- Let a, b, c, d and $m>0$ be integers.
- If $a \equiv_{m} b$, then $b \equiv_{m} a$.
- If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a+c \equiv_{m} b+d$.
- If $a \equiv_{m} b$ and $c \equiv_{m} d$, then $a c \equiv_{m} b d$.
- If $a \equiv_{m} b$ and $b \equiv_{m} c$, then $a \equiv_{m} c$.
- $a \equiv_{m} b$ if and only if $a \% m=b \% m$.

