 SOME FUNCTION $F(a, b, c . .$.$) WHICH$ PRODUCES THE CORRECT ANSLJER-

HANG ON.

THIS IS GOING TO BE ONE OF THOSE WEIRD, DARK-MAGIC PROOFS, ISN'T IT? I CAN TELL.

WHAT? NO, NO, ITS A PERFECTIY SENSIBLE CHAIN OF REASONING.

NOW, LET'S ASSUME THE CORRECT ANSWER WILL EVENTUALLY BE WRITTEN ON THIS BOARD AT THE COORDINATES (x, y). IF WE-

Equivalences, Formal Proofs

Lecture 2

Announcements

- Homework 1 is due this Friday
- Office hours start today!

Equivalence Rules:

For every propositions p, q, r the following hold:

- Identity

$$
\begin{aligned}
& -p \wedge \mathrm{~T} \equiv p \\
& -p \vee \mathrm{~F} \equiv p
\end{aligned}
$$

- Domination
$-p \vee \mathrm{~T} \equiv \mathrm{~T}$
$-p \wedge \mathrm{~F} \equiv \mathrm{~F}$
- Idempotent

$$
\begin{aligned}
& -p \vee p \equiv p \\
& -p \wedge p \equiv p
\end{aligned}
$$

- Commutative
$-p \vee q \equiv q \vee p$
$-p \wedge q \equiv q \wedge p$
- Associative

$$
\begin{aligned}
& -(p \vee q) \vee r \equiv p \vee(q \vee r) \\
& -(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)
\end{aligned}
$$

- Distributive

$$
\begin{aligned}
& -p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \\
& -p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)
\end{aligned}
$$

- Absorption
$-p \vee(p \wedge q) \equiv p$
$-p \wedge(p \vee q) \equiv p$
- Negation
$-p \vee \neg p \equiv \mathrm{~T}$
$-p \wedge \neg p \equiv \mathrm{~F}$
- DeMorgan's Laws
$-\neg(p \vee q) \equiv \neg p \wedge \neg q$
$-\neg(p \wedge q) \equiv \neg p \vee \neg q$
- Double Negation

$$
\neg \neg p \equiv p
$$

- Law of Implication

$$
p \rightarrow q \equiv \neg p \vee q
$$

- Contrapositive

$$
p \rightarrow q \equiv \neg q \rightarrow \neg p
$$

Logical Equivalence Examples

Ex 1: Prove $(p \wedge q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q) \equiv p \rightarrow q$

$$
\begin{aligned}
(p \wedge q) \vee(\neg p \wedge q) \vee(\neg p \wedge \neg q) & \equiv((p \vee \neg p) \wedge q) \vee(\neg p \wedge \neg q) \\
& \equiv(\mathrm{T} \wedge q) \vee(\neg p \wedge \neg q) \\
& \equiv q \vee(\neg p \wedge \neg q) \\
& \equiv(q \vee \neg p) \wedge(q \vee \neg q) \\
& \equiv(q \vee \neg p) \wedge \mathrm{T} \\
& \equiv q \vee \neg p \\
& \equiv \neg p \vee q \\
& \equiv p \rightarrow q
\end{aligned}
$$

Distributivity
Negation
Identity
Distributivity
Negation
Identity
Commutativity
L.O.I

Caveat 1: Associativity \& Commutativity

- Show that $(p \vee q) \vee(r \vee s) \equiv r \vee(q \vee s) \vee p$, following rules exactly.

$$
\begin{aligned}
(p \vee q) \vee(r \vee s) & \equiv p \vee(q \vee(r \vee s)) \\
& \equiv p \vee(q \vee(s \vee r)) \\
& \equiv p \vee((q \vee s) \vee r) \\
& \equiv((q \vee s) \vee r) \vee p \\
& \equiv(r \vee(q \vee s)) \vee p \\
& \equiv r \vee(q \vee s) \vee p
\end{aligned}
$$

Associativity
Commutativity
Associativity
Commutativity
Commutativity
Order of Operations

Caveat 1: Associativity \& Commutativity

- Show that $(p \vee q) \vee(r \vee s) \equiv r \vee(q \vee s) \vee p$.
- We will allow abbreviated associativity \& commutativity steps.
- $(p \vee q) \vee(r \vee s) \equiv r \vee(q \vee s) \vee p$

Associativity \&
Commutativity

Caveat 1: Associativity \& Commutativity

- Show that $\neg p \vee p \equiv \mathrm{~T}$.

Showing all steps:

$$
\begin{aligned}
\neg p \vee p & \equiv p \vee \neg p \quad \text { Commutativity } \\
& \equiv \mathrm{T} \quad \text { Negation }
\end{aligned}
$$

What we allow:
$\neg p \vee p \equiv \mathrm{~T} \quad$ Negation

Caveat 2: Applying a rule twice

- Expand $(p \rightarrow q) \vee(q \rightarrow r)$ using the Law of Implication.
- Showing all steps:

$$
\begin{aligned}
(p \rightarrow q) \vee(q \rightarrow r) & \equiv(\neg p \vee q) \vee(q \rightarrow r) & & \text { Law of Implication } \\
& \equiv(\neg p \vee q) \vee(\neg q \vee r) & & \text { Law of Implication }
\end{aligned}
$$

- What we allow:
$(p \rightarrow q) \vee(q \rightarrow r) \equiv(\neg p \vee q) \vee(\neg q \vee r)$
Law of Implication (x2)

Caveat 3: Applying rules to any proposition

- We can apply equivalence rules to any proposition.
- $(p \vee q \wedge r) \vee(p \vee q \wedge r) \equiv p \vee q \wedge r \quad$ Idempotency
- $\neg \neg(r \rightarrow \neg q) \equiv r \rightarrow \neg q \quad$ Double Negation
- $\neg((p \vee q) \wedge s) \equiv \neg(p \vee q) \vee \neg s \quad$ DeMorgan's Law

Ex 2: Prove $\neg p \rightarrow(q \rightarrow r) \equiv q \rightarrow(p \vee r)$

$$
\begin{aligned}
\neg p \rightarrow(q \rightarrow r) & \equiv \neg \neg p \vee(\neg q \rightarrow r) \\
& \equiv \neg \neg p \vee(\neg q \vee r) \\
& \equiv p \vee(\neg q \vee r) \\
& \equiv \neg q \vee(p \vee r) \\
& \equiv q \rightarrow(p \vee r)
\end{aligned}
$$

Law of Implication
Law of Implication
Double Negation
Assoc, Com
Law of Implication

Boolean Algebra \& Circuits

Note: We do not have time to fully cover this, so this concept will only be one question on your homework 2, and not on any of the exams except as potentially a multiple-choice problem.

Notation

- Logic is fundamental
- Computer scientists use it in programs
- Mathematicians use it in proofs
- Engineers use it in hardware
- Philosophers use it in arguments
- Consequently, everyone has their own notation

Boolean Algebra

- Another notation for logic. Preferred by some because it's compact.

Term	Propositional Logic	Boolean Algebra
or	\vee	+
and	\wedge	\cdot
not	\neg	$'$
True	T	1
False	F	0

- $\quad(p \wedge q \wedge r) \vee s \vee \neg t$ in Boolean Algebra is $p q r+s+t^{\prime}$.

Boolean Algebra: Example Translation

Translate the following into Boolean Algebra notation:

$$
\begin{gathered}
p \vee \neg(\neg q \wedge r) \\
p+\left(q^{\prime} \cdot r\right)^{\prime}
\end{gathered}
$$

Digital Circuits

- Computing with Logic
- T corresponds to 1 , or high voltage
- F corresponds to 0 , or low voltage
- Gates
- Gates take inputs and produce outputs

Digital Circuits - Gates

Digital Circuits - Example

- Write $\neg p \wedge(\neg q \wedge(r \vee s))$ as a circuit.

(β Inference Proofs

Logical Inference

- So far, we've considered:
- how to understand and express things using propositional and predicate logic
- how to compute using Boolean (propositional) logic
- how to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
- equivalence is a small part of this

New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

\mathbf{p}	\mathbf{q}	$\mathbf{A}(\mathbf{p}, \mathbf{q})$	$\mathbf{B}(\mathbf{p}, \mathbf{q})$
T	T	T	
T	F	T	
F	T	F	
F	F	F	

New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

\mathbf{p}	\mathbf{q}	$\mathbf{A}(\mathbf{p}, \mathbf{q})$	$\mathbf{B}(\mathbf{p}, \mathbf{q})$
T	T	T	T
T	F	T	T
F	T	F	
F	F	F	

Given that A is true, we see that B is also true.
$A ® B$

New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

\mathbf{p}	\mathbf{q}	$\mathbf{A}(\mathbf{p}, \mathbf{q})$	$\mathbf{B}(\mathbf{p}, \mathbf{q})$
T	T	T	T
T	F	T	T
F	T	F	$?$
F	F	F	$?$

When we zoom out, what have we proven?

New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

\mathbf{p}	\mathbf{q}	$\mathbf{A}(\mathbf{p}, \mathbf{q})$	$\mathbf{B}(\mathbf{p}, \mathbf{q})$	$\mathbf{A} \rightarrow \mathbf{B}$
T	T	T	T	T
T	F	T	T	T
F	T	F	T	T
F	F	F	F	T

When we zoom out, what have we proven?

$$
(\mathrm{A} \rightarrow \mathrm{~B}) \equiv \mathbf{T}
$$

New Perspective

Equivalences

$$
A \equiv B \text { and }(A \leftrightarrow B) \equiv T \text { are the same }
$$

Inference
$A ® B$ and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where A is true

- that is, we assume that A is true

Applications of Logical Inference

- Software Engineering
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
- Automated reasoning
- Algorithm design and analysis
- e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
- Express desired outcome as set of constraints
- Automatically apply logic inference to derive solution

Proofs

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $\frac{A ; A \rightarrow B}{\therefore B}$
- Given:
- If it is Wednesday, then you have a 311 class today.
- It is Wednesday.
- Therefore, by Modus Ponens:
- You have a 311 class today.

My First Proof!

Show that r follows from $\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q}$, and $\mathrm{q} \rightarrow \mathrm{r}$

1.	p	Given
2.	$p \rightarrow q$	Given
3.	$q \rightarrow r$	Given
4.		
5.		

Modus Ponens $\frac{A ; A \rightarrow B}{\therefore B}$

My First Proof!

Show that r follows from $\mathrm{p}, \mathrm{p} \rightarrow \mathrm{q}$, and $\mathrm{q} \rightarrow \mathrm{r}$

1.	p	Given
2.	$p \rightarrow q$	Given
3.	$q \rightarrow r$	Given
4.	q	MP: 1,2
5.	r	MP: 3,4

Modus Ponens $\frac{A ; A \rightarrow B}{\therefore B}$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$
1.

2.
3.
4.
$\neg p$

Given
Given

$$
\text { Modus Ponens } \frac{A ; A \rightarrow B}{\therefore B}
$$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1.	$p \rightarrow q$	Given
2.	$\neg q$	Given
3.	$\neg q \rightarrow \neg p$	Contrapositive: 1
4.	$\neg p$	MP: 2, 3

$$
\text { Modus Ponens } \frac{A ; A \rightarrow B}{\therefore B}
$$

Inference Rules

Example (Modus Ponens):
$A ; A \rightarrow B$
$\therefore B$

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

If I have nothing...

Example (Excluded Middle):

$$
\therefore A \vee \neg A
$$

$\mathrm{A} \vee \neg \mathrm{A}$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

$\therefore \frac{A ; B}{\therefore A \wedge B}$

$\therefore \mathrm{B}$

Proofs

Show that r follows from $p, p \rightarrow q$ and $(p \wedge q) \rightarrow r$
How To Start:
We have givens, find the ones that go together and use them. Now, treat new $\frac{\mathrm{A} ; \mathrm{A} \rightarrow \mathrm{B}}{\therefore \mathrm{B}}$ things as givens, and repeat.

$$
\frac{\mathrm{A} \wedge \mathrm{~B}}{\therefore \mathrm{~A}, \mathrm{~B}}
$$

$\frac{A ; B}{\therefore A \wedge B}$

Proofs

Show that \boldsymbol{r} follows from $\boldsymbol{p}, \boldsymbol{p} \rightarrow \boldsymbol{q}$, and $\boldsymbol{p} \wedge \boldsymbol{q} \rightarrow \boldsymbol{r}$

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$
2. $\quad q \rightarrow \neg r$
3. $\neg \boldsymbol{S} \vee \boldsymbol{q} \quad$ Given

Given
Given

First: Write down givens and goal
20. $\neg r$

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given
2.	$q \rightarrow \neg r$	Given
3.	$\neg s \vee q$	Given

Idea: Work backwards!
We want to eventually get \neg r. How?

- We can use $\boldsymbol{q} \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim \rightarrow " which is MP.

20. $\neg r$

MP: 2,

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$
2. $q \rightarrow \neg r$
3. $\neg s \vee q$

Given
Given
Given

Idea: Work backwards!
We want to eventually get $\neg \boldsymbol{r}$. How?

- Now, we have a new "hole"
- We need to prove \boldsymbol{q}...
- Notice that at this point, if we prove q, we've proven $\neg r$...

19. q
20. $\neg r$
?
MP: 2, 19

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given
2.	$q \rightarrow \neg r$	Given
3.	$\neg s \vee q$	Given
19.	q	
20.	$\neg r$	MP: 2,19

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$
2. $q \rightarrow \neg r$
3. $\neg \boldsymbol{S} \vee \boldsymbol{q} \quad$ Given
4. $\neg \neg S$
5. q
6. $\neg r$

Given
Given
$\neg \neg S$ doesn't show up in the givens but
\boldsymbol{s} does and we can use equivalences
v Elim: 3, 18
MP: 2, 19

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s \quad$ Given
2. $q \rightarrow \neg r$ Given
3. $\neg s \vee q \quad$ Given
4. s
5. $\neg \neg S$
6. q

Double Negation: 17
20. $\neg r$

V Elim: 3, 18
MP: 2, 19

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given	No holes left! We just
2.	$q \rightarrow \neg r$	Given	
3.	$\neg s \vee q$	Given	
17.	s	\wedge Elim: 1	
18.	$\neg \neg s$	Double Negation: 17	
19.	q	V Elim: 3, 18	
20.	$\neg r$	MP: 2, 19	

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given
2.	$q \rightarrow \neg r$	Given
3.	$\neg s \vee q$	Given
4.	s	\wedge Elim: 1
5.	$\neg \neg s$	Double Negation: 4
6.	q	V Elim: 3,5
7.	$\neg r$	MP: 2,6

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.
e.g. $(p \rightarrow r) \vee \boldsymbol{q} \equiv(\neg \boldsymbol{p} \vee r) \vee \boldsymbol{q}$
- Inference rules only can be applied to whole formulas (not correct otherwise).

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

$\therefore \frac{A ; B}{\therefore A \wedge B}$

Recall: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

\mathbf{p}	\mathbf{q}	\mathbf{A}	\mathbf{B}
T	T	T	T
T	F	T	T
F	T	F	
F	F	F	

Given that A is true, we see that B is also true.
$A ® B$

Recall: New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where B is true:

\mathbf{p}	\mathbf{q}	\mathbf{A}	\mathbf{B}	$\mathbf{A} \rightarrow \mathbf{B}$
T	T	T	T	T
T	F	T	T	T
F	T	F	T	T
F	F	F	F	T

When we zoom out, what have we proven?

$$
(A \rightarrow B) \equiv T
$$

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

$\therefore \frac{A ; B}{\therefore A \wedge B}$

Not like other rules

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule

$$
A \Rightarrow B
$$

- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Assuming A, we can prove B."
- The direct proof rule:

If you have such a proof, then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

 Show that $p \rightarrow r$ follows from q and $(p \wedge q) \rightarrow r$

Proofs using the direct proof rule

 Show that $p \rightarrow r$ follows from q and $(p \wedge q) \rightarrow r$| 1. | $q \quad$ | Given |
| :---: | :---: | :---: |
| 2. | $(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{r} \quad$ ¢ | Given |
| | 3.1. p | Assumption |
| | 3.2. $p \wedge q$ | q Intro \wedge : 1, 3.1 |
| | 3.3. r | MP: 2, 3.2 |
| 3. | $\boldsymbol{p} \rightarrow \boldsymbol{r} \quad$ D | Direct Proof |

Example

There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Example

$$
\text { Prove: }(p \wedge q) \rightarrow(p \vee q)
$$

1.1. $p \wedge q$

Assumption

1.9. $p \vee q$
 1. $(p \wedge q) \rightarrow(p \vee q)$

??Direct Proof

Example

$$
\text { Prove: }(p \wedge q) \rightarrow(p \vee q)
$$

1.1. $\quad p \wedge q$
1.2. p
1.3. $p \vee q$

1. $(p \wedge q) \rightarrow(p \vee q)$

Assumption

Elim \wedge : 1.1
Intro V: 1.2
Direct Proof

One General Proof Strategy

1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1 .
3. Write the proof beginning with what you figured out for 2 followed by 1 .

Example

$$
\text { Prove: } \quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)
$$

Example

$$
\text { Prove: } \quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)
$$

1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption

$$
\begin{aligned}
& \text { 1.? } \quad p \rightarrow r \\
& \text { 1. }((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r) \quad \text { Direct Proof }
\end{aligned}
$$

Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption
1.2. $p \rightarrow q \quad \wedge$ Elim: 1.1
1.3. $q \rightarrow r \wedge$ Elim: 1.1
1.? $\quad p \rightarrow r$

1. $((\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \rightarrow \boldsymbol{r})) \rightarrow(\boldsymbol{p} \rightarrow \boldsymbol{r})$ Direct Proof

Example

$$
\text { Prove: } \quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)
$$

1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption
1.2. $p \rightarrow q \quad \wedge$ Elim: 1.1
1.3. $q \rightarrow r \wedge$ Elim: 1.1
1.4.1. $p \quad$ Assumption
1.4.? $\quad r$
1.4. $p \rightarrow r \quad$ Direct Proof

1. $((\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \rightarrow \boldsymbol{r})) \rightarrow(\boldsymbol{p} \rightarrow \boldsymbol{r})$ Direct Proof

Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption
1.2. $p \rightarrow q \quad \wedge$ Elim: 1.1
1.3. $q \rightarrow r \wedge$ Elim: 1.1

	1.4 .1.	p	Assumption
1.4.2.	q	MP: 1.2, 1.4.1	
	1.4 .3.	r	MP: 1.3, 1.4.2
1.4.	$p \rightarrow r$		Direct Proof

1. $((\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \rightarrow \boldsymbol{r})) \rightarrow(\boldsymbol{p} \rightarrow \boldsymbol{r}) \quad$ Direct Proof

Minimal Rules for Propositional Logic

Can get away with just these:

$\begin{aligned} & A ; B \\ & \therefore A \wedge B\end{aligned}$

$\therefore \mathrm{B}$

Excluded
Middle
$\therefore \mathrm{A} \vee \neg \mathrm{A}$

More Rules for Propositional Logic

More rules makes proofs easier

Excluded Middle

$$
\therefore A \vee \neg A
$$

Equivalent $\frac{A \equiv B ; B}{\therefore \mathrm{~A}}$

Example Formal Proof:

Show that $\neg p$ follows from $\neg(\neg r \vee t), \neg q \vee \neg s$, and $(p \rightarrow q) \wedge(r \rightarrow s)$

1. $\neg(\neg r \vee t)$
2. $\neg q \vee \neg s$
3. $(p \rightarrow q) \wedge(r \rightarrow s)$
4. $r \wedge t$
5. $r \rightarrow s$
6. r
7. s
8. $\neg \neg s$
9. $\neg q$
10. $p \rightarrow q$
11. $\neg q \rightarrow \neg p$
12. $\neg p$

Given
Given
Given
Equivalent 1. (double negation and demorgans law)
Elim And 3.
Elim And 4.
MP, 5, 6 .
Equivalent 7 (double negation).
Elim or, 2, 8.
Elim And, 3.
Contrapositive, 10
MP, 9, 11.

