

Propositional Logic

CSE 311: Foundations of Computing I Lecture 1

Assignment 0 is a syllabus quiz

Course Staff

Perspective

Using Algebra to Solve Problems

- It's 1720 miles from Philadelphia to Denver. A train leaves Philly going 65 mph. Three hours later, a train leaves Denver at 40 mph. At what time do they collide?
- Let t be the time travelled by the Philly train
 - Philly train has traveled 65t miles
 - Denver train has travelled 40(t + 3) miles
 - Collide when 65t + 40(t + 3) = 1720
 - Solve for t

Course Goals

- 1. Learn to make & clearly communicate rigorous formal arguments
 - Mathematical Proofs
- 2. Understand mathematical objects that are widely used in CS - Number Theory, Set Theory, Recursively-Defined Functions
- 3. Explore and analyze models of computation
 - Regular Expressions, Context-Free Grammars

4. Develop a toolkit for approaching computational problems

- Programmer → Computer Scientist

Lectures & Sections

- Lectures
- Monday, Wednesday, Friday. Recorded.
- Sections
- TA-led sections meet on Thursdays
- Opportunity to practice and ask questions
- Materials are posted, but sections aren't recorded
- Participation is part of the course grade
- Can make-up absence from a couple of sections

Homework

- 8 written assignments
- Posted on Fridays, due the following Friday (with one exception)
 - HW 1 will release this Friday
 - For our course, we have a <u>form you can fill out</u> to request to turn in a homework late
 - We expect students to need 0-3 late days for the entire quarter
- Start Early and consider typesetting

Collaboration Policy

- Collaboration with others is **encouraged**
 - Do help other students learn
 - Do not help other students *avoid* learning
- Policy:
 - List all names of those you worked with
 - Don't take away pictures or notes from discussions
 - Write up the final solutions on your own

Exams

- This course will have a midterm and final
 - The midterm will be during class on Monday July 22nd
 - The Final Exam will be from 3:30-5:30 on Friday August 16th in a room yet to be assigned
 - More information will be released closer to each exam time
- The exams are in person. If you cannot make the in person times, reach out as soon as possible to schedule an in person make up exam

Course Tools

- <u>Course Website</u> (assignments, calendar)

Gradescope (submissions, feedback)

Ed Discussion (discussion board)

Why not use English?

English can be ambiguous or imprecise.

• Turn right here.

Does "right" mean the direction, or "right now"?

• We saw her duck.

Does "duck" mean the animal, or duck down?

• Buffalo buffalo Buffalo buffalo buffalo buffalo Buffalo buffalo.

This means "Bison from Buffalo, that bison from Buffalo bully, themselves bully bison from Buffalo"

Benefits of formal logic

- We can state sentences precisely
- We can state sentences concisely
- The meaning of our sentences is unambiguous

Propositions: building blocks of logic

- Definition:

A **proposition** is a well-formed statement that is either true or false.

- Examples:
- All cats are mammals
- All mammals are cats

True Proposition

False Proposition

Analogy Boolean (true / false) variables in Java

Are these Propositions?

- 2 + 2 = 5
- Yes. Propositions can be false.
- -x+2=5
- No. Truth value depends on the value of x.
- x + 2 = 3164, where x is my PIN number
- Yes. This is either true or false.
- Akjsdf!
- No. This is gibberish.
- Who are you?
- No. This is a question, not a true or false statement.
- There is an infinite number of primes.
- Yes. We will prove this in a few weeks!

Proposition Notation

- We'll use variables to talk about arbitrary propositions
- Propositional variables: *p*, *q*, *r*, *s* ...
- Truth Values:
 - T for true
 - F for false

Atomic and Compound Propositions

- Definitions:

An **atomic proposition** is a proposition that can't be broken down any further.

- A **compound proposition** is a proposition that can be divided into simpler propositions.

- A logical connective combines atomic propositions into compound.

Compound Proposition Example

- It is raining in Seattle and it's June.

- Atomic Propositions:
- p: It is raining in Seattle
- q: It is June

- Translation into Logic:

 $- p \wedge q$

Logical Connectives: and (Λ)

Analogy

Boolean variables *p*, *q* Java and connective &&

All Logical Connectives in this class

• <u>Name</u>	<u>Logical Symbol</u>	<u>Java Symbol</u>
• Not	$\neg p$!p
 And 	$p \land q$	p && q
• Or	$p \lor q$	$p \mid\mid q$
• XOR	$p\oplus q$	$p \land q$
 Implication 	$p \rightarrow q$	
 Biconditional 	$p \leftrightarrow q$	p == q

Not (¬)

• $\neg p$ is true when p is false, and is false otherwise

• A truth table is a table of all possible truth values of an expression

p	$\neg p$
Т	
F	

Not (¬)

• $\neg p$ is true when p is false, and is false otherwise

• A truth table is a table of all possible truth values of an expression

p	$\neg p$
Т	F
F	Т

And (Λ)

• $p \wedge q$ is true when p, q are both true, and is false otherwise

p	q	$p \land q$
Т	Т	
Т	F	
F	Т	
F	F	

And (Λ)

• $p \wedge q$ is true when p, q are both true, and is false otherwise

p	q	$p \land q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

• $p \lor q$ is true when **at least one** of p, q are true, and is false otherwise

p	q	$p \lor q$
Т	Т	
Т	F	
F	Т	
F	F	

• $p \lor q$ is true when **at least one** of p, q are true, and is false otherwise

p	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Exclusive Or / XOR (\oplus)

• $p \oplus q$ is true when **exactly one** of p, q are true, and is false otherwise

p	q	$p \oplus q$
Т	Т	
Т	F	
F	Т	
F	F	

Exclusive Or / XOR (\oplus)

• $p \oplus q$ is true when **exactly one** of p, q are true, and is false otherwise

p	q	$p \oplus q$
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

-Implication (\rightarrow)

- $p \rightarrow q$ means "if p, then q"
- E.g. "If it is raining, then I have my umbrella"
- p: It is raining $p \rightarrow q$
- *q*: I have my umbrella
- Why is this a proposition? True or False statement

- $p \rightarrow q$ means "if p_i then q''
- E.g. "If it is raining, then I have my umbrella"
- p: It is raining $p \rightarrow q$
- *q*: I have my umbrella

	It is raining	It is not raining
I have my umbrella		
l do not have my umbrella		

- $p \rightarrow q$ means "if p_i then q''
- E.g. "If it is raining, then I have my umbrella"
- p: It is raining $p \rightarrow q$
- *q*: I have my umbrella

	It is raining	It is not raining
I have my umbrella	No	No
l do not have my umbrella	Yes	No

- $p \rightarrow q$ means "if p_i then q''
- E.g. "If it is raining, then I have my umbrella"
- p: It is raining
- *q*: I have my umbrella

$$p \rightarrow q$$

PQ
$$P \rightarrow Q$$
TTTFFTFF

	It is raining	It is not raining
I have my umbrella	No	No
l do not have my umbrella	Yes	No

- $p \rightarrow q$ means "if p_i then q''
- E.g. "If it is raining, then I have my umbrella"
- p: It is raining
- *q*: I have my umbrella

$$p \rightarrow q$$

PQ
$$P \rightarrow Q$$
TTTTFFFTTFFT

	It is raining	It is not raining
I have my umbrella	No	No
l do not have my umbrella	Yes	No

Vacuous Truth

p: It is raining*q*: I have my umbrella

$$p \rightarrow q$$

Vacuous adjective

Vacuous Truth is when the premise of an implication is false

vac·u·ous ('va-kyə-wəs ◄) Synonyms of *vacuous* >

1 : emptied of or lacking content

ng content		
	It is raining	It is not raining
I have my umbrella	No	No
l do not have my umbrella	Yes	No

Translating Implications

Implication:

- p implies q
- whenever *p* is true *q* must be true
- if *p* then *q*
- *q* if *p*
- *p* is sufficient for *q*
- p only if q
- q is necessary for p

p	q	$p \rightarrow q$
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Biconditional (\leftrightarrow), if and only if (iff)

• $p \leftrightarrow q$ is true when p, q have the same truth value, in other words are equal.

p	q	$\mathbf{p} \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

Order of Operations

- () Parentheses
- ¬ Negation
- A And
- ∨ ⊕ Or, XOR
- \rightarrow Implication
- ↔ Biconditional
- Within the same order, evaluate from left to right.
- $p \lor \neg q \rightarrow r$ is the same as $(p \lor (\neg q)) \rightarrow r$.

Compound Proposition

Negation (not)	-
Conjunction (and)	٨
Disjunction (or)	V
Implication	\rightarrow
Biconditional	\leftrightarrow

"Unless I go to a café or to campus, I do not drink coffee, but also I don't

go to cafés."

Compound Proposition

Negation (not) \neg Conjunction (and) \land Disjunction (or) \lor Implication \rightarrow Biconditional \leftrightarrow

"Unless I go to a café or to campus, I do not drink coffee, but also I don't

go to cafés."

P: I got to a cafe q: I go to campus r: I drink coffee

 $(\neg (p \lor q) \to \neg r) \land (\neg p)$