

Propositional Logic, Equivalences

CSE 311: Foundations of Computing I Lecture 2

Announcements

- HW1 is posted on the course website
 - Due Friday, 11:59 pm
 - Submit on Gradescope
- OH begin on Monday

Recall: Atomic Propositions

- Atomic Propositions are true or false statements that cannot be broken down any further
- Propositional variables: *p*, *q*, *r*, *s* ...

Recall: Logical Connectives

•	<u>Name</u>	<u>Logical Symbol</u>
•	Not	$\neg p$
•	And	$p \wedge q$
•	Or	$p \lor q$
•	XOR	$p\oplus q$
•	Implication	$p \rightarrow q$
•	Biconditional	$p \leftrightarrow q$

Recall: Implication

```
"If it's raining, then I have my umbrella"

p: It is raining q: I have my umbrella

p \rightarrow q
```


Equivalently:

- Whenever it is raining, I have my umbrella.
- It is raining only if I have my umbrella.
- For it to be raining, it is necessary that I have my umbrella.

Recall: Compound Proposition

- Unless I go to a café or to campus, I do not drink coffee, but also I don't go to cafés.

- What does this mean? Find the atomic propositions and translate to logic.

- p: I go to a café

$$(\neg (p \lor q) \to \neg r) \land \neg p$$

- q: I go to campus
- r: I drink coffee

Recall: Truth Table (from section)

p	q	r	$p \lor q$	$\neg(p \lor q)$	$\neg r$	$\neg (p \lor q) \rightarrow \neg r$	$\neg p$	$(\neg (p \lor q) \to \neg r) \land (\neg p)$
Т	Т	Т	Т	F	F	Т	F	F
Т	Т	F	Т	F	Т	Т	F	F
Т	F	Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т	F	F
F	Т	Т	Т	F	F	Т	Т	Т
F	Т	F	Т	F	Т	Т	Т	Т
F	F	Т	F	Т	F	F	Т	F
F	F	F	F	Т	Т	Т	Т	Т

Normal Forms

- Given any truth table, can we create a propositional logic expression that generates that truth table?

p	q	F(p,q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	F

Disjunctive Normal Form (DNF)

- ORs of ANDs
- 1. Read the true rows of the truth table
- 2. AND together all settings in a true row
- 3. OR together the true rows

p	q	F(p,q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	F

 $F(p,q) \equiv (p \land q) \lor (\neg p \land q)$

Conjunctive Normal Form (CNF)

- ANDs of ORs
- 1. Read the false rows of the truth table
- 2. OR together the negation of all settings in a false row
- 3. AND together the false rows

p	q	F(p,q)
Т	Т	Т
Т	F	F
F	Т	Т
F	F	F

$$F(p,q) \equiv (\neg p \lor q) \land (p \lor q)$$

Normal Forms

- Don't simplify CNF / DNF further
- These are standard forms everyone's CNF / DNF formulas will be the same (up to commutativity)

Normal Form Example

Write the CNF and DNF of the following truth table:

p	q	p ightarrow q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

DNF: $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$ CNF: $(\neg p \lor q)$

Logical Equivalence

- Definition:

Two propositions are **logically equivalent** if they have identical truth values.

- The notation for A and B being logically equivalent is $A \equiv B$.
- Examples:
- $p \lor q \equiv q \lor p$
- $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$

= vs. \equiv vs. \leftrightarrow

- A = B means A, B are the exact same "strings" or "references".
- E.g. $p \lor q = p \lor q$, but $p \lor q \neq q \lor p$. We hardly use = with propositions!
- $A \equiv B$ is an assertion that A, B always have the same truth value.
- E.g. $p \lor q \equiv q \lor p$.
- $A \leftrightarrow B$ is a proposition that might be true or false.
- E.g. $p \lor q \leftrightarrow p \land q$ is a false proposition.
- $A \equiv B$ has the same meaning as $(A \leftrightarrow B) \equiv T$.

Tautologies:

Terminology: A compound proposition is a...

- Tautology if it is always true
- Contradiction if it is always false
 - *Contingency* if it can be either true or false

$p \lor \neg p$

This is a tautology. It's called the "law of the excluded middle". If p is true, then $p \lor \neg p$ is true. If p is false, then $p \lor \neg p$ is true.

$\pmb{p} \oplus \pmb{p}$

This is a contradiction. It's always false no matter what truth value **p** takes on.

 $(p \rightarrow r) \land p$

This is a contingency. When p=T, r=T, $(T \rightarrow T) \land T$ is true. When p=T, r=F, $(T \rightarrow F) \land T$ is false.

Motivation

- Given two propositions, we would like to know if they are equivalent.
- E.g. one developer wrote if ((p && p) || p) {...}.
 Another developer wrote if (p) {...}.
 You want to confirm if those are the same.
- Given a complicated proposition, we would like to find a simpler proposition that it's equivalent to.

Strategy 1: Truth Tables

- Make a truth table for the two propositions and check if they are the same.
- $p \lor s. (p \land p) \lor p$

p	$p \wedge p$	$(p \land p) \lor p$
Т	Т	Т
F	F	F

Strategy 1: Truth Tables

- Truth tables **do** let us check if two propositions are equivalent.
- Truth tables **don't** give us a good way to start from a complicated proposition, and simplify it.
- What would be the runtime of this algorithm?

Strategy 2: Manipulating Expressions

- Instead, we are going to learn **logical equivalence rules** to help us simplify expressions.

- Similar to algebra, where we can apply rules to transform expression:
- $(x+2)(x+3) = x^2 + 2x + 3x + 6$ Distributivity - $x^2 + 5x + 6$ Adding like terms
- For each rule, we will understand why it's true, and practice using it.

All the rules:

For every propositions p, q, r the following hold:

- Identity
 - $p \wedge T \equiv p$
 - $p \vee F \equiv p$
- Domination
 - $p \lor T \equiv T$
 - $p \wedge F \equiv F$
- Idempotent
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
- Commutative
 - $p \lor q \equiv q \lor p$
 - $p \wedge q \equiv q \wedge p$

- Associative
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$
- Distributive

$$- p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$$

$$- p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$$

Absorption

$$- p \lor (p \land q) \equiv p$$
$$- p \land (p \lor q) \equiv p$$

Negation

$$- p \lor \neg p \equiv \mathsf{T}$$
$$- p \land \neg p \equiv \mathsf{F}$$

DeMorgan's Laws

$$-\neg (p \lor q) \equiv \neg p \land \neg q$$
$$-\neg (p \land q) \equiv \neg p \lor \neg q$$

- Double Negation $\neg \neg p \equiv p$
- Law of Implication $p \rightarrow q \equiv \neg p \lor q$
- Contrapositive $p \rightarrow q \equiv \neg q \rightarrow \neg p$

Double Negation

$$\neg \neg p \equiv p$$

- I am not not loving propositional logic.
- I am loving propositional logic.

De Morgan's Laws: Intuition

- Consider the following sentences:
- I don't like apples or mangoes.
- I don't like apples, and I don't like mangoes.

 $\neg (p \lor q)$ $\neg p \land \neg q$

- Are they logically equivalent?

Intuitively,

yes

De Morgan's Laws

$$\neg (p \lor q) \equiv \neg p \land \neg q$$
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

De Morgan's Laws

- Example: $\neg(p \lor q) \equiv \neg p \land \neg q$

p	q	$p \lor q$	$\neg(p \lor q)$	$\neg p$	$\neg q$	$\neg p \land \neg q$
Т	Т	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	Т

De Morgan's Laws

- if (!(front != null && value > front.data)) {...}
- if (front == null || value <= front.data) {...}

Law of Implication

- Implications are unusual. Can we write them using ANDs ORs & NOTs?

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Law of Implication: Intuition

- $p \to q \equiv \neg p \lor q$
- If it is raining, then I have my umbrella.
- It is not raining, or I have my umbrella.

Law of Implication

_

$$p \to q \equiv \neg p \lor q$$

p	q	$\neg p$	$p \rightarrow q$	$\neg p \lor q$
Т	Т	F	Т	Т
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

Converse & Contrapositive

- Implication: $p \rightarrow q$ If it's raining, I have my umbrella.
- Converse: $q \rightarrow p$ If I have my umbrella, it's raining.
- Contrapositive: $\neg q \rightarrow \neg p$ If I don't have my umbrella, it's not raining.

Converse & Contrapositive

- Implication: $p \rightarrow q$ Converse: $q \rightarrow p$
- Contrapositive: $\neg q \rightarrow \neg p$

- How do these relate?

p	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p$	$\neg q$	$\neg q \rightarrow \neg p$
Т	Т	Т	Т	F	F	Т
Т	F	F	Т	F	Т	F
F	T	Т	F	Т	F	Т
F	F	Т	Т	Т	Т	Т

Contrapositive

$$p \to q \equiv \neg q \to \neg p$$

Contrapositive: Intuition

- $p \to q \equiv \neg q \to \neg p$
- If an animal is a cat, then it is a mammal.
- If an animal is not a mammal, then it's not a cat.

Commutativity

 $p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$

- It is raining or it is June.
- It is June or it is raining.

Associativity

 $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $p \land (q \land r) \equiv p \land (q \land r)$

- They perform at 3:00 and 5:00, and also 8:00.
- They perform at 3:00, and also 5:00 and 8:00.

<u>WARNING</u> Only apply associativity when all connectives are AND, or all connectives are OR

Exercise

• Prove that $p \rightarrow q \equiv \neg q \rightarrow \neg p$ using the logical equivalences rules we've discussed so far.

Do not use contrapositive in the proof.

• $\neg q \rightarrow \neg p \equiv \neg \neg q \lor \neg p$ Law of Implication • $\equiv q \lor \neg p$ Double Negation • $\equiv \neg p \lor q$ Commutativity • $\equiv p \rightarrow q$ Law of Implication Distributivity: Intuition

- $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
- You go to class, and you read the notes or the textbook.
- You go to class and read the notes, or you go to class and you read the textbook.

Distributivity

 $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$

Identity

_

_

$$p \land \mathbf{T} \equiv p$$
$$p \lor \mathbf{F} \equiv p$$

p	$p \wedge T$	$p \lor F$
Т	Т	Т
F	F	F

Domination

$$p \lor T \equiv T$$
$$p \land F \equiv F$$

p	$p \lor T$	$p \wedge F$
Т	Т	F
F	Т	F

Idempotency

-

$$p \lor p \equiv p$$
$$p \land p \equiv p$$

p	$p \lor p$	$p \land p$
Т	Т	Т
F	F	F

Negation Intuition

- $p \lor \neg p \equiv T$
- $p \land \neg p \equiv F$
- It is raining or it is not raining.
- It is raining and it is not raining.

Always true Always false

Negation

_

_

$$p \lor \neg p \equiv \mathbf{T}$$
$$p \land \neg p \equiv \mathbf{F}$$

p	$p \lor \neg p$	$p \wedge \neg p$
Т	Т	F
F	Т	F

Absorption

 $p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$

- Exercise: Build the truth tables to confirm.

Absorption

p	q	$p \land q$	$p \lor (p \land q)$	$p \lor q$	$p \land (p \lor q)$
Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	Т
F	Т	F	F	Т	F
F	F	F	F	F	F

Ex 1: Prove $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \equiv p \rightarrow q$

 $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q) \equiv ((p \lor \neg p) \land q) \lor (\neg p \land \neg q)$ $\equiv (T \land q) \lor (\neg p \land \neg q)$ $\equiv q \lor (\neg p \land \neg q)$ $\equiv (q \lor \neg p) \land (q \lor \neg q)$ $\equiv (q \lor \neg p) \land T$ $\equiv q \lor \neg p$ $\equiv \neg p \lor q$ $\equiv p \rightarrow q$

Distributivity Negation Identity Distributivity Negation Identity Commutativity L.O.I

Caveat 1: Associativity & Commutativity

• Show that $(p \lor q) \lor (r \lor s) \equiv r \lor (q \lor s) \lor p$, following rules exactly.

 $(p \lor q) \lor (r \lor s) \equiv p \lor (q \lor (r \lor s))$ $\equiv p \lor (q \lor (s \lor r))$ $\equiv p \lor ((q \lor s) \lor r)$ $\equiv ((q \lor s) \lor r) \lor p$ $\equiv (r \lor (q \lor s)) \lor p$ $\equiv r \lor (q \lor s) \lor p$

Associativity Commutativity Associativity Commutativity Commutativity Order of Operations

Caveat 1: Associativity & Commutativity

- Show that $(p \lor q) \lor (r \lor s) \equiv r \lor (q \lor s) \lor p$.
- We will allow abbreviated associativity & commutativity steps.
- $(p \lor q) \lor (r \lor s) \equiv r \lor (q \lor s) \lor p$ Commutativity

Associativity &

Caveat 1: Associativity & Commutativity

• Show that $\neg p \lor p \equiv T$.

Showing all steps: $\neg p \lor p \equiv p \lor \neg p$ Commutativity $\equiv T$ Negation What we allow: $\neg p \lor p \equiv T$ Negation

Caveat 2: Applying a rule twice

- Expand $(p \rightarrow q) \lor (q \rightarrow r)$ using the Law of Implication.
- Showing all steps:

$$(p \to q) \lor (q \to r) \equiv (\neg p \lor q) \lor (q \to r)$$
$$\equiv (\neg p \lor q) \lor (\neg q \lor r)$$

Law of Implication Law of Implication

• What we allow:

 $(p \to q) \lor (q \to r) \equiv (\neg p \lor q) \lor (\neg q \lor r)$

Law of Implication (x2)

Caveat 3: Applying rules to any proposition

- We can apply equivalence rules to **any** proposition.
- $(p \lor q \land r) \lor (p \lor q \land r) \equiv p \lor q \land r$ Idempotency
- $\neg \neg (r \rightarrow \neg q) \equiv r \rightarrow \neg q$
- $\neg((p \lor q) \land s) \equiv \neg(p \lor q) \lor \neg s$

- Double Negation
- DeMorgan's Law