

Formal Proofs, | Predicate Logic |

CSE 311 Lecture 4

Announcements

- Homework 1 is due this Friday
- Section tomorrow
 - If you are not in person, your worksheet is due emailed to your TAs by 8PM.

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Proofs Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	$q ightarrow \neg r$	Given
3.	$\neg s \lor q$	Given
4.	<i>S</i>	∧ Elim: 1
5.	רר <i>S</i>	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	$\neg r$	MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g. $(\mathbf{p} \rightarrow \mathbf{r}) \lor \mathbf{q} \equiv (\neg \mathbf{p} \lor \mathbf{r}) \lor \mathbf{q}$

• Inference rules only can be applied to whole formulas (not correct otherwise).

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Recall: New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

р	q	Α	В
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	
F	F	F	

Given that A is true, we see that B is also true.

A®B

Recall: New Perspective

Rather than comparing **A** and **B** as columns, zooming in on just the rows where B is true:

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

 $(A \rightarrow B) \equiv T$

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Assuming A, we can prove B."

 $\therefore A \rightarrow B$

• The direct proof rule: If you have such a proof, then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.	<i>q</i>	Giv	ven	
2.	$(p \land q) \rightarrow$	r Giv	<i>r</i> en	
	3.1.	Ø	Assumption	
	3.2.	$\boldsymbol{p} \wedge \boldsymbol{q}$	Intro ^: 1, 3.1	
	3.3.	r	MP: 2, 3.2	
3.	p ightarrow r	Dir	ect Proof	

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. *p* ∧ *q*

Assumption

?? Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ **1.1.** $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption1.2. $p \rightarrow q$ \land Elim: 1.11.3. $q \rightarrow r$ \land Elim: 1.1

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

- 1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption1.2. $p \rightarrow q$ \land Elim: 1.11.3. $q \rightarrow r$ \land Elim: 1.1
 - 1.4.1. *p* Assumption

1.4.? r1.4. $p \rightarrow r$ Direct Proof 1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1.	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \land (\boldsymbol{q} \rightarrow \boldsymbol{r})$	Assumption
1.2.	p ightarrow q	∧ Elim: 1.1

- **1.3.** $q \rightarrow r$ \land Elim: **1.1**
 - 1.4.1. *p* Assumption
 - 1.4.2. *q* MP: 1.2, 1.4.1
 - 1.4.3. *r* MP: 1.3, 1.4.2
- **1.4.** $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Minimal Rules for Propositional Logic

Can get away with just these:

More Rules for Propositional Logic

More rules makes proofs easier

Example Formal Proof:

Show that $\neg p$ follows from $\neg(\neg r \lor t), \neg q \lor \neg s$, and $(p \to q) \land (r \to s)$

1. $\neg(\neg r \lor t)$	Given
2. $\neg q \lor \neg s$	Given
3. $(p \rightarrow q) \land (r \rightarrow s)$	Given
4. $r \wedge t$	Equivalent 1. (double negation and demorgans law)
5. $r \rightarrow s$	Elim And 3.
6. <i>r</i>	Elim And 4.
7. <i>s</i>	MP, 5, 6.
8. ¬¬ <i>s</i>	Equivalent 7 (double negation).
9. ¬ <i>q</i>	Elim or, 2, 8.
10. $p \rightarrow q$	Elim And, 3.
11. $\neg q \rightarrow \neg p$	Contrapositive, 10
12. ¬ <i>p</i>	MP, 9, 11.

Motivation

- Often we will work with statements of the form:
 If x > 10, then x² > 100.
 If x is even, x² is even.
- Can you translate these to propositional logic?
- No. We need a function that is true or false depending on the value of x.

Motivation

- Propositional Logic
- Lets us break down complex true or false statements into atomic parts joined by connectives.
- Predicate Logic
- Lets us analyze complex true or false statements that are functions of some underlying objects.

Predicate Logic

- <u>3 Parts</u>
- 1. Predicate
- 2. Domain of Discourse
- 3. Quantifiers

Predicate

- Definition:
- A predicate is a function that outputs true or false.
- $Cat(x) \coloneqq x$ is a cat
- $\operatorname{Even}(x) \coloneqq x$ is even
- LessThan(x, y) := x < y
- Sum $(x, y, z) \coloneqq x + y = z$
- Is Raining := It is raining outside

Analogy

- Propositions were like Boolean variables.
- boolean itIsRaining = true
- Predicates are like functions that return Boolean values.
- public boolean Even(int x) {...}

Predicate Translation: Example

- x is prime or x^2 is odd, or x = 2

- $Prime(a) \coloneqq a$ is Prime
- $Odd(a) \coloneqq a is Odd$
- Equals $(a, b) \coloneqq a = b$

 $Prime(x) \lor Odd(x^2) \lor Equals(x, 2)$

Domain of Discourse

- Definition:
- The domain of discourse for a predicate is the set of possible inputs.

- Cat(x) Possible domains include mammals, animals, cats.
- LessThan(x, y) Possible domains include numbers, integers.

Domain of Discourse: Example

- What's a possible domain of discourse for these predicates?
- 1. $Prime(x) \coloneqq x$ is prime Positive Integers, Integers, all Numbers
- 2. Equals $(x, y) \coloneqq x$ and y are the same object Integers, all Numbers, all People, all Mammals
- 3. EnrolledIn $(x, y) \coloneqq x$ is enrolled in course y Students and Courses

Quantifiers: Motivation

- We tend to use variables for two reasons:
- 1. The statement is true for every x. For every integer x, if x is even then x^2 is even.
- 2. There is some *x* for which the statement is true. There is some problem *x* that computers cannot solve.

Quantifiers

- $\forall x P(x)$
- ∀ is called the Universal Quantifier.
- Read out loud as "for all x, P of x".
- $\forall x P(x)$ means for every x in the domain, P(x) is true.
- $\exists x P(x)$
- **J** is called the Existensial Quantifier.
- Read out loud as "there exists x, P of x".
- $\exists x P(x)$ means there is some x in the domain for which P(x) is true.

Predicate Logic Summary

- <u>3 Parts</u>
- 1. Predicate Function that outputs true or false.
- 2. Domain of Discourse Possible inputs to a predicate statement.
- 3. Quantifiers A statement about when a predicate is true: \forall or \exists

English to Logic

Domain of Discourse Integers Predicate DefinitionsEven(x) := x is evenEquals(x, y) := x = yLessThan(x, y) := x < y</td>

Translate to predicate logic. Then evaluate if the statement is T or F.

- For every integer x, if x is even, then x = 2.
- $\forall x (\operatorname{Even}(x) \to \operatorname{Equals}(x, 2))$
- False, e.g. x = 4
- There are integers x and y such that x < y.
- $\exists x \exists y (\text{LessThan}(x, y))$
- True, e.g. x = 2, y = 3

Logic to English

Domain of Discourse Integers Predicate DefinitionsEven(x) := x is evenLessThan(x, y) := x < y</td>Odd(x) := x is odd

Translate to English. Then evaluate if the statement is T or F.

- $\exists x (Odd(x) \land LessThan(x, 5))$
- There is an odd integer less than 5.
- True, e.g. x = 3.
- $\forall y (\operatorname{Even}(y) \land \operatorname{Odd}(y))$
- All integers are even and odd.
- False.

Domain of Discourse_ Integers Predicate DefinitionsEven(x) := x is evenGreater(x, y) := x > yOdd(x) := x is oddPrime(x) := x is prime

Translate to English. Then evaluate if the statement is T or F.

$\exists x \operatorname{Even}(x)$	There is an even integer.	Т
$\forall x \operatorname{Odd}(x)$	All integers are odd.	F
$\forall x (\operatorname{Even}(x) \lor \operatorname{Odd}(x))$	All integers are even or odd.	Т
$\exists x (\operatorname{Even}(x) \land \operatorname{Odd}(x))$	There's an integer that's even and odd.	F
$\forall x \text{ Greater}(x+1,x)$	For all integers x , $x + 1 > x$	Т
$\exists x (\operatorname{Even}(x) \land \operatorname{Prime}(x))$	There is an integer that's even and prime.	Т

- Definition:
- **Domain restriction** is the technique of limiting our domain of discourse to a smaller set of objects.

Domain of Discourse_ Animals Predicate Definitions Cat $(x) \coloneqq x$ is a cat Blue $(x) \coloneqq x$ is blue

- All cats are blue.
- $\forall x (\operatorname{Cat}(x) \to \operatorname{Blue}(x))$

- There is a blue cat.
- $\exists x (Cat(x) \land Blue(x))$

 $\forall x (\operatorname{Cat}(x) \to \operatorname{Blue}(x))$

 $\exists x (\operatorname{Cat}(x) \to \operatorname{Blue}(x))$

There is an animal that is

not a cat or is blue

VS.

 $\exists x (Cat(x) \land Blue(x))$

 $\forall x (Cat(x) \land Blue(x))$

All animals are blue cats.

There is a blue cat.

Tip: Avoid \rightarrow under \exists in most situations

 $Cat(x) \coloneqq x$ is a cat Blue(x) := x is blue

Predicate Definitions

VS.

Animals

Domain of Discourse

∀ and vacuous truth

- $\forall x (Cat(x) \rightarrow Blue(x))$ means "all cats are blue".
- One way to check if $\forall x P(x)$ is true is to "loop" over every element of the domain and check that P(x) is true.

- Translations often sound more **natural** if we:
 - 1. Notice domain restriction patterns.
 - 2. Avoid using variables when we can.
 - 3. Drop the "for all" or "there exists" when we can.
- For example:
- $\quad \forall x (\operatorname{Cat}(x) \to \operatorname{Blue}(x))$
- X For all animals x, if x is a cat then x is blue.
- All cats are blue.

Domain of Discourse Food Predicate DefinitionsFruit(x) := x is a fruitTasty(x) := x is tastyRipe(x) := x is ripe

- Translate these sentences using a natural-sounding translation.
- $\exists x (\operatorname{Fruit}(x) \land \operatorname{Tasty}(x))$
- There is a tasty fruit. OR

Some fruits are tasty.

- $\forall x \left((\operatorname{Fruit}(x) \land \neg \operatorname{Ripe}(x)) \rightarrow \neg \operatorname{Tasty}(x) \right)$
- All fruits that aren't ripe aren't tasty.

Quantifier Scope

•
$$\exists x (P(x) \land Q(x))$$

VS.

For example

Domain of Discourse: Integers $P(x) \coloneqq x$ is odd $Q(x) \coloneqq x$ is even

Section Tomorrow

Practice with equivalences & translating

Quantifiers can be nested! There is a person that all people love. $\exists x \forall y (Love(y, x))$