

Equivalences, Formal Proofs

CSE 311 Lecture 2

Announcements

- Homework 1 is due this Friday
- Office hours start today!

Equivalence Rules:

For every propositions p, q, r the following hold:

- Identity
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$

$$- p \land q \equiv q \land p$$

- Associative
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive

$$- p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$- p \lor (p \land q) \equiv p$$
$$- p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv \mathsf{T}$$
$$- p \land \neg p \equiv \mathsf{F}$$

DeMorgan's Laws

$$-\neg (p \lor q) \equiv \neg p \land \neg q$$
$$-\neg (p \land q) \equiv \neg p \lor \neg q$$

• Double Negation $\neg \neg p \equiv p$

- Law of Implication $p \rightarrow q \equiv \neg p \lor q$
- Contrapositive $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Ex 1: Prove $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \equiv p \rightarrow q$

 $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \equiv ((p \lor \neg p) \land q) \lor (\neg p \land \neg q)$ $\equiv (T \land q) \lor (\neg p \land \neg q)$ $\equiv q \lor (\neg p \land \neg q)$ $\equiv (q \lor \neg p) \land (q \lor \neg q)$ $\equiv (q \lor \neg p) \land T$ $\equiv q \lor \neg p$ $\equiv \neg p \lor q$ $\equiv p \rightarrow q$

Distributivity Negation Identity Distributivity Negation Identity Commutativity L.O.I

Caveat 1: Associativity & Commutativity

• Show that $(p \lor q) \lor (r \lor s) \equiv r \lor (q \lor s) \lor p$, following rules exactly.

 $(p \lor q) \lor (r \lor s) \equiv p \lor (q \lor (r \lor s))$ $\equiv p \lor (q \lor (s \lor r))$ $\equiv p \lor ((q \lor s) \lor r)$ $\equiv ((q \lor s) \lor r) \lor p$ $\equiv (r \lor (q \lor s)) \lor p$ $\equiv r \lor (q \lor s) \lor p$

Associativity Commutativity Associativity Commutativity Commutativity Order of Operations

Caveat 1: Associativity & Commutativity

- Show that $(p \lor q) \lor (r \lor s) \equiv r \lor (q \lor s) \lor p$.
- We will allow abbreviated associativity & commutativity steps.
- $(p \lor q) \lor (r \lor s) \equiv r \lor (q \lor s) \lor p$ Commutativity

Associativity &

Caveat 1: Associativity & Commutativity

• Show that $\neg p \lor p \equiv T$.

Showing all steps: $\neg p \lor p \equiv p \lor \neg p$ Commutativity $\equiv T$ Negation What we allow: $\neg p \lor p \equiv T$ Negation

Caveat 2: Applying a rule twice

- Expand $(p \rightarrow q) \lor (q \rightarrow r)$ using the Law of Implication.
- Showing all steps:

$$(p \to q) \lor (q \to r) \equiv (\neg p \lor q) \lor (q \to r)$$
$$\equiv (\neg p \lor q) \lor (\neg q \lor r)$$

Law of Implication Law of Implication

• What we allow:

 $(p \to q) \lor (q \to r) \equiv (\neg p \lor q) \lor (\neg q \lor r)$

Law of Implication (x2)

Caveat 3: Applying rules to any proposition

- We can apply equivalence rules to **any** proposition.
- $(p \lor q \land r) \lor (p \lor q \land r) \equiv p \lor q \land r$ Idempotency
- $\neg \neg (r \rightarrow \neg q) \equiv r \rightarrow \neg q$
- $\neg((p \lor q) \land s) \equiv \neg(p \lor q) \lor \neg s$

- Double Negation
- DeMorgan's Law

Ex 2: Prove $\neg p \rightarrow (q \rightarrow r) \equiv q \rightarrow (p \lor r)$

 $\neg p \rightarrow (q \rightarrow r) \equiv \neg \neg p \lor (\neg q \rightarrow r)$ $\equiv \neg \neg p \lor (\neg q \lor r)$ $\equiv p \lor (\neg q \lor r)$ $\equiv \neg q \lor (p \lor r)$ $\equiv q \rightarrow (p \lor r)$

Law of Implication Law of Implication Double Negation Assoc, Com Law of Implication

Boolean Algebra & Circuits

Note: We do not have time to fully cover this, so this concept will only be one question on your homework 2, and not on any of the exams except as potentially a multiple-choice problem.

Notation

- Logic is fundamental
 - Computer scientists use it in programs
 - Mathematicians use it in proofs
 - Engineers use it in hardware
 - Philosophers use it in arguments
- Consequently, everyone has their own notation

Boolean Algebra

- Another notation for logic. Preferred by some because it's compact.

Term	Propositional Logic	Boolean Algebra
or	V	+
and	Λ	•
not		/
True	Т	1
False	F	0

- $(p \land q \land r) \lor s \lor \neg t$ in Boolean Algebra is pqr + s + t'.

Boolean Algebra: Example Translation

 $p + (q' \cdot r)'$

Translate the following into Boolean Algebra notation: $p \lor \neg(\neg q \land r)$

Digital Circuits

- Computing with Logic
- T corresponds to 1, or high voltage
- F corresponds to 0, or low voltage
- Gates
- Gates take inputs and produce outputs

Digital Circuits – Gates

AND Gate

OR Gate

Digital Circuits – Example

- Write $\neg p \land (\neg q \land (r \lor s))$ as a circuit.

Logical Inference

- So far, we've considered:
 - how to understand and *express* things using propositional and predicate logic
 - how to *compute* using Boolean (propositional) logic
 - how to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - equivalence is a small part of this

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

р	q	A(p,q)	B(p,q)
Т	Т	Т	
Т	F	Т	
F	Т	F	
F	F	F	

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

	р	q	A(p,q)	B(p,q)
	T	Т	Т	Т
	Т	F	Т	Т
	F	Т	F	
Ī	F	F	F	

Given that A is true, we see that B is also true.

A®B

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

	р	q	A(p,q)	B(p,q)
Ī	Т	Т	Т	Т
	Т	F	Т	Т
	F	Т	F	Ś
I	F	F	F	Ś

When we zoom out, what have we proven?

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

р	q	A(p,q)	B(p,q)	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

 $(A \rightarrow B) \equiv \mathbf{T}$

Equivalences

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference

A $(\mathbb{R} B \text{ and } (A \rightarrow B) \equiv T \text{ are the same}$

Can do the inference by zooming in to the rows where A is true

- that is, we <u>assume</u> that A is true

Applications of Logical Inference

- Software Engineering
 - Express desired properties of program as set of logical constraints
 - Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

Proofs

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

• If A and $A \rightarrow B$ are both true, then B must be true

• Write this rule as
$$A : A \to B$$

 $\therefore B$

- Given:
 - If it is Wednesday, then you have a 311 class today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

My First Proof!

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	$q \rightarrow r$	Given
4.	_	
5.		

Modus Ponens
$$\frac{A ; A \rightarrow B}{\therefore B}$$

My First Proof!

Show that r follows from $p,\,p \rightarrow q,$ and $q \rightarrow r$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.	q	MP: 1, 2
5.	r	MP: 3, 4

Modus Ponens
$$A : A \to B$$

 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
2.	$\neg oldsymbol{q}$	Given
3.		
4.	$\neg oldsymbol{p}$	

Modus Ponens
$$\frac{A ; A \rightarrow B}{\therefore B}$$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
2.	eg q	Given
3.	eg q ightarrow eg p	Contrapositive: 1
4.	$\neg p$	MP: 2, 3

Modus Ponens $\frac{A ; A \rightarrow B}{\therefore B}$

Example (Modus Ponens):

 $\begin{array}{c} A ; A \rightarrow B \\ \therefore \qquad B \end{array}$

If I have A and $A \rightarrow B$ both true, Then B must be true.

∴ A ∨¬A

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Proofs

Show that r follows from p, $p \rightarrow q$ and $(p \land q) \rightarrow r$

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

 $\frac{A \land B}{\therefore A, B}$

<u>A;B</u> ∴A∧B

Proofs

Show that **r** follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

1.	p	Given
2.	p ightarrow q	Given
3.	q	MP: 1, 2
4.	$\boldsymbol{p} \wedge \boldsymbol{q}$	Intro <a>: 1, 3
5.	$p \land q \rightarrow r$	Given
6	r	MP 4 5

$$\begin{array}{c} p ; p \rightarrow q \\ p ; q \\ \hline p , q ; p \wedge q \rightarrow r \\ \hline p \wedge q ; p \wedge q \rightarrow r \\ \hline r \end{array} MP$$

1.	$p \wedge s$	Given
2.	$q ightarrow \neg r$	Given
3.	$\neg s \lor q$	Given

First: Write down givens and goal

Idea: Work backwards!

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

19. *q* 20. *¬r*

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

17.	<i>S</i>	?
18.	<i>S</i>	Double Negation: 17
19.	q	∨ Elim: 3, 18
20.	$\neg r$	MP: 2, 19

1.	$p \wedge s$	Given
2.	$q ightarrow \neg r$	Given neo
3.	$\neg s \lor q$	Given
17.	S	∧ Elim: 1
18.	¬¬ <i>S</i>	Double Negation: 17
19.	q	∨ Elim: 3, 18
20.	$\neg r$	MP: 2, 19

No holes left! We just need to clean up a bit.

1.	$p \wedge s$	Given
2.	$q ightarrow \neg r$	Given
3.	$\neg s \lor q$	Given
4.	<i>S</i>	∧ Elim: 1
5.	רר <i>S</i>	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	$\neg r$	MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g. $(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$

• Inference rules only can be applied to whole formulas (not correct otherwise).

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Recall: New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

р	q	Α	В
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	
F	F	F	

Given that A is true, we see that B is also true.

A®B

Recall: New Perspective

Rather than comparing **A** and **B** as columns, zooming in on just the rows where B is true:

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

 $(A \rightarrow B) \equiv T$

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Assuming A, we can prove B."

 $\therefore A \rightarrow B$

• The direct proof rule: If you have such a proof, then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.	<i>q</i>	Giv	ven	
2.	$(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow$	r Giv	<i>r</i> en	
	3.1.	Ø	Assumption	
	3.2.	$\boldsymbol{p} \wedge \boldsymbol{q}$	Intro ^: 1, 3.1	
	3.3.	r	MP: 2, 3.2	
3.	p ightarrow r	Dir	ect Proof	

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. *p* ∧ *q*

Assumption

?? Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ **1.1.** $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption1.2. $p \rightarrow q$ \land Elim: 1.11.3. $q \rightarrow r$ \land Elim: 1.1

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

- 1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption1.2. $p \rightarrow q$ \land Elim: 1.11.3. $q \rightarrow r$ \land Elim: 1.1
 - 1.4.1. *p* Assumption

1.4.? r1.4. $p \rightarrow r$ Direct Proof 1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1.	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \land (\boldsymbol{q} \rightarrow \boldsymbol{r})$	Assumption
1.2.	p ightarrow q	∧ Elim: 1.1
1.3.	q ightarrow r	∧ Elim: 1.1

- 1.4.1. *p* Assumption
- 1.4.2. *q* MP: 1.2, 1.4.1
- 1.4.3. *r* MP: 1.3, 1.4.2
- **1.4.** $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Minimal Rules for Propositional Logic

Can get away with just these:

More Rules for Propositional Logic

More rules makes proofs easier

Example Formal Proof:

Show that $\neg p$ follows from $\neg(\neg r \lor t), \neg q \lor \neg s$, and $(p \to q) \land (r \to s)$

1. $\neg(\neg r \lor t)$	Given
2. $\neg q \lor \neg s$	Given
3. $(p \rightarrow q) \land (r \rightarrow s)$	Given
4. $r \wedge t$	Equivalent 1. (double negation and demorgans law)
5. $r \rightarrow s$	Elim And 3.
6. <i>r</i>	Elim And 4.
7. <i>s</i>	MP, 5, 6.
8. ¬¬ <i>s</i>	Equivalent 7 (double negation).
9. ¬ <i>q</i>	Elim or, 2, 8.
10. $p \rightarrow q$	Elim And, 3.
11. $\neg q \rightarrow \neg p$	Contrapositive, 10
12. ¬ <i>p</i>	MP, 9, 11.