CSE 311: Foundations of Computing

Topic 10: Finite State Machines

Last time: Languages - REs and CFGs

Saw two new ways of defining languages

- Regular Expressions $(0 \cup 1) * 0110(0 \cup 1) *$
- easy to understand (declarative)
- Context-free Grammars $\mathbf{S} \rightarrow \mathbf{S S} \mid$ OS1 | 1S0 | ε
- more expressive
- (\approx recursively-defined sets)

We will connect these to machines shortly.
But first, we need some new math terminology....

Alternative Set Notation

We defined Cartesian Product as

$$
A \times B::=\{x: \exists a \in A, \exists b \in B(x=(a, b))\}
$$

Alternative notation for this is

$$
A \times B::=\{(a, b): a \in A, b \in B\}
$$

"The set of all (a, b) such that $a \in A$ and $b \in B "$

Relations

Let A and B be sets,
A binary relation from A to B is a subset of $A \times B$

Let A be a set, A binary relation on A is a subset of $A \times A$

Relations You Already Know

\geq on \mathbb{N}
That is: $\{(x, y): x \geq y$ and $x, y \in \mathbb{N}\}$
< on \mathbb{R}
That is: $\{(x, y): x<y$ and $x, y \in \mathbb{R}\}$
$=$ on \sum^{*}
That is: $\left\{(x, y): x=y\right.$ and $\left.x, y \in \sum^{*}\right\}$
\subseteq on $\mathcal{P}(\mathrm{U})$ for universe U
That is: $\{(A, B): A \subseteq B$ and $A, B \in \mathcal{P}(U)\}$

More Relation Examples

$$
\begin{aligned}
& \mathbf{R}_{1}=\{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
& \mathbf{R}_{2}=\left\{(x, y): x \equiv_{5} y\right\} \\
& \mathbf{R}_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1} \text { is a prerequisite of } c_{2}\right\} \\
& \mathbf{R}_{4}=\{(\mathrm{s}, \mathrm{c}): \text { student } s \text { has taken course } c\}
\end{aligned}
$$

Properties of Relations

Let R be a relation on A .
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} :
$<$ on \mathbb{R} :
$=$ on Σ^{*} :
\subseteq on $\mathcal{P}(\mathrm{U}):$
$R_{2}=\left\{(x, y): x \bar{E}_{5} y\right\}:$
$\mathbf{R}_{3}=\left\{\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right): \mathrm{c}_{1}\right.$ is a prerequisite of $\left.\mathrm{c}_{2}\right\}$:
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

\geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
< on \mathbb{R} : Antisymmetric, Transitive
$=$ on Σ^{*} : Reflexive, Symmetric, Antisymmetric, Transitive
\subseteq on $\mathcal{P}(\mathrm{U})$: Reflexive, Antisymmetric, Transitive
$\mathbf{R}_{\mathbf{2}}=\left\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \equiv_{5} \mathrm{y}\right\}$: Reflexive, Symmetric, Transitive
$R_{3}=\left\{\left(c_{1}, c_{2}\right): c_{1}\right.$ is a prerequisite of $\left.c_{2}\right\}$: Antisymmetric
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Combining Relations

Let R be a relation from A to B.
Let S be a relation from B to C.

The composition of R and $S, R \circ S$ is the relation from A to C defined by:
$R \circ S=\{(\mathrm{a}, \mathrm{c}): \exists \mathrm{b}$ such that $(\mathrm{a}, \mathrm{b}) \in R$ and $(\mathrm{b}, \mathrm{c}) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

Examples

$(a, b) \in$ Parent iff b is a parent of a
$(a, b) \in$ Sister iff b is a sister of a

When is $(x, y) \in$ Parent \circ Sister?

When is $(x, y) \in$ Sister \circ Parent?

$$
R \circ S=\{(a, c): \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in S\}
$$

Examples

Using only the relations Parent, Child, Father, Son, Brother, Sibling, Husband and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Powers of a Relation

$$
\begin{aligned}
& R^{2}::=R \circ R \\
& \quad=\{(a, c): \exists b \text { such that }(a, b) \in R \text { and }(b, c) \in R\} \\
& R^{0} \quad::=\{(a, a): a \in A\} \quad \text { "the equality relation on } A^{\prime \prime} \\
& R^{n+1}::=R^{n} \circ R \quad \text { for } n \geq \mathbf{0} \\
&
\end{aligned} \quad \begin{aligned}
\text { e.g., } R^{1}=R^{0} \circ R=R \\
R^{2}=R^{1} \circ R=R \circ R
\end{aligned}
$$

Non-constructive Definitions

Recursively defined sets and functions describe these objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

$$
S=\{x: P(x)\}
$$

How can we define functions non-constructively?

- (useful for writing a function specification)

Functions

A function $f: A \rightarrow B$ (A as input and B as output) is a special type of relation.

A function f from A to B is a relation from A to B such that: for every $a \in A$, there is exactly one $b \in B$ with $(a, b) \in f$
I.e., for every input $a \in A$, there is one output $b \in B$. We denote this b by $f(a)$.
(When attempting to define a function this way, we sometimes say the function is "well defined" if the exactly one part holds)

Functions

A function $f: A \rightarrow B$ (A as input and B as output) is a special type of relation.

A function f from A to B is a relation from A to B such that: for every $a \in A$, there is exactly one $b \in B$ with $(a, b) \in f$

Ex: $\{((a, b), d)$: d is the largest integer dividing a and $b\}$

- gcd: $\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$
- defined without knowing how to compute it

Matrix Representation

Relation \boldsymbol{R} on $\boldsymbol{A}=\left\{a_{1}, \ldots, a_{p}\right\}$

$$
\begin{gathered}
\boldsymbol{m}_{\boldsymbol{i j}}= \begin{cases}1 & \text { if }\left(a_{i}, a_{j}\right) \in \boldsymbol{R} \\
0 & \text { if }\left(a_{i}, a_{j}\right) \notin \boldsymbol{R}\end{cases} \\
\{(1, \mathbf{1}),(1,2),(1,4),(2,1),(2,3),(3,2),(3,3),(4,2),(4,3)\} \\
\qquad \begin{array}{|l|l|l|l|l|}
\\
\hline \mathbf{1} & 1 & \mathbf{2} & \mathbf{3} & \mathbf{4} \\
\hline \mathbf{2} & 1 & 1 & 0 & 1 \\
\hline \mathbf{3} & 0 & 1 & 1 & 0 \\
\hline \mathbf{4} & 0 & 1 & 1 & 0
\end{array}
\end{gathered}
$$

Directed Graphs

$$
\begin{array}{ll}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) & \mathrm{V}-\text { vertices } \\
\mathrm{E}-\text { edges } & \text { (relation on vertices) }
\end{array}
$$

Directed Graphs

$$
\begin{array}{ll}
\mathrm{G}=(\mathrm{V}, \mathrm{E}) & \mathrm{V}-\text { vertices } \\
\mathrm{E}-\text { edges } & \text { (relation on vertices) }
\end{array}
$$

Path: $v_{0}, v_{1}, \ldots, v_{k}$ with each $\left(v_{i}, v_{i+1}\right)$ in E

Directed Graphs

$G=(V, E) \quad \begin{array}{ll}V-\text { vertices } & \\ & E-\text { edges }\end{array}$
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{0}, \ldots, v_{k}$ repeated
Cycle: $\mathbf{v}_{0}=\mathbf{v}_{\mathbf{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$G=(V, E) \quad \begin{array}{ll}V-\text { vertices } & \\ & E-\text { edges }\end{array}$
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated
Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{\mathbf{1}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Directed Graphs

$G=(V, E) \quad \begin{array}{ll}V-\text { vertices } & \\ & E-\text { edges }\end{array}$
Path: $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}$ with each $\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)$ in E
Simple Path: none of $\mathbf{v}_{\mathbf{0}}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated
Cycle: $\mathrm{v}_{0}=\mathrm{v}_{\mathrm{k}}$
Simple Cycle: $\mathbf{v}_{\mathbf{0}}=\mathbf{v}_{\mathbf{k}}$, none of $\mathbf{v}_{1}, \ldots, \mathbf{v}_{\mathbf{k}}$ repeated

Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$

Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ Compute $\boldsymbol{R} \circ \boldsymbol{S}$

Relational Composition using Digraphs

If $S=\{(2,2),(2,3),(3,1)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ Compute $\boldsymbol{R} \circ \boldsymbol{S}$

2

3

Relational Composition using Digraphs

If $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ and $R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}$ Compute $\boldsymbol{R} \circ \boldsymbol{R}$

2

3

$$
\begin{aligned}
(a, c) \in R \circ R=R^{2} & \text { iff } \exists b((a, b) \in R \wedge(b, c) \in R) \\
& \text { iff } \exists b \text { such that } \mathrm{a}, \mathrm{~b}, \mathrm{c} \text { is a path }
\end{aligned}
$$

Relational Composition using Digraphs

$$
\text { If } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\} \text { and } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}
$$

Compute $\boldsymbol{R} \circ \boldsymbol{R}$

$$
(a, c) \in R \circ R=R^{2}
$$

iff $\exists b((a, b) \in R \wedge(b, c) \in R)$
iff $\exists b$ such that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ is a path

Relational Composition using Digraphs

$$
\text { If } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\} \text { and } R=\{(\mathbf{1}, 2),(2,1),(\mathbf{1}, 3)\}
$$

Compute $\boldsymbol{R} \circ \boldsymbol{R}$

Special case: $R \circ R$ is paths of length 2.

- R is paths of length 1
- R^{0} is paths of length 0 (can't go anywhere)
- $R^{3}=R^{2} \circ R$ etc, so is R^{n} paths of length n

Paths in Relations and Graphs

Def: The length of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}. There is a path of length \boldsymbol{n} from \mathbf{a} to \mathbf{b} if and only if $(\mathbf{a}, \mathbf{b}) \in \boldsymbol{R}^{\boldsymbol{n}}$

Connectivity In Graphs

Def: Two vertices in a graph are connected iff there is a path between them.

Let \boldsymbol{R} be a relation on a set \boldsymbol{A}. The connectivity relation \boldsymbol{R}^{*} consists of the pairs (a, b) such that there is a path from a to b in \boldsymbol{R}.

$$
R^{*}=\bigcup_{k=0}^{\infty} R^{k}
$$

Note: The text uses the wrong definition of this quantity. What the text defines (ignoring $k=0$) is usually called R^{+}

How Properties of Relations show up in Graphs

Let R be a relation on A.
R is reflexive iff $(a, a) \in R$ for every $a \in A$
R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$
R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

How Properties of Relations show up in Graphs

Let R be a relation on A .
R is reflexive iff $(a, a) \in R$ for every $a \in A$

${ }^{-} \cdot$ at every node

R is symmetric iff $(a, b) \in R$ implies $(b, a) \in R$

R is antisymmetric iff $(a, b) \in R$ and $a \neq b$ implies $(b, a) \notin R$
R is transitive iff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation \boldsymbol{R} is the connectivity relation \boldsymbol{R}^{*}

n-ary Relations

Let $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots, \boldsymbol{A n}$ be sets. An \boldsymbol{n}-ary relation on these sets is a subset of $\boldsymbol{A}_{\mathbf{1}} \times \boldsymbol{A}_{\mathbf{2}} \times \cdots \times \boldsymbol{A}_{\boldsymbol{n}}$.

Relational Databases

STUDENT			
Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Back to Languages

AND NOW BACK TO OUR REGULARLY SCHEDULED

 PROGRAMWNGSelecting strings using labeled graphs as "machines"

Finite State Machines

Which strings does this machine say are OK?

Which strings does this machine say are OK?

The set of all binary strings that end in 0

Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

What language does this machine recognize?

The set of all binary strings that contain 111 or don't end in 1

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Applications of FSMs (a.k.a. Finite Automata)

- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
- Each agent runs its own FSM
- Design specifications for reactive systems
- Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

- Formal verification of systems
- Is an unsafe state reachable?
- Computer games
- FSMs implement non-player characters
- Minimization algorithms for FSMs can be extended to more general models used in
- Text prediction
- Speech recognition

Strings over $\{0,1,2\}$

M_{1} : Strings with an even number of 2's

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

FSM as abstraction of Java code

boolean sumCongruentToZero(String str) \{
int sum = 0;
for (int i = 0; i < str.length(); i++) \{
if (str.charAt(i) == '2') sum = (sum + 2) \% 3;
if (str.charAt(i) == '1')
sum = (sum + 1) \% 3;
if (str.charAt(i) == '0') sum $=($ sum +0$) \% 3 ;$
\}
return sum == 0;
\}

Strings over $\{0,1,2\}$
M_{2} : Strings where the sum of digits $\bmod 3$ is 0

Strings over $\{0,1,2\}$
M_{2} : Strings where the sum of digits $\bmod 3$ is 0

FSM as abstraction of Java code

boolean sumCongruentToZero(String str) \{

int sum = 0;

for (int $\mathbf{i}=0 ; i<s t r . l e n g t h() ; i++)$ \{
if (str.charAt(i) == '2') sum = (sum + 2) \% 3;
if (str.charAt(i) == '1') sum = (sum + 1) \% 3;
if (str.charAt(i) == '0') sum $=($ sum +0$) \% 3 ;$
\}
return sum $==\oint$ FSMs can model Java code with a finite number of fixed-size variables that makes one pass through input

FSM to Java code

int[][] TRANSITION = \{...\};
boolean sumCongruentToZero(String str) \{ int state $=0$;
for (int $\mathbf{i}=0$; $\mathbf{i}<$ str. 1 ength () ; i++) \{
int d = str.charAt(i) - '0'; state = TRANSITION[state][d]; \} return state == 0;

State Machine Design Recipe

Given a language, how do you design a state machine for it?

Need enough states to:

- Decide whether to accept or reject at the end
- Update the state on each new character

State Machine Design Recipe

M_{2} : Strings where the sum of digits mod 3 is 0

State Machine Design Recipe

M_{2} : Strings where the sum of digits $\bmod 3$ is 0

Can we get away with two states?

- One for 0 mod 3 and one for everything else

State Machine Design Recipe

M_{2} : Strings where the sum of digits mod 3 is 0

Can we get away with two states?

- One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can't update the state on each new character

State Machine Design Recipe

M_{2} : Strings where the sum of digits mod 3 is 0

Can we get away with two states?

- One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can't update the state on each new character:

- If you're in the "not $0 \bmod 3$ " state, and the next character is 1 , which state should you go to?

State Machine Design Recipe

M_{2} : Strings where the sum of digits $\bmod 3$ is 0

So, we need three states.
What information should we track?

Strings over $\{0,1,2\}$
M_{2} : Strings where the sum of digits $\bmod 3$ is 0

Strings over $\{0,1,2\}$
M_{1} : Strings with an even number of 2's

\mathbf{M}_{2} : Strings where the sum of digits $\bmod 3$ is 0

Strings over $\{0,1,2\}$ w/ even number of 2's AND mod 3 sum 0

$s_{1} t_{1}$

Strings over $\{0,1,2\}$ w/ even number of 2's AND mod 3 sum 0

Strings over $\{0,1,2\} \mathbf{w} /$ even number of 2's OR mod 3 sum 0

Strings over $\{0,1,2\}$ w/ even number of 2's XOR mod 3 sum 0

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the start

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the start

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

3 bit shift register "Remember the last three bits"

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

The set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

The beginning versus the end

Adding Output to Finite State Machines

- So far we have considered finite state machines that just accept/reject strings
- called "Deterministic Finite Automata" or DFAs
- Now we consider finite state machines with output
- These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

Vending Machine, v0.1

Basic transitions on \mathbf{N} (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

Adding output to states: N - Nickel, S - Snickers, B - Butterfinger

Vending Machine, v1.0

Adding additional "unexpected" transitions to cover all symbols for each state

Recall: Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

Recall: Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ.
- Must have a transition defined from each state for every symbol in Σ.

Old State	0	1
$\mathrm{~s}_{0}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{1}$
$\mathrm{~s}_{1}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{2}$
$\mathrm{~s}_{2}$	$\mathrm{~s}_{0}$	$\mathrm{~s}_{3}$
$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$	$\mathrm{~s}_{3}$

State Minimization

- Many FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
- Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

State Minimization Algorithm

- Put states into groups
- Try to find groups that can be collapsed into one state
- states can keep track of information that isn't necessary to determine whether to accept or reject
- Group states together until we can prove that collapsing them can change the accept/reject result
- find a specific string x such that:
starting from state A, following edges according to x ends in accept
starting from state B, following edges according to x ends in reject
- (algorithm below could be modified to show these strings)

State Minimization Algorithm

1. Put states into groups based on their outputs (whether they accept or reject)

State Minimization Algorithm

1. Put states into groups based on their outputs (whether they accept or reject)
2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group G agree on which group s leads to, split G into smaller groups based on which group the states go to on s

3. Finally, convert groups to states

State Minimization Example

present state	next state				output
S0	S0	S1	S 2	3	S3
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they accept or reject)

State Minimization Example

present $_{\text {pren }}$	next state				output
state	0	1	2	3	
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					

transition table
Put states into groups based on their outputs (or whether they accept or reject)

State Minimization Example

present state	next state				output
S0	S0	S1	S2	S3	
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Put states into groups based on their outputs (or whether they accept or reject)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
State					
transition table					

Put states into groups based on their outputs (or whether they accept or reject)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	next state				output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
State					
transition table					

Put states into groups based on their outputs (or whether they accept or reject)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	next state				output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
State					
transition table					

Put states into groups based on their outputs (or whether they accept or reject)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	next state				output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
State					
transition table					

Put states into groups based on their outputs (or whether they accept or reject)

If there is a symbol s so that not all states in a group G agree on which group s leads to, split G based on which group the states go to on s

State Minimization Example

present state	0	1	2	3	output
S0	S0	S1	S2	S3	1
S1	S0	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	S0	S1	S2	S5	1
S5	S1	S4	S0	S5	0
state					
transition table					

Finally convert groups to states:
Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

Minimized Machine

present state	next state				output
	0	1	2	3	Uuput
S0	So	S1	52	S3	1
S1	SO	S3	S1	S3	0
S2	S1	S3	S2	S0	1
S3		so	So	S3	0
		state			

A Simpler Minimization Example

\#Os is even
\#Os is odd
\#1s is even \#1s is odd

The set of all binary strings with \# of 1's \equiv \# of 0 's $(\bmod 2)$.

A Simpler Minimization Example

Split states into accept/reject groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA

length is even
length is odd

The set of all binary strings with \# of 1's 三 \# of 0's (mod 2).
$=$ The set of all binary strings with even length.

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol- can have 0 or >1
- Also can have edges labeled by empty string ε
- Definition: x is in the language recognized by an NFA if and only if some valid execution of the machine gets to an accept state

Consider This NFA

What language does this NFA accept?

Consider This NFA

What language does this NFA accept?

$$
\text { 10(10)* U } 111(0 \cup 1)^{*}
$$

NFA ε-moves

NFA ε-moves

Strings over $\{0,1,2\}$ w/even \# of 2's OR sum to 0 mod 3

NFA for set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

NFA for set of binary strings with a 1 in the $3^{\text {rd }}$ position from the end

Compare with the smallest DFA

Summary of NFAs

- Generalization of DFAs
- drop two restrictions of DFAs
- every DFA is an NFA
- Seem to be more powerful
- designing is easier than with DFAs
- Seem related to regular expressions

Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Outside observer: Is there a path labeled by x from the start state to some accepting state?

Compare with the smallest DFA

Parallel Exploration view of an NFA

Input string 0101100

Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Outside observer: Is there a path labeled by x from the start state to some accepting state?

Def: The label of path $v_{0}, v_{1}, \ldots, v_{n}$ is the concatenation of the labels of the edges
$\left(\mathrm{v}_{0}, \mathrm{v}_{1}\right),\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right), \ldots,\left(\mathrm{v}_{\mathrm{n}-1}, \mathrm{v}_{\mathrm{n}}\right)$

Example: The label of path $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{0}, \mathrm{~s}_{0}$ is 1100

Deterministic Finite Automata (DFA)

- Theorem: x is in the language recognized by an DFA if and only if x labels a path from the start state to some final state

- Path $\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}$ with $\mathrm{v}_{0}=\mathrm{s}_{0}$ and label x describes a correct simulation of the DFA on input x
- i-th step must match the i-th character of x

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
- Not required to have exactly 1 edge out of each state labeled by each symbol- can have 0 or >1
- Can also have edges labeled by empty string ε
- Theorem: x is in the language recognized by an NFA if and only if x labels some path from the start state to an accepting state

Summary of NFAs

- Generalization of DFAs
- drop two restrictions of DFAs
- every DFA is an NFA
- Seem to be more powerful
- designing is easier than with DFAs
- Seem related to regular expressions

The story so far...

NFAs and regular expressions

Theorem: For any set of strings (language) A described by a regular expression, there is an NFA that recognizes A.

Proof idea: Structural induction based on the recursive definition of regular expressions...

Regular Expressions over Σ

- Basis:
$-\varepsilon$ is a regular expression
$-\mathbf{a}$ is a regular expression for any $\mathbf{a} \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions, then so are:
$A \cup B$
AB
A*

Base Case

- Case ε :
- Case a:

Base Case

- Case ε :
\rightarrow
- Case a:

Base Case

- Case ε :

$$
\rightarrow
$$

- Case a:

Regular Expressions over Σ

- Basis:
$-\varepsilon$ is a regular expression
$-\mathbf{a}$ is a regular expression for any $\mathbf{a} \in \Sigma$
- Recursive step:
- If \mathbf{A} and \mathbf{B} are regular expressions, then so are:
$A \cup B$
AB
A*

Inductive Hypothesis

- Suppose that for some regular expressions A and B there exist NFAs N_{A} and N_{B} such that N_{A} recognizes the language given by A and N_{B} recognizes the language given by B

N_{A}

N_{B}

Inductive Step

Case $A \cup B:$

N_{B}

Inductive Step

Case $A \cup B:$

Inductive Step

Case AB:

N_{A}

N_{B}

Inductive Step

Case AB:

Inductive Step

Case A*

N_{A}

Inductive Step

Case A*

N_{A}

Build an NFA for $(01 \cup 1) * 0$

Solution

$(01 \cup 1)^{*} 0$

The story so far...

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA

- DFAs have requirements that NFAs don't have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Outside observer: Is there a path labeled by x from the start state to some final state?

Parallel Exploration view of an NFA

Input string 0101100

Conversion of NFAs to a DFAs

- Construction Idea:
- The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far
(Note: not all paths; all last states on those paths.)
- There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

Conversion of NFAs to a DFAs

New start state for DFA

- The set of all states reachable from the start state of the NFA using only edges labeled ε

NFA

DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
- starting from some state in S , then
- following one edge labeled by s, and
then following some number of edges labeled by ε
- T will be \varnothing if no edges from S labeled s exist

Conversion of NFAs to a DFAs

Final states for the DFA

- All states whose set contain some final state of the NFA

NFA

DFA

Example: NFA to DFA

NFA
DFA

Example: NFA to DFA

Example: NFA to DFA

The story so far...

Regular expressions \subseteq NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)

The story so far...

REs
 \subseteq
 CFGs

Regular expressions \equiv NFAs \equiv DFAs

Theorem: For any NFA, there is a regular expression that accepts the same language

Corollary: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know these facts

- the construction for the Theorem is included in the slides after this, but you will not be tested on it

The story so far...

The story so far...

Recall: Algorithms for Regular Languages

We have seen algorithms for

- RE to NFA
- NFA to DFA
- DFA/NFA to RE
(not tested)
- DFA minimization

Practice three of these in HW.
(May also be on the final.)

The story so far...

Languages represented by DFA, NFAs, or regular expressions are called Regular Languages

Regular expressions \equiv NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)

Example Corollary of These Results

Corollary: If \mathbf{A} is the language of a regular expression, then $\overline{\mathbf{A}}$ is the language of a regular expression*.
(This is the complement with respect to the universe of all strings over the alphabet, i.e., $\overline{\mathbf{A}}=\mathbf{\Sigma}^{*} \backslash$ A.)

The story so far...

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

Languages and Representations!

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.
Then, put them together using the union construction.

Languages and Machines!

An Interesting Infinite Regular Language

$L=\left\{x \in\{0,1\}^{*}: x\right.$ has an equal number of substrings 01 and 10$\}$.

L is infinite.
$0,00,000, \ldots$
L is regular. How could this be?
That seems to require comparing counts...

- easy for a CFG
- but seems hard for DFAs!

An Interesting Infinite Regular Language

$L=\left\{x \in\{0,1\}^{*}: x\right.$ has an equal number of substrings 01 and 10$\}$.

L is infinite.

$$
0,00,000, \ldots
$$

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!

Languages and Representations!

The language of "Binary Palindromes" is Context-Free

$$
S \rightarrow \varepsilon|0| 1|0 S 0| 1 S 1
$$

Is the language of "Binary Palindromes" Regular ?

Intuition (NOT A PROOF!):
Q: What would a DFA need to keep track of to decide?
A: It would need to keep track of the "first part" of the input in order to check the second part against it
...but there are an infinite \# of possible first parts and we only have finitely many states.

Proof idea: any machine that does not remember the entire first half will be wrong for some inputs

Useful Lemmas about DFAs

Lemma 1: If DFA \mathbf{M} takes $\mathbf{x}, \mathbf{y} \in \boldsymbol{\Sigma}^{*}$ to the same state, then for every $\mathbf{z} \in \mathbf{\Sigma}^{*}, \mathrm{M}$ accepts $\mathbf{x} \bullet \mathbf{z}$ iff it accepts $\mathbf{y} \bullet \mathbf{z}$.

M can't remember that the input was \mathbf{x}, not \mathbf{y}.

$$
\begin{aligned}
& x \cdot z=x_{1} x_{2} \ldots x_{n} z_{1} z_{2} \ldots z_{k} \\
& y \cdot z=y_{1} y_{2} \ldots y_{m} z_{1} z_{2} \ldots z_{k}
\end{aligned}
$$

Useful Lemmas about DFAs

Lemma 2: If DFA M has \mathbf{n} states and a set \mathbf{S} contains more than \mathbf{n} strings, then \mathbf{M} takes at least two strings from \mathbf{S} to the same state.

M can't take $n+1$ or more strings to different states because it doesn't have $\mathrm{n}+1$ different states.

So, some pair of strings must go to the same state.
$B=\{b i n a r y$ palindromes $\}$ can't be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.
We will show M accepts or rejects a string it shouldn't.
Consider $\mathrm{S}=\{1,01,001,0001,00001, \ldots\}=\left\{0^{n} 1: \mathrm{n} \geq 0\right\}$.
$B=\{$ binary palindromes $\}$ can't be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn't.
Consider $\mathrm{S}=\{1,01,001,0001,00001, \ldots\}=\{0 \mathrm{n} 1: \mathrm{n} \geq 0\}$.
Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^{a} 1 \in S$ and $O^{b} 1 \in S$ with $a \neq b$ that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we must take the ones we're given!
$B=\{$ binary palindromes $\}$ can't be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn't.
Consider $\mathrm{S}=\{1,01,001,0001,00001, \ldots\}=\left\{0^{n} 1: \mathrm{n} \geq 0\right\}$.
Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^{a} 1 \in S$ and $0^{b} 1 \in S$ with $\mathrm{a} \neq \mathrm{b}$ that end in the same state of M .

Now, consider appending 0^{a} to both strings.

$B=\{$ binary palindromes $\}$ can't be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn't.
Consider $\mathrm{S}=\{1,01,001,0001,00001, \ldots\}=\left\{0^{n} 1: \mathrm{n} \geq 0\right\}$.
Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^{a} 1 \in S$ and $0^{b} 1 \in S$ with $\mathrm{a} \neq \mathrm{b}$ that end in the same state of M .
Now, consider appending 0^{a} to both strings.

Since $0^{a} 1$ and $0^{b} 1$ end in the same state, $0^{a} 10^{a}$ and $0^{b} 10^{a}$ also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since $0^{a} 10^{a} \in B$, but M would accept $0^{\mathrm{b}} 10^{\mathrm{a}} \notin B$, which is an error.
$B=\{$ binary palindromes $\}$ can't be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn't.
Consider $\mathrm{S}=\{1,01,001,0001,00001, \ldots\}=\left\{0^{n} 1: \mathrm{n} \geq 0\right\}$.
Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^{a} 1 \in S$ and $0^{b} 1 \in S$ with $a \neq b$ that end in the same state of M.
Now, consider appending 0^{a} to both strings.
Since $0^{a} 1$ and $0^{b} 1$ end in the same state, $0^{a} 10^{a}$ and $0^{b} 10^{a}$ also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since $0^{a} 10^{a} \in B$, but M would accept $0^{b} 10^{a} \notin B$, which is an error.
This proves that M does not recognize B, contradicting our assumption that it does. Thus, no DFA recognizes B.

Showing that a Language L is not regular

1. "Suppose for contradiction that some DFA M recognizes L."
2. Consider an INFINITE set S of prefixes (which we intend to complete later).
3. "Since S is infinite and M has finitely many states, there must be two strings s_{a} and s_{b} in S for $\mathrm{s}_{\mathrm{a}} \neq \mathrm{s}_{\mathrm{b}}$ that end up at the same state of M."
4. Consider appending the (correct) completion t to each of the two strings.
5. "Since s_{a} and s_{b} both end up at the same state of M, and we appended the same string t, both $s_{a} t$ and $s_{b} t$ end at the same state q of M. Since $s_{a} t \in L$ and $s_{b} t \notin L$, M does not recognize L."
6. "Thus, no DFA recognizes L."

Showing that a Language L is not regular

The choice of S is the creative part of the proof

You must find an infinite set S with the property that no two strings can be taken to the same state

- i.e., for every pair of strings S there is an "accept" completion that the two strings DO NOT SHARE

Prove $A=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $\mathrm{S}=$

Prove $A=\left\{0 n 1^{n}: n \geq 0\right\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $S=\left\{0^{n}: n \geq 0\right\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^{a} and 0^{b} for some $a \neq b$ that end in the same state in M.

Prove $A=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $S=\left\{0^{n}: n \geq 0\right\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^{a} and 0^{b} for some $a \neq b$ that end in the same state in M.

Consider appending 1^{a} to both strings.

Prove $A=\left\{0^{n} 1^{n}: n \geq 0\right\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let $S=\left\{0^{n}: n \geq 0\right\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^{a} and 0^{b} for some $a \neq b$ that end in the same state in M.

Consider appending $1^{\text {a }}$ to both strings.
Note that $0^{a} 1^{\mathrm{a}} \in \mathrm{A}$, but $0^{\mathrm{b}} 1^{\mathrm{a}} \notin$ A since $\mathrm{a} \neq \mathrm{b}$. But they both end up in the same state of M, call it q. Since $0^{a} 1^{a} \in A$, state q must be an accept state but then M would incorrectly accept $0^{b} 1^{a} \notin$ A so M does not recognize A.
Thus, no DFA recognizes A.

Prove $\mathbf{P}=\{$ balanced parentheses $\}$ is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let $\mathrm{S}=$

Prove $P=\{$ balanced parentheses $\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let $S=\{(n: n \geq 0\}$. Since S is infinite and M has finitely many states, there must be two strings, ${ }^{a}$ and (${ }^{b}$ for some $a \neq b$ that end in the same state in M.

Prove $P=\{$ balanced parentheses $\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let $S=\{(n: n \geq 0\}$. Since S is infinite and M has finitely many states, there must be two strings, (${ }^{a}$ and ${ }^{b}$ for some $a \neq b$ that end in the same state in M.

Consider appending $)^{a}$ to both strings.

Prove $\mathbf{P}=\{$ balanced parentheses $\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let $S=\{(n: n \geq 0\}$. Since S is infinite and M has finitely many states, there must be two strings, (${ }^{a}$ and $\left({ }^{b}\right.$ for some $a \neq b$ that end in the same state in M.

Consider appending $)^{a}$ to both strings.
Note that ${ }^{\left({ }^{a}\right)}{ }^{\mathrm{a}} \in \mathbf{P}$, but ${ }^{(b)}{ }^{\mathrm{a}} \notin \mathrm{P}$ since $\mathrm{a} \neq \mathrm{b}$. But they both end up in the same state of M, call it q. Since $\left(^{a}\right)^{a} \in P$, state q must be an accept state but then M would incorrectly accept ($\left.{ }^{\mathrm{b}}\right)^{\mathrm{a}} \notin$ P so M does not recognize P.
Thus, no DFA recognizes P.

Showing that a Language L is not regular

1. "Suppose for contradiction that some DFA M recognizes L."
2. Consider an INFINITE set S of prefixes (which we intend to complete later). It is imperative that for every pair of strings in our set there is an "accept" completion that the two strings DO NOT SHARE.
3. "Since S is infinite and M has finitely many states, there must be two strings s_{a} and s_{b} in S for $s_{a} \neq s_{b}$ that end up at the same state of M."
4. Consider appending the (correct) completion t to each of the two strings.
5. "Since s_{a} and s_{b} both end up at the same state of M, and we appended the same string t, both $s_{a} t$ and $s_{b} t$ end at the same state q of M. Since $s_{a} t \in L$ and $s_{b} t \notin L$, M does not recognize L."
6. "Thus, no DFA recognizes L."

Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair $s_{a} \neq s_{b} \in S$, there is some string t such that one of $s_{\mathrm{a}} \mathrm{t}, \mathrm{s}_{\mathrm{b}} \mathrm{t}$ is in L but the other isn't.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely
$|S|$ states, one reached by each member of S.

Fact: This method is optimal

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair $s_{a} \neq s_{b} \in S$, there is some string t such that one of $s_{\mathrm{a}} \mathrm{t}, \mathrm{s}_{\mathrm{b}} \mathrm{t}$ is in L but the other isn't.
- If S is infinite, then L is not regular
- If S is finite, then the minimal DFA for L has precisely
$|S|$ states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

- we separated exactly those states for which some t would make one accept and another not accept

Important Notes

- It is not necessary for our strings $x z$ with $x \in L$ to allow any string in the language
- we only need to find a small "core" set of strings that must be distinguished by the machine
- It is not true that, if L is irregular and $L \subseteq U$, then U is irregular!
- we always have $L \subseteq \Sigma^{*}$ and Σ^{*} is regular!
- our argument needs different answers: $\mathrm{xz} \in \mathrm{L} \leftrightarrow \mathrm{yz} \in \mathrm{L}$ for \sum^{*}, both strings are always in the language

> Do not claim in your proof that, because $L \subseteq U, U$ is also irregular

