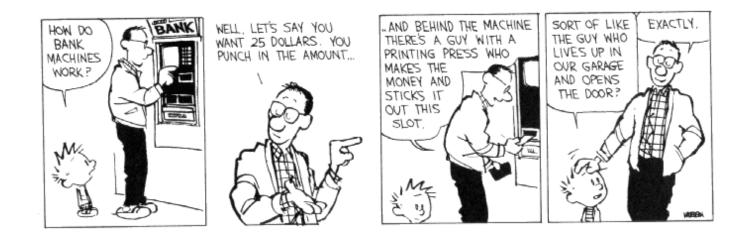
CSE 311: Foundations of Computing

Topic 10: Finite State Machines



Last time: Languages – REs and CFGs

Saw two new ways of defining languages

- Regular Expressions $(\mathbf{0} \cup \mathbf{1})^* \mathbf{0110} \ (\mathbf{0} \cup \mathbf{1})^*$
 - easy to understand (declarative)
- Context-free Grammars $S \rightarrow SS \mid 0S1 \mid 1S0 \mid \epsilon$
 - more expressive
 - (≈ recursively-defined sets)

We will connect these to machines shortly. But first, we need some new math terminology.... We defined Cartesian Product as

$$A \times B ::= \{x : \exists a \in A, \exists b \in B (x = (a, b))\}$$

Alternative notation for this is

$$A \times B ::= \{(a, b) : a \in A, b \in B\}$$

"The set of all (a, b) such that $a \in A$ and $b \in B$ "

Let A and B be sets, A **binary relation from** A **to** B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of $A \times A$

\geq on \mathbb{N}

That is: $\{(x,y) : x \ge y \text{ and } x, y \in \mathbb{N}\}$

< on $\mathbb R$

That is: $\{(x,y) : x < y \text{ and } x, y \in \mathbb{R}\}$

= on Σ^*

That is: $\{(x,y) : x = y \text{ and } x, y \in \Sigma^*\}$

\subseteq on $\mathcal{P}(U)$ for universe U

That is: {(A,B) : A \subseteq B and A, B $\in \mathcal{P}(U)$ }

$$R_1 = \{(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)\}$$

$$\mathbf{R}_2 = \{(\mathbf{x}, \mathbf{y}) : \mathbf{x} \equiv_5 \mathbf{y}\}$$

$$\mathbf{R}_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}$$

R₄ = {(s, c) : student s has taken course c }

Properties of Relations

Let R be a relation on A.

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b,a) \in R$

R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b,c) \in R$ implies $(a,c) \in R$

Which relations have which properties?

- \geq on \mathbb{N} :
- < on \mathbb{R} :
- = on Σ^* :
- \subseteq on $\mathcal{P}(\mathsf{U})$:

$$R_2 = \{(x, y) : x \equiv_5 y\}:$$

 $R_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}:$

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

Which relations have which properties?

- \geq on \mathbb{N} : Reflexive, Antisymmetric, Transitive
- < on \mathbb{R} : Antisymmetric, Transitive
- = on Σ^* : Reflexive, Symmetric, Antisymmetric, Transitive
- \subseteq on $\mathcal{P}(U)$: Reflexive, Antisymmetric, Transitive
- $R_2 = \{(x, y) : x \equiv_5 y\}$: Reflexive, Symmetric, Transitive
- $\mathbf{R}_3 = \{(c_1, c_2) : c_1 \text{ is a prerequisite of } c_2 \}$: Antisymmetric

R is **reflexive** iff $(a,a) \in R$ for every $a \in A$ R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$ R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$ R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$ Let *R* be a relation from *A* to *B*. Let *S* be a relation from *B* to *C*.

The composition of *R* and *S*, $R \circ S$ is the relation from *A* to *C* defined by:

 $R \circ S = \{(a, c) : \exists b \text{ such that } (a, b) \in R \text{ and } (b, c) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

$(a,b) \in Parent iff b is a parent of a$ $(a,b) \in Sister iff b is a sister of a$

When is $(x,y) \in Parent \circ Sister?$

When is $(x,y) \in Sister \circ Parent?$

 $R \circ S = \{(a, c) : \exists b \text{ such that } (a,b) \in R \text{ and } (b,c) \in S\}$

Using only the relations Parent, Child, Father, Son, Brother, Sibling, Husband and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

$$R^2 ::= R \circ R$$

= {(a, c) : \exists b such that (a, b) \in R and (b, c) \in R }

$$egin{array}{ll} R^0 & arproducutering = \{(a,a): a\in A\} & ext{``the equality relation on }A'' \ R^{n+1} & arproducutering = R^n\circ R & ext{for }n\geq 0 \end{array}$$

e.g.,
$$R^1 = R^0 \circ R = R$$

 $R^2 = R^1 \circ R = R \circ R$

Recursively defined sets and functions describe these objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

$$S = {x : P(x)}$$

How can we define functions non-constructively?

– (useful for writing a function specification)

A function $f : A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

I.e., for every input $a \in A$, there is one output $b \in B$. We denote this b by f(a).

(When attempting to define a function this way, we sometimes say the function is "well defined" if the *exactly one* part holds)

A function $f : A \rightarrow B$ (A as input and B as output) is a special type of relation.

A **function** f **from** A **to** B is a relation from A to B such that: for every $a \in A$, there is *exactly one* $b \in B$ with $(a, b) \in f$

Ex: {((a, b), d) : d is the largest integer dividing a and b}

- gcd : $\mathbb{N} \times \mathbb{N} \to \mathbb{N}$
- defined without knowing how to compute it

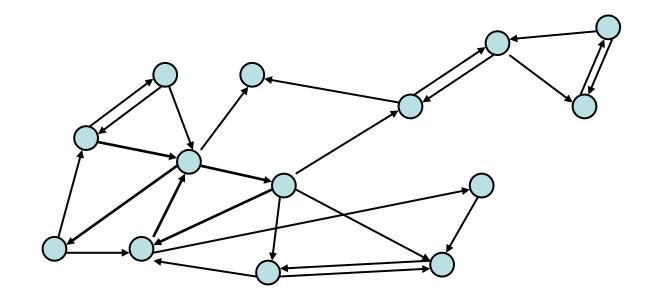
Relation
$$\boldsymbol{R}$$
 on $\boldsymbol{A} = \{a_1, \dots, a_p\}$

$$\boldsymbol{m}_{ij} = \begin{cases} 1 & \text{if } (a_i, a_j) \in \boldsymbol{R} \\ 0 & \text{if } (a_i, a_j) \notin \boldsymbol{R} \end{cases}$$

 $\{\,(1,\,1),\,(1,\,2),\,\,(1,\,4),\,\,(2,\,1),\,\,(2,\,3),\,(3,\,2),\,(3,\,3),\,(4,\,2),\,(4,\,3)\,\}$

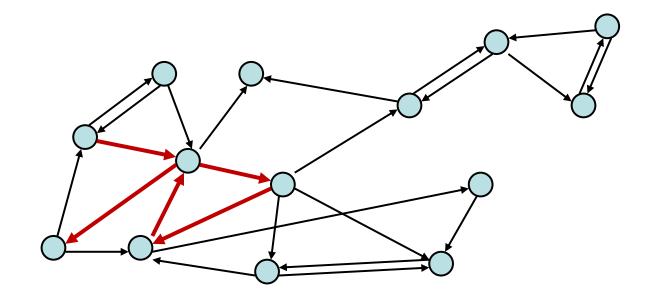
	1	2	3	4
1	1	1	0	1
2	1	0	1	0
3	0	1	1	0
4	0	1	1	0

G = (V, E) V - vertices E - edges (relation on vertices)



G = (V, E) V - vertices E - edges (relation on vertices)

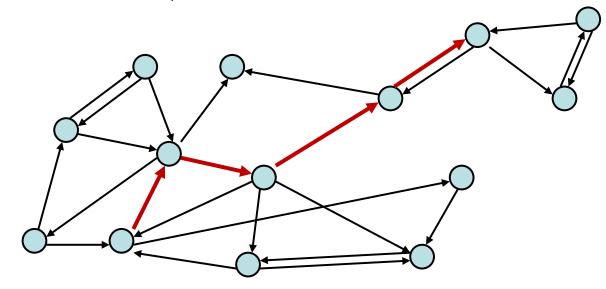
Path: $v_0, v_1, ..., v_k$ with each (v_i, v_{i+1}) in E



G = (V, E) V - vertices E - edges (relation on vertices)

Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E

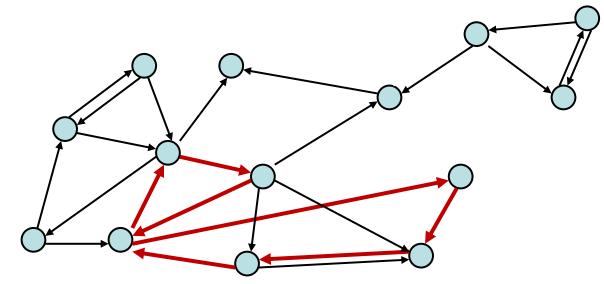
Simple Path: none of v_0 , ..., v_k repeated Cycle: $v_0 = v_k$ Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated



G = (V, E) V - vertices E - edges (relation on vertices)

Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E

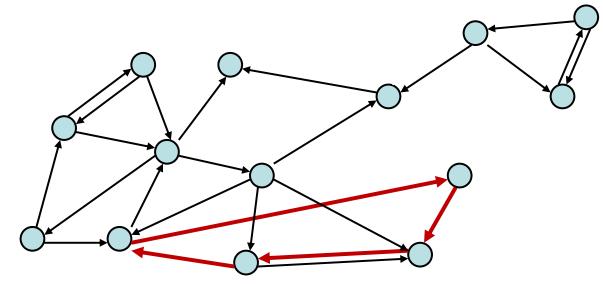
Simple Path: none of v_0 , ..., v_k repeated Cycle: $v_0 = v_k$ Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated



G = (V, E) V - vertices E - edges (relation on vertices)

Path: v_0 , v_1 , ..., v_k with each (v_i , v_{i+1}) in E

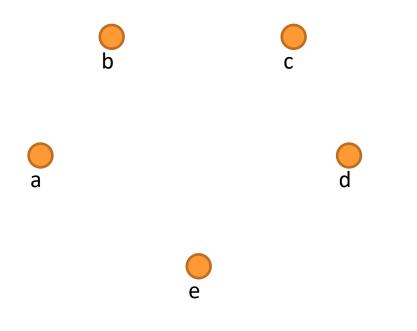
Simple Path: none of v_0 , ..., v_k repeated Cycle: $v_0 = v_k$ Simple Cycle: $v_0 = v_k$, none of v_1 , ..., v_k repeated



Representation of Relations

Directed Graph Representation (Digraph)

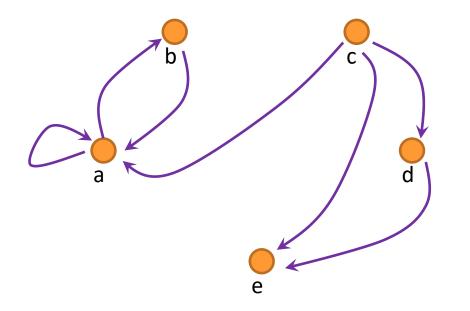
{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



Representation of Relations

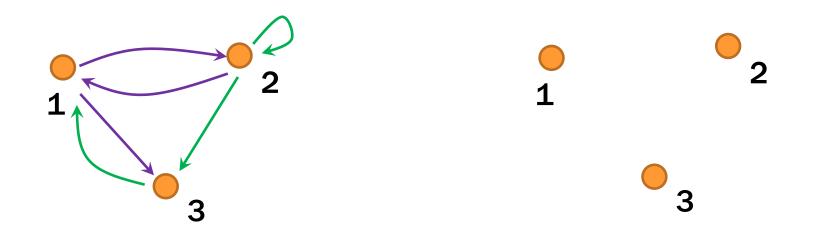
Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }



If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$

If $S = \{(2, 2), (2, 3), (3, 1)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ S$



If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$

 $(a,c) \in R \circ R = R^2$ iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b$ such that a, b, c is a path

If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$

 $(a,c) \in R \circ R = R^2$ iff $\exists b \ ((a,b) \in R \land (b,c) \in R)$ iff $\exists b$ such that a, b, c is a path

If $R = \{(1, 2), (2, 1), (1, 3)\}$ and $R = \{(1, 2), (2, 1), (1, 3)\}$ Compute $R \circ R$

Special case: *R* • *R* is paths of length 2.

- *R* is paths of length 1
- *R*⁰ is paths of length 0 (can't go anywhere)
- $R^3 = R^2 \circ R$ etc, so is R^n paths of length n

Def: The **length** of a path in a graph is the number of edges in it (counting repetitions if edge used > once).

Let R be a relation on a set A. There is a path of length n from a to b if and only if $(a,b) \in R^n$

Def: Two vertices in a graph are **connected** iff there is a path between them.

Let **R** be a relation on a set **A**. The **connectivity** relation \mathbf{R}^* consists of the pairs (a, b) such that there is a path from a to b in **R**.

$$R^* = \bigcup_{k=0}^{\infty} R^k$$

Note: The text uses the wrong definition of this quantity. What the text defines (ignoring k=0) is usually called R⁺ How Properties of Relations show up in Graphs

Let R be a relation on A.

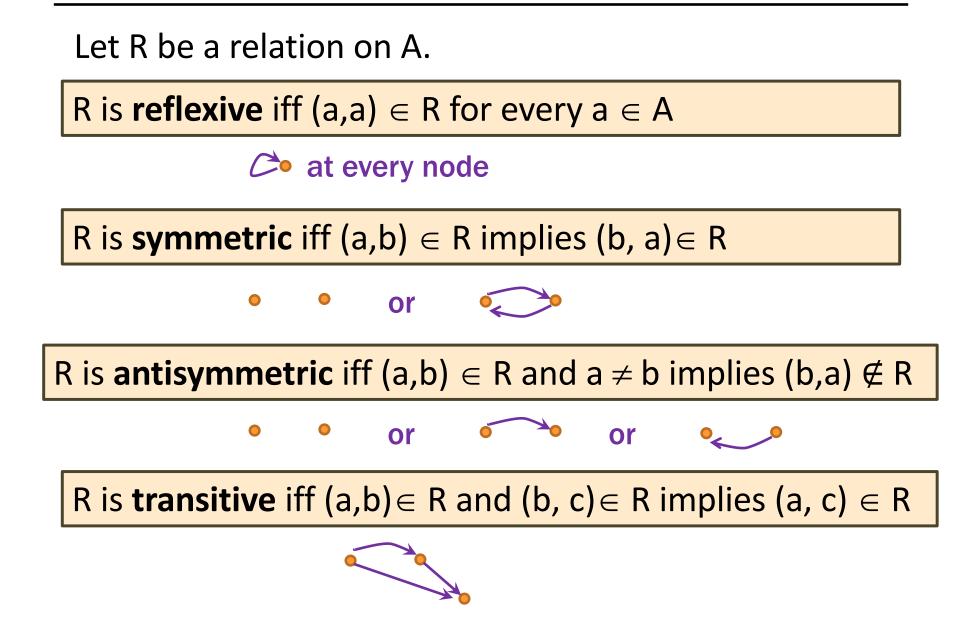
R is **reflexive** iff $(a,a) \in R$ for every $a \in A$

R is **symmetric** iff $(a,b) \in R$ implies $(b, a) \in R$

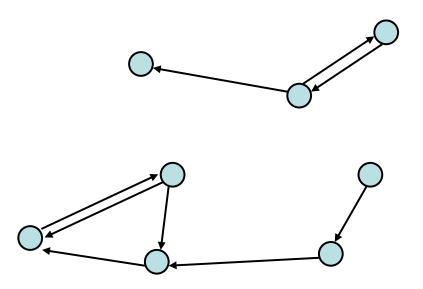
R is **antisymmetric** iff $(a,b) \in R$ and $a \neq b$ implies $(b,a) \notin R$

R is **transitive** iff $(a,b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

How Properties of Relations show up in Graphs

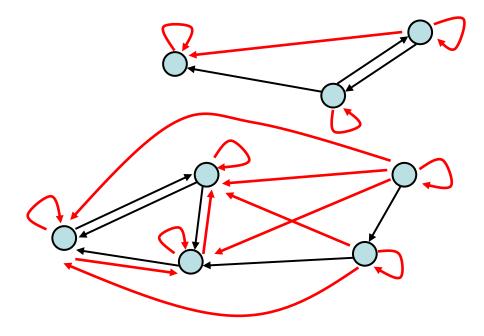


Transitive-Reflexive Closure



Add the **minimum possible** number of edges to make the relation transitive and reflexive.

Transitive-Reflexive Closure



Relation with the **minimum possible** number of **extra edges** to make the relation both transitive and reflexive.

The **transitive-reflexive closure** of a relation R is the connectivity relation R^*

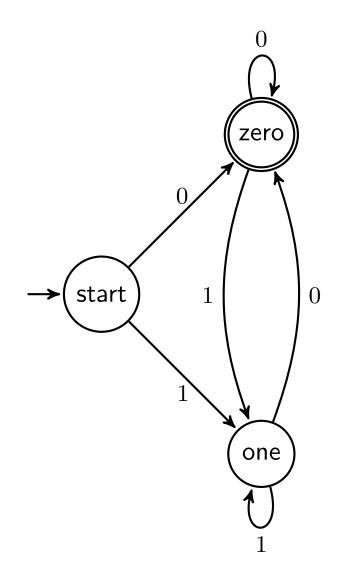
Let $A_1, A_2, ..., An$ be sets. An *n*-ary relation on these sets is a subset of $A_1 \times A_2 \times \cdots \times A_n$.

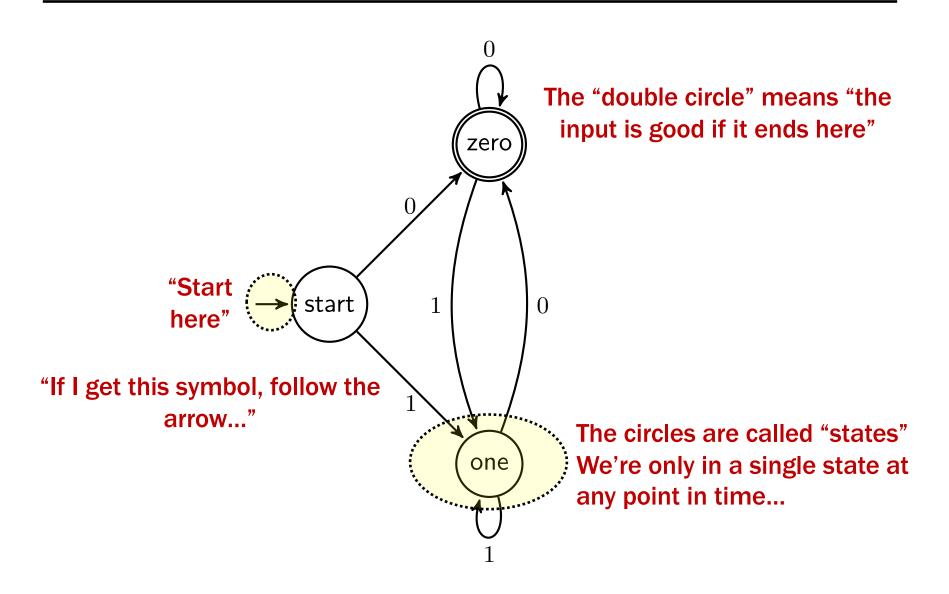
Relational Databases

STUDENT

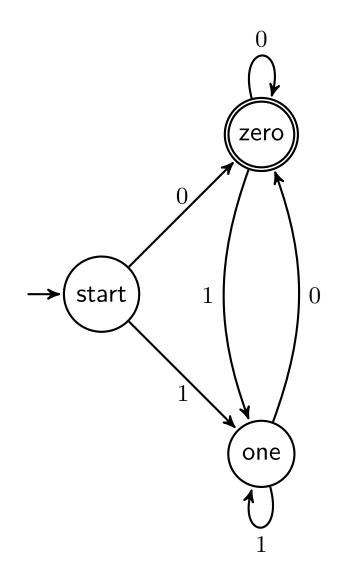
Student_Name	ID_Number	Office	GPA
Knuth	328012098	022	4.00
Von Neuman	481080220	555	3.78
Russell	238082388	022	3.85
Einstein	238001920	022	2.11
Newton	1727017	333	3.61
Karp	348882811	022	3.98
Bernoulli	2921938	022	3.21

Selecting strings using labeled graphs as "machines"

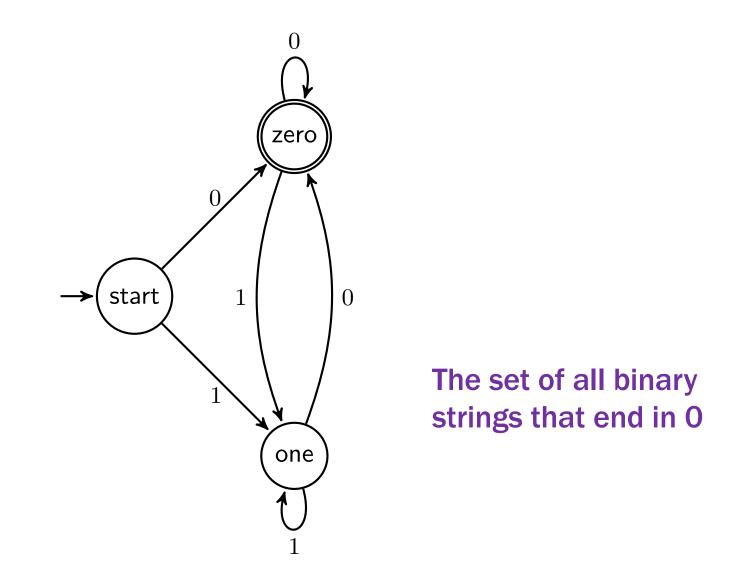




Which strings does this machine say are OK?



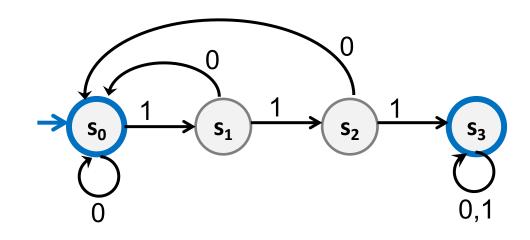
Which strings does this machine say are OK?



Finite State Machines

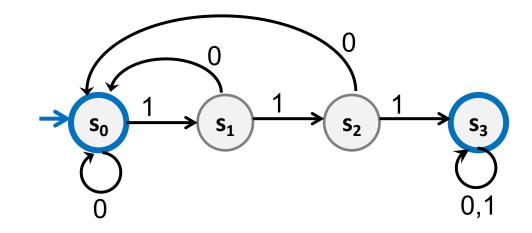
- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

Old State	0	1
s ₀	s ₀	s ₁
S ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



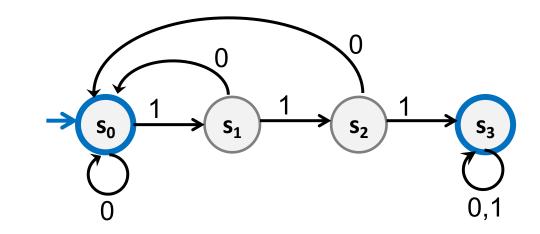
- Each machine designed for strings over some fixed alphabet Σ .
- Must have a transition defined from each state for every symbol in Σ .

Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	s ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



What language does this machine recognize?

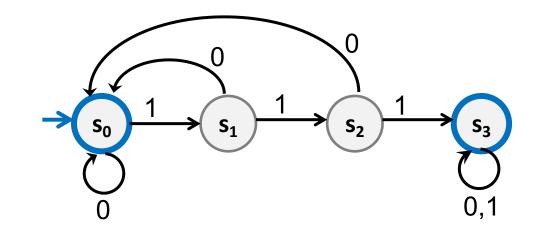
Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	s ₂
s ₂	s ₀	S ₃
S ₃	S ₃	S ₃



What language does this machine recognize?

The set of all binary strings that contain **111** or don't end in **1**

Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	s ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



Applications of FSMs (a.k.a. Finite Automata)

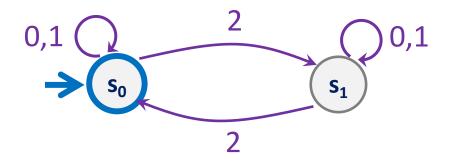
- Implementation of regular expression matching in programs like grep
- Control structures for sequential logic in digital circuits
- Algorithms for communication and cachecoherence protocols
 - Each agent runs its own FSM
- Design specifications for reactive systems
 - Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

- Formal verification of systems
 - Is an unsafe state reachable?
- Computer games
 - FSMs implement non-player characters
- Minimization algorithms for FSMs can be extended to more general models used in
 - Text prediction
 - Speech recognition

M₁: Strings with an even number of 2's

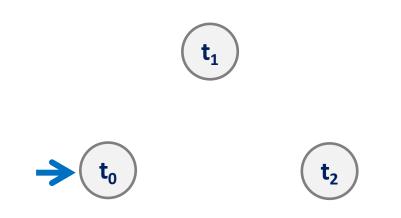
M₁: Strings with an even number of 2's



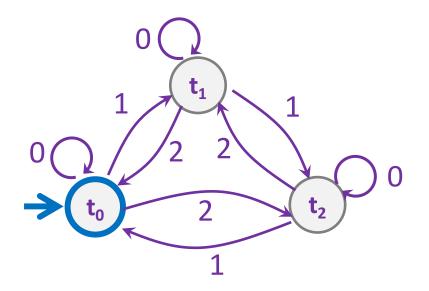
```
boolean sumCongruentToZero(String str) {
   int sum = 0;
   for (int i = 0; i < str.length(); i++) {
      if (str.charAt(i) == '2')
         sum = (sum + 2) \% 3;
      if (str.charAt(i) == '1')
         sum = (sum + 1) \% 3;
      if (str.charAt(i) == '0')
         sum = (sum + 0) \% 3;
   }
   return sum == 0;
```

}

M₂: Strings where the sum of digits mod 3 is 0



M₂: Strings where the sum of digits mod 3 is 0



```
boolean sumCongruentToZero(String str) {
   int sum = 0;
   for (int i = 0; i < str.length(); i++) {
      if (str.charAt(i) == '2')
          sum = (sum + 2) \% 3:
      if (str.charAt(i) == '1')
          sum = (sum + 1) \% 3;
      if (str.charAt(i) == '0')
          sum = (sum + 0) \% 3;
   }
                      FSMs can model Java code with
   return sum ==
                    a finite number of fixed-size variables
}
                     that makes one pass through input
```

```
int[][] TRANSITION = {...};
```

```
boolean sumCongruentToZero(String str) {
    int state = 0;
    for (int i = 0; i < str.length(); i++) {
        int d = str.charAt(i) - '0';
        state = TRANSITION[state][d];
    }
    return state == 0;
}</pre>
```

Given a language, how do you design a state machine for it?

Need enough states to:

- Decide whether to accept or reject at the end
- Update the state on each new character

Can we get away with two states?

• One for 0 mod 3 and one for everything else

Can we get away with two states?

• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can't update the state on each new character

Can we get away with two states?

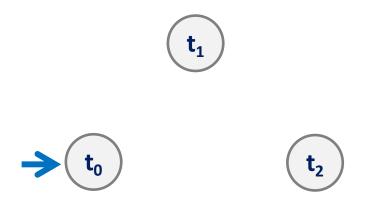
• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

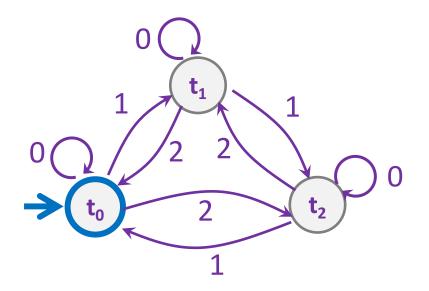
But can't update the state on each new character:

• If you're in the "not 0 mod 3" state, and the next character is 1, which state should you go to?

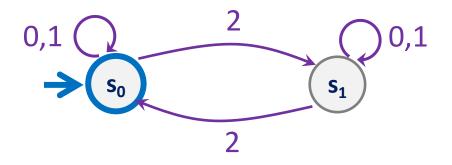
So, we need three states. What information should we track?



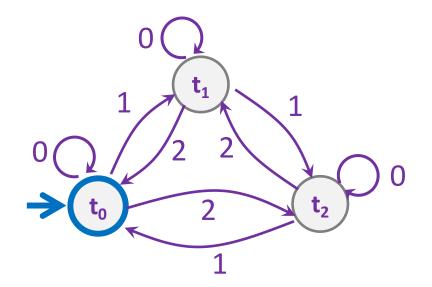
M₂: Strings where the sum of digits mod 3 is 0

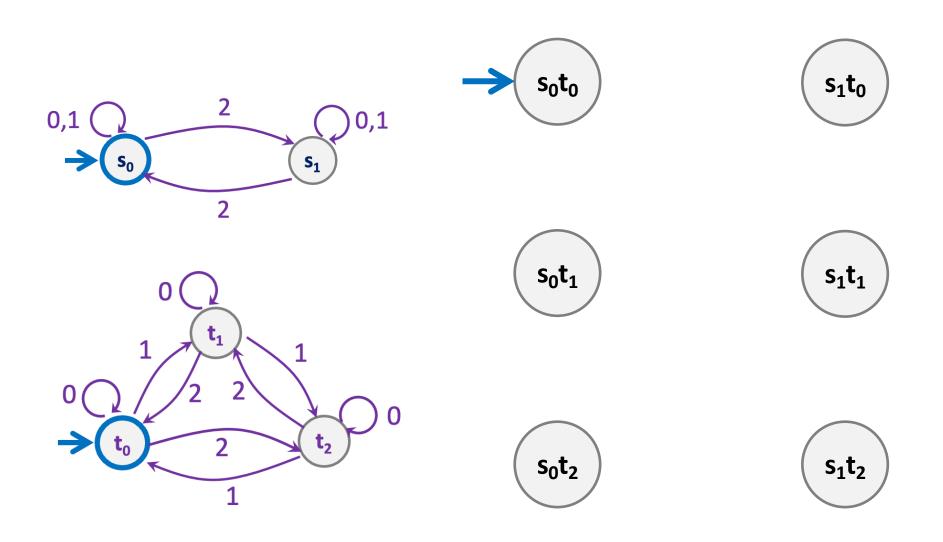


M₁: Strings with an even number of 2's

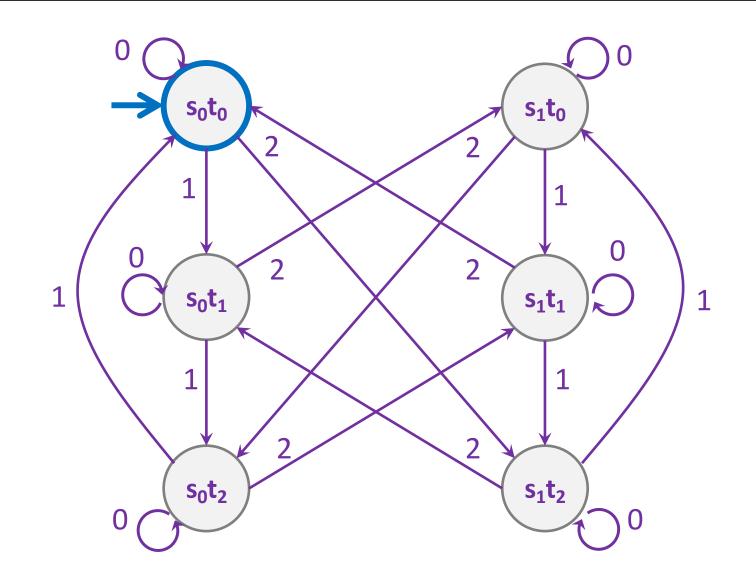


M₂: Strings where the sum of digits mod 3 is 0

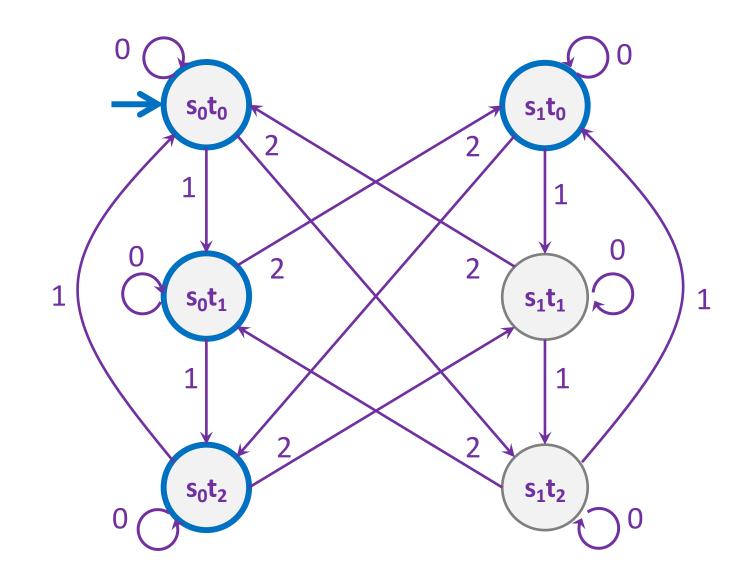




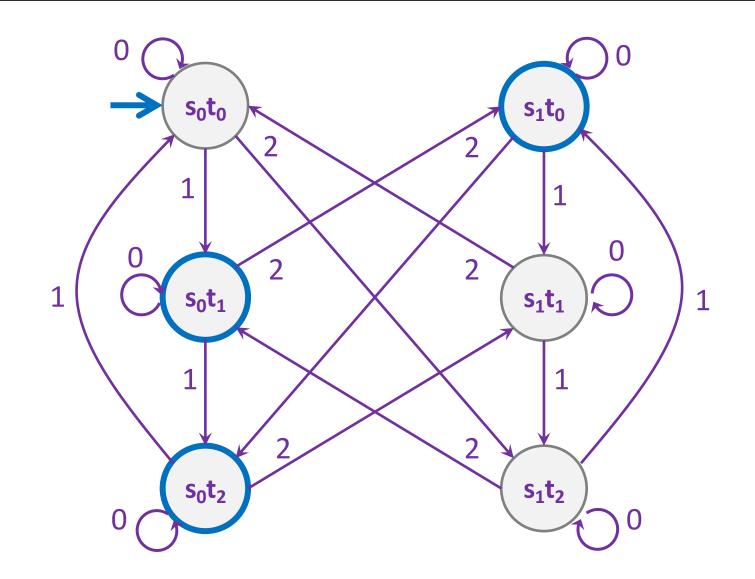
Strings over {0,1,2} w/ even number of 2's AND mod 3 sum 0

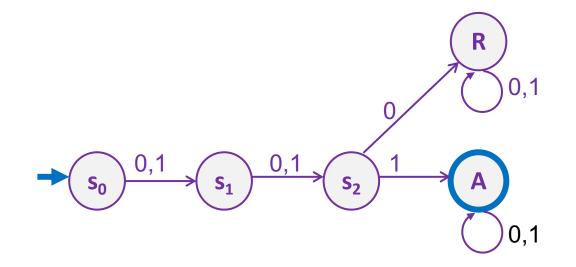


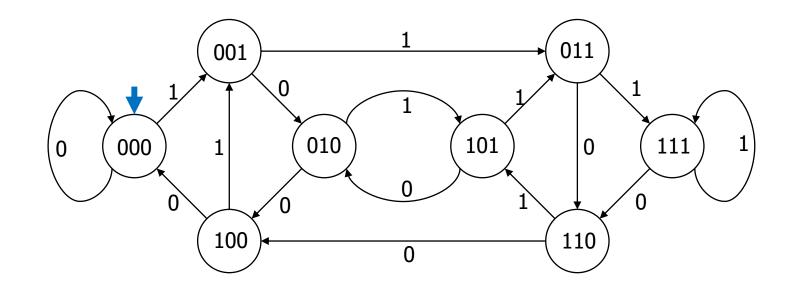
Strings over {0,1,2} w/ even number of 2's OR mod 3 sum 0



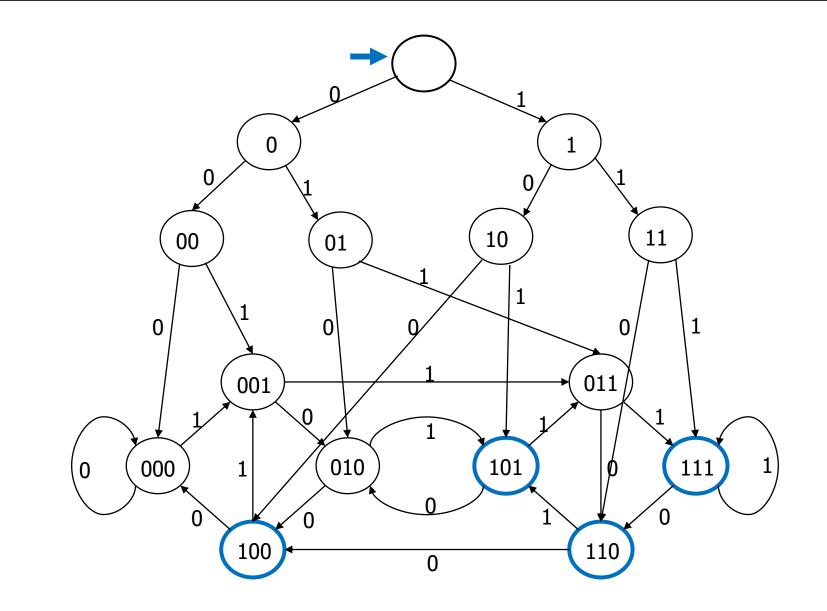
Strings over {0,1,2} w/ even number of 2's XOR mod 3 sum 0



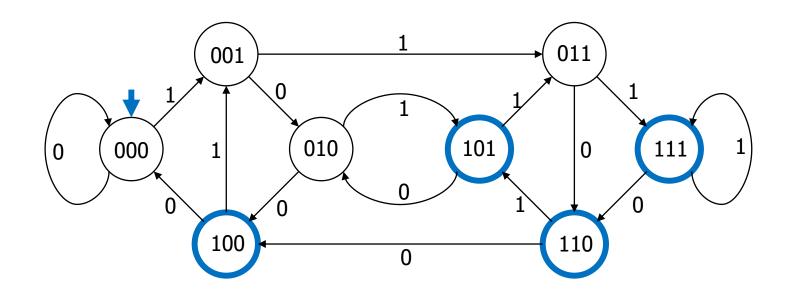




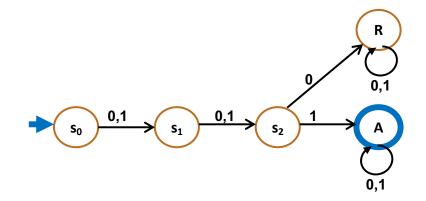
The set of binary strings with a 1 in the 3rd position from the end

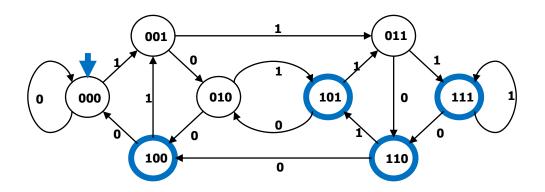


The set of binary strings with a 1 in the 3rd position from the end



The beginning versus the end

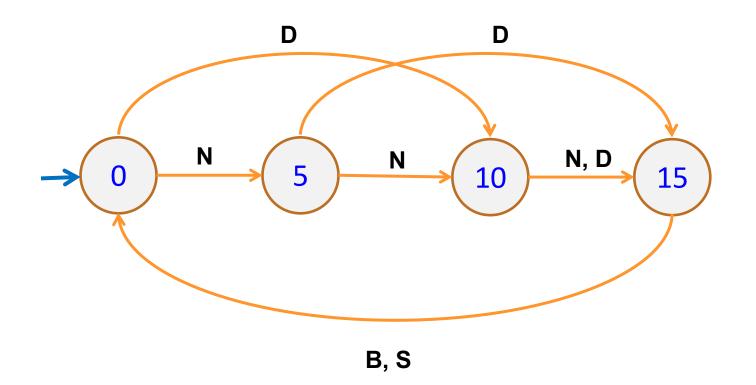




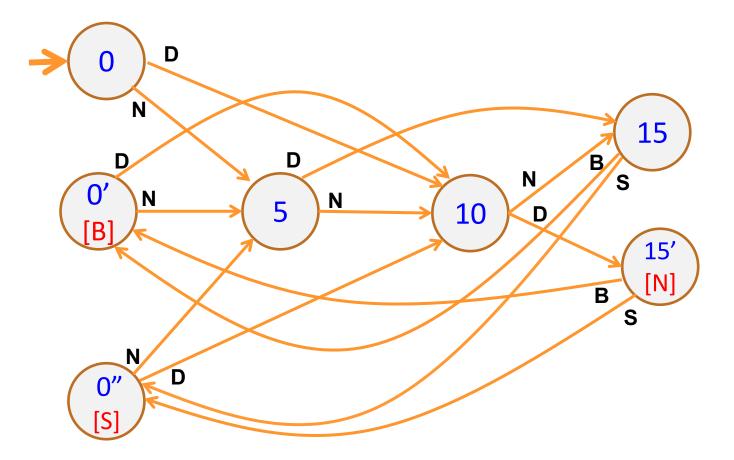
Adding Output to Finite State Machines

- So far we have considered finite state machines that just accept/reject strings
 - called "Deterministic Finite Automata" or DFAs
- Now we consider finite state machines with output
 - These are the kinds used as controllers

Enter 15 cents in dimes or nickels Press S or B for a candy bar

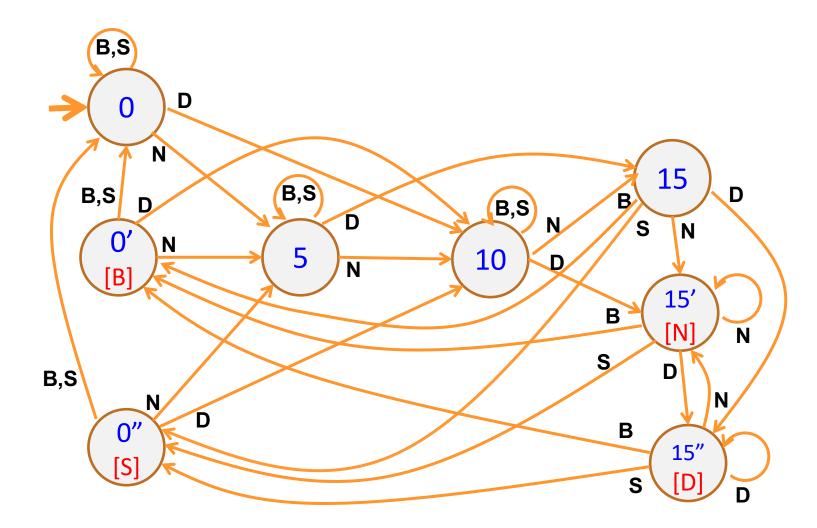


Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)



Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

Vending Machine, v1.0

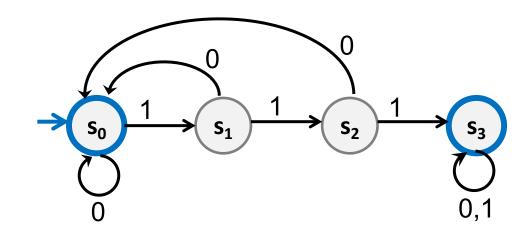


Adding additional "unexpected" transitions to cover all symbols for each state

Recall: Finite State Machines

- States
- Transitions on input symbols
- Start state and final states
- The "language recognized" by the machine is the set of strings that reach a final state from the start

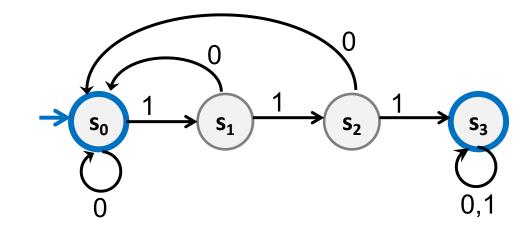
Old State	0	1
s ₀	s ₀	S_1
S ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



Recall: Finite State Machines

- Each machine designed for strings over some fixed alphabet Σ .
- Must have a transition defined from each state for every symbol in Σ .

Old State	0	1
s ₀	s ₀	s ₁
S ₁	s ₀	S ₂
S ₂	s ₀	S ₃
S ₃	S ₃	S ₃



- Many FSMs (DFAs) for the same problem
- Take a given FSM and try to reduce its state set by combining states
 - Algorithm will always produce the unique minimal equivalent machine (up to renaming of states) but we won't prove this

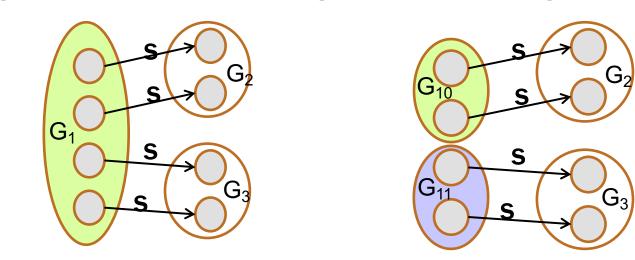
State Minimization Algorithm

- Put states into groups
- Try to find groups that can be collapsed into one state
 - states can keep track of information that isn't necessary to determine whether to accept or reject
- Group states together until we can prove that collapsing them can change the accept/reject result
 - find a specific string x such that:
 - starting from state A, following edges according to x ends in accept starting from state B, following edges according to x ends in reject
 - (algorithm below could be modified to show these strings)

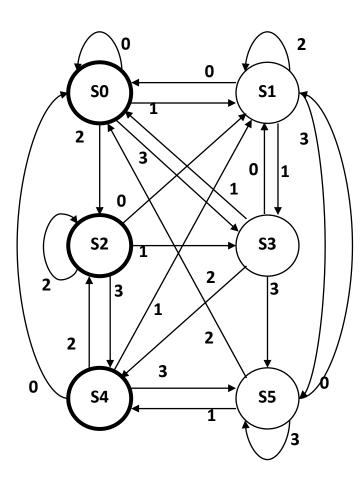
1. Put states into groups based on their outputs (whether they accept or reject)

State Minimization Algorithm

- **1.** Put states into groups based on their outputs (whether they accept or reject)
- 2. Repeat the following until no change happens
 - a. If there is a symbol s so that not all states in a group
 G agree on which group s leads to, split G into smaller
 groups based on which group the states go to on s



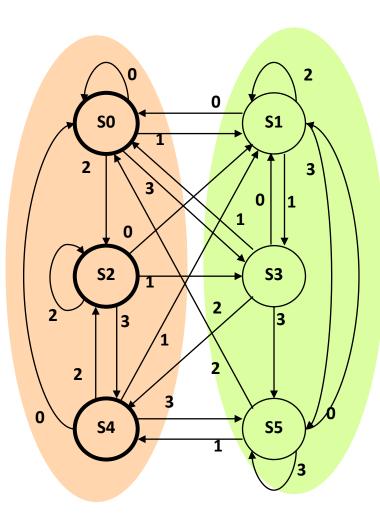
3. Finally, convert groups to states



present		next	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

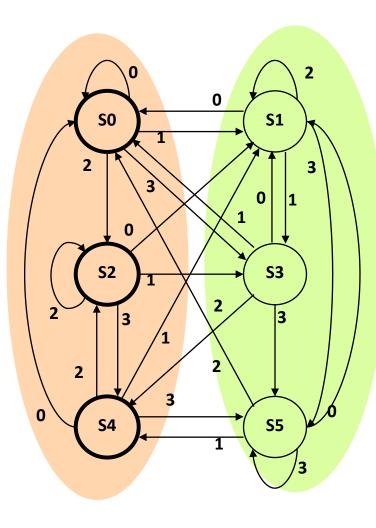
Put states into groups based on their outputs (or whether they accept or reject)



present state	0	next 1	output		
<u> </u>	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

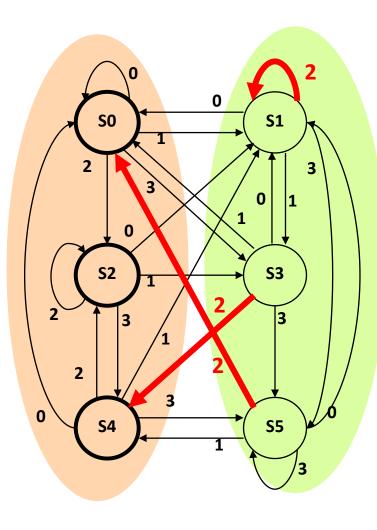
Put states into groups based on their outputs (or whether they accept or reject)



present state		next	output		
state	0	1	2	3	-
<u> </u>	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

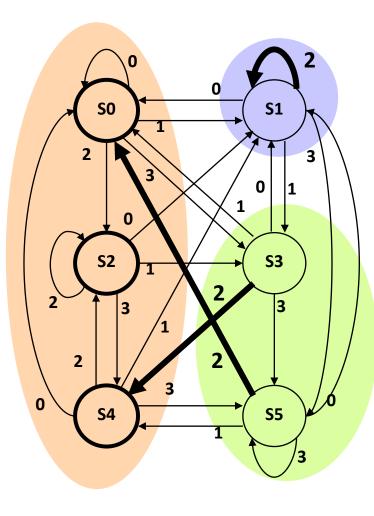
Put states into groups based on their outputs (or whether they accept or reject)



present	1	next	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

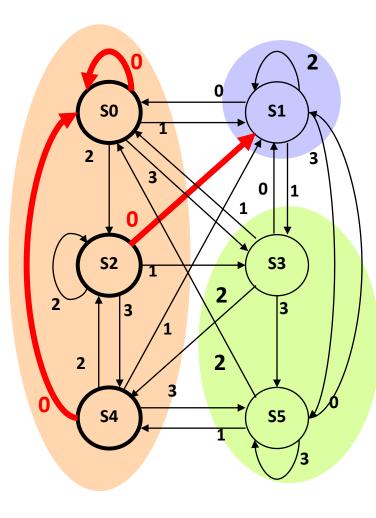
Put states into groups based on their outputs (or whether they accept or reject)



present state		next	output		
state	0	1	2	3	-
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

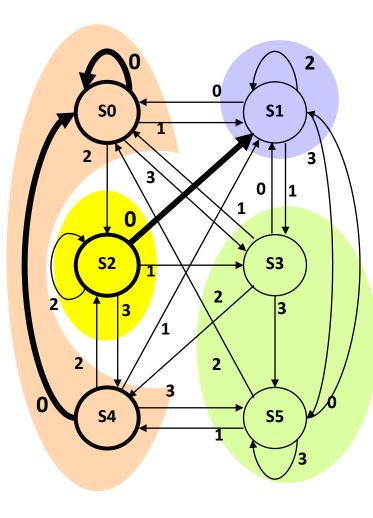
Put states into groups based on their outputs (or whether they accept or reject)



present		next	output		
state	0	1	2	3	
SO	S0	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

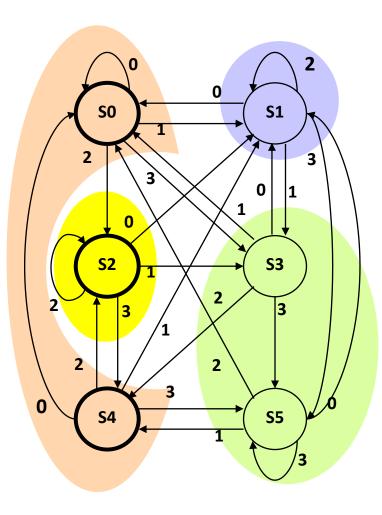
Put states into groups based on their outputs (or whether they accept or reject)



present		next	output		
state	0	1	2	3	
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	S0	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	S0	S5	0

state transition table

Put states into groups based on their outputs (or whether they accept or reject)



present state	0	next 1	output		
SO	SO	S1	S2	S3	1
S1	SO	S3	S1	S5	0
S2	S1	S3	S2	S4	1
S3	S1	SO	S4	S5	0
S4	SO	S1	S2	S5	1
S5	S1	S4	SO	S5	0

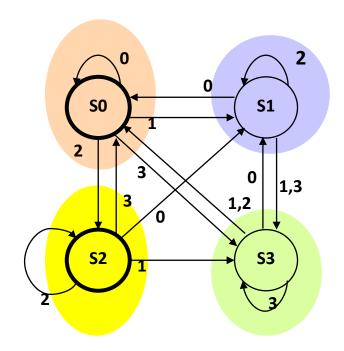
state transition table

Finally convert groups to states:

Can combine states S0-S4 and S3-S5.

In table replace all S4 with S0 and all S5 with S3

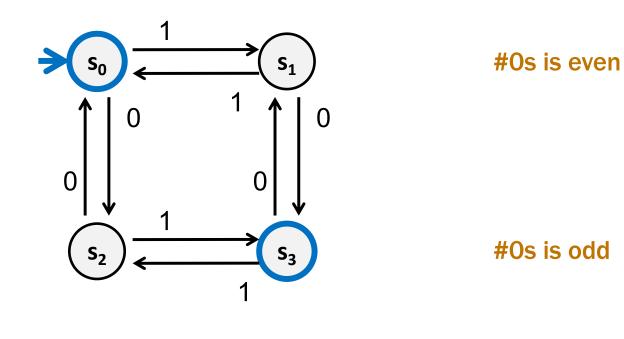
Minimized Machine



present state	0	next 1	t stat 2	e 3	output			
SO S1 S2 S3	50 50 51 51	51 S3 S3 S0	S2 S1 S2 S0	53 53 <mark>50</mark> 53	1 0 1 0			
state								

transition table

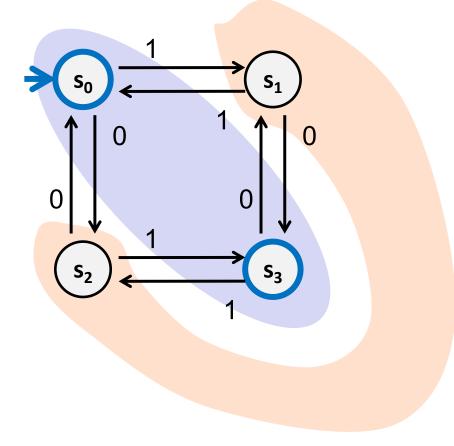
A Simpler Minimization Example



#1s is even #1s is odd

The set of all binary strings with # of 1's \equiv # of 0's (mod 2).

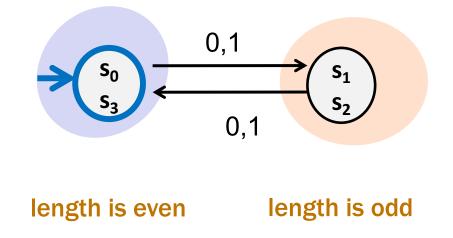
A Simpler Minimization Example



Split states into accept/reject groups

Every symbol causes the DFA to go from one group to the other so neither group needs to be split

Minimized DFA

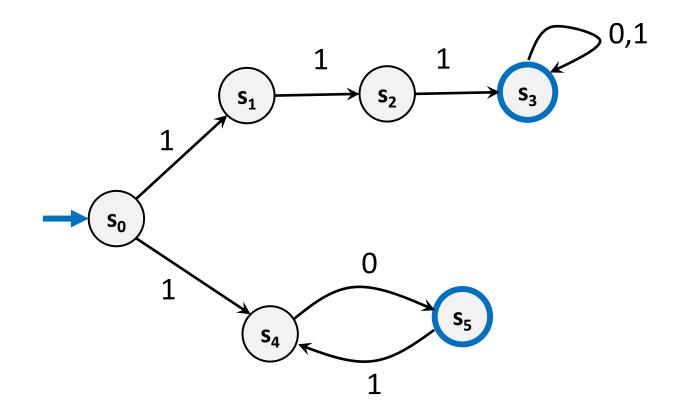


The set of all binary strings with # of 1's \equiv # of 0's (mod 2). = The set of all binary strings with even length.

Nondeterministic Finite Automata (NFA)

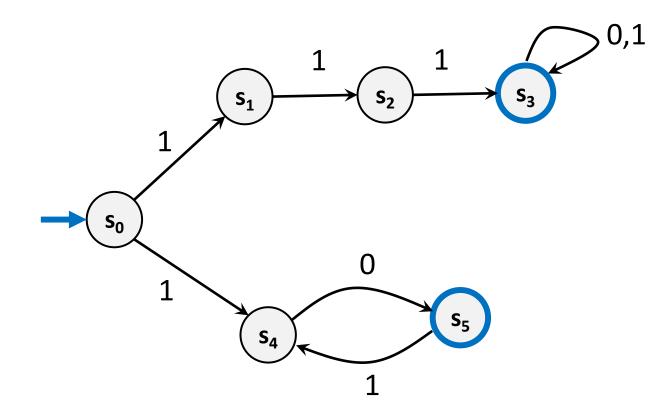
- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state
 labeled by each symbol— can have 0 or >1
 - Also can have edges labeled by empty string $\boldsymbol{\epsilon}$
- Definition: x is in the language recognized by an NFA if and only if <u>some</u> valid execution of the machine gets to an accept state

Consider This NFA



What language does this NFA accept?

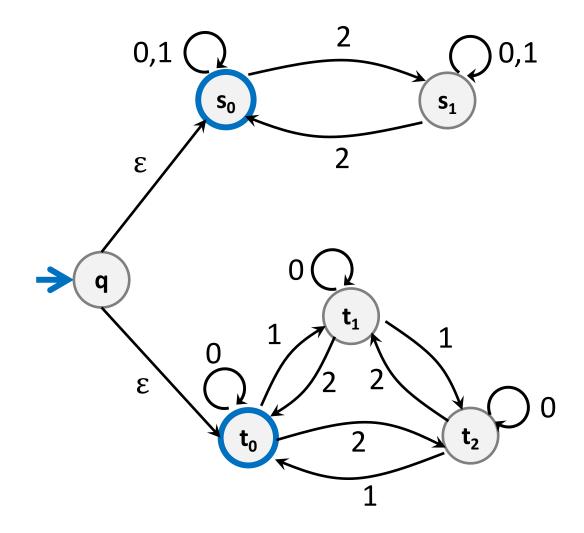
Consider This NFA



What language does this NFA accept?

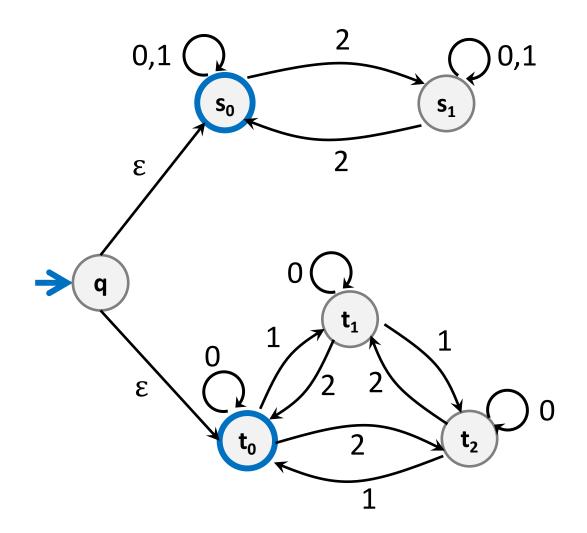
10(10)* U 111 (0 U 1)*

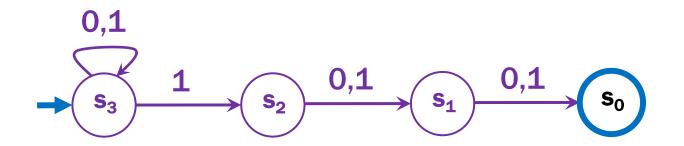
NFA ϵ -moves



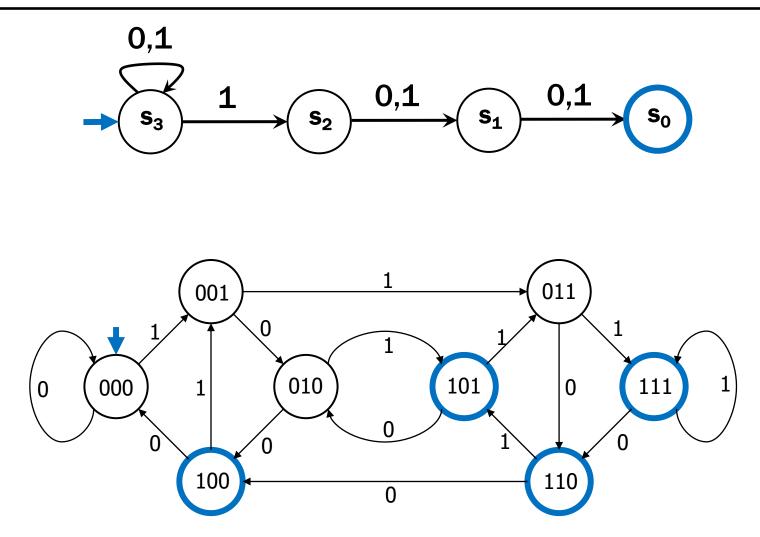
NFA ϵ -moves

Strings over {0,1,2} w/even # of 2's OR sum to 0 mod 3





Compare with the smallest DFA

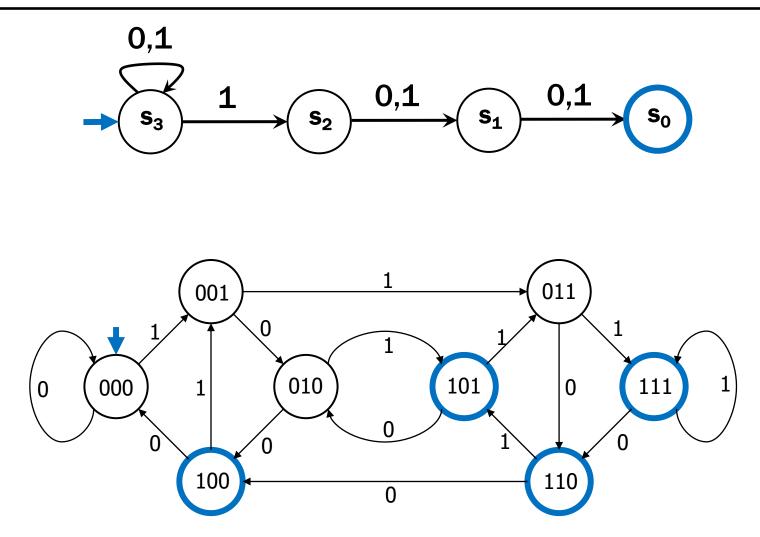


- Generalization of DFAs
 - drop two restrictions of DFAs
 - every DFA is an NFA
- Seem to be more powerful
 - designing is easier than with DFAs
- Seem related to regular expressions

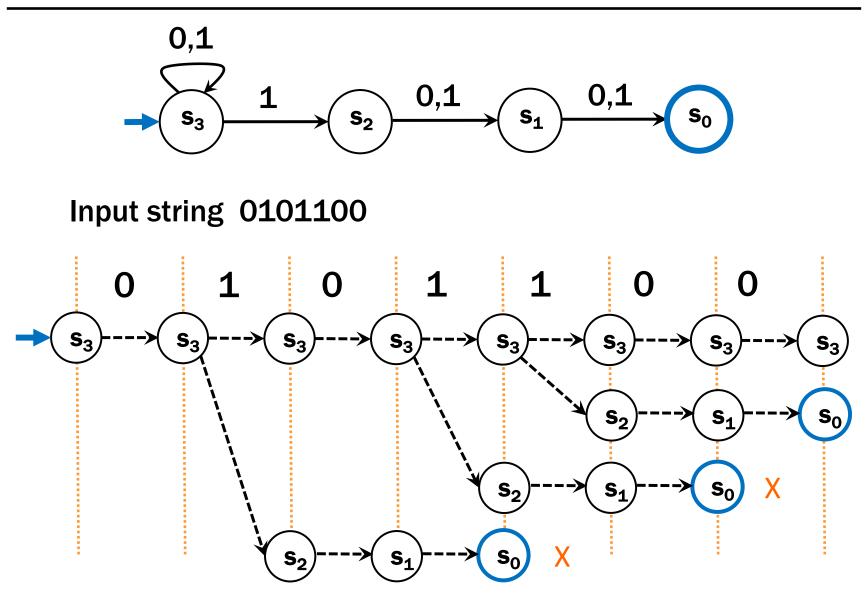
Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Outside observer: Is there a path labeled by x from the start state to some accepting state?

Compare with the smallest DFA



Parallel Exploration view of an NFA

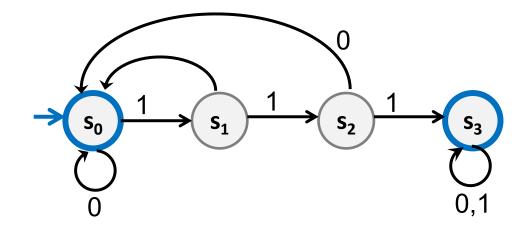


Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Outside observer: Is there a path labeled by x from the start state to some accepting state?

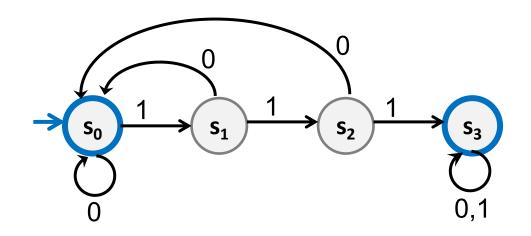
Def: The label of path v_0 , v_1 , ..., v_n is the <u>concatenation</u> of the labels of the edges $(v_0, v_1), (v_1, v_2), ..., (v_{n-1}, v_n)$

Example: The label of path s_0 , s_1 , s_2 , s_0 , s_0 is 1100



Deterministic Finite Automata (DFA)

 Theorem: x is in the language recognized by an DFA if and only if x labels a path from the start state to some final state

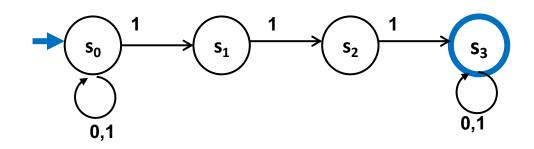


• Path v_0 , v_1 , ..., v_n with $v_0 = s_0$ and label x describes a correct simulation of the DFA on input x

i-th step must match the i-th character of x

Nondeterministic Finite Automata (NFA)

- Graph with start state, final states, edges labeled by symbols (like DFA) but
 - Not required to have exactly 1 edge out of each state labeled by each symbol— can have 0 or >1
 - Can also have edges labeled by empty string $\boldsymbol{\epsilon}$
- Theorem: x is in the language recognized by an NFA if and only if x labels <u>some</u> path from the start state to an accepting state



- Generalization of DFAs
 - drop two restrictions of DFAs
 - every DFA is an NFA
- Seem to be more powerful
 - designing is easier than with DFAs
- Seem related to regular expressions

The story so far...

Theorem: For any set of strings (language) *A* described by a regular expression, there is an NFA that recognizes *A*.

Proof idea: Structural induction based on the recursive definition of regular expressions...

• Basis:

- $-\epsilon$ is a regular expression
- **a** is a regular expression for any $a \in \Sigma$

• Recursive step:

- If **A** and **B** are regular expressions, then so are:
 - $\mathbf{A} \cup \mathbf{B}$

AB

A*

• Case ε:

• Case **a**:

Base Case

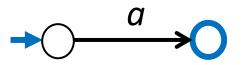
• Case ε:

• Case **a**:

Base Case

• Case ε:

• Case **a**:



• Basis:

- $-\epsilon$ is a regular expression
- **a** is a regular expression for any $a \in \Sigma$

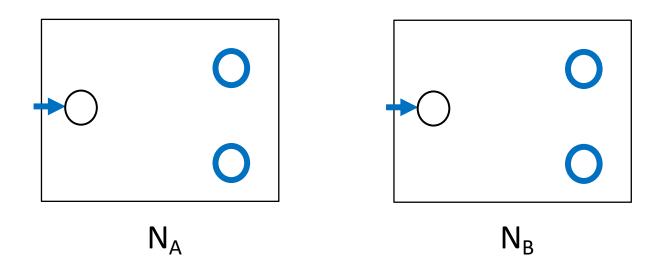
• Recursive step:

- If **A** and **B** are regular expressions, then so are:
 - $\mathbf{A} \cup \mathbf{B}$

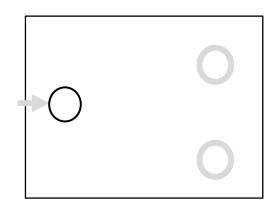
AB

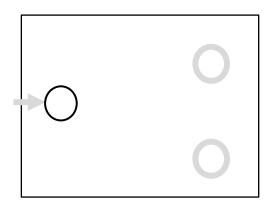
A*

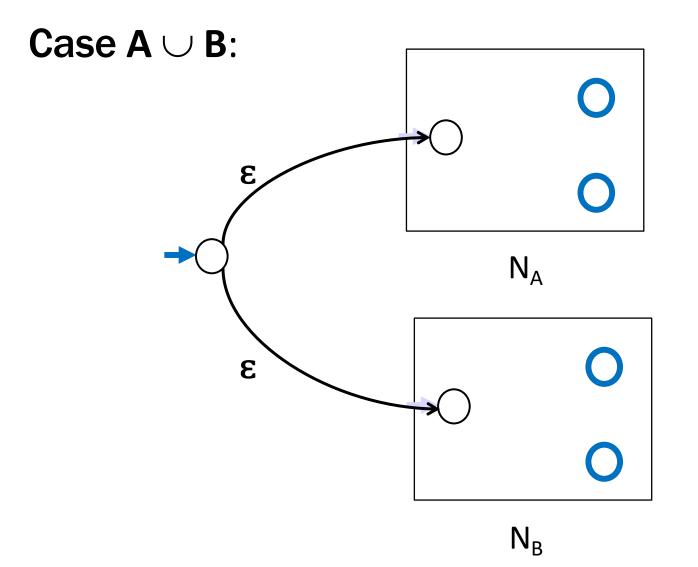
• Suppose that for some regular expressions A and B there exist NFAs N_A and N_B such that N_A recognizes the language given by A and N_B recognizes the language given by B



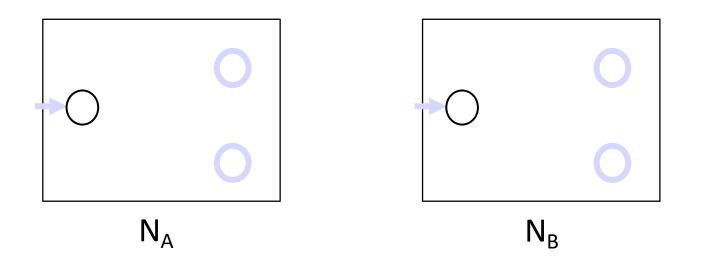
Case $\mathbf{A} \cup \mathbf{B}$:



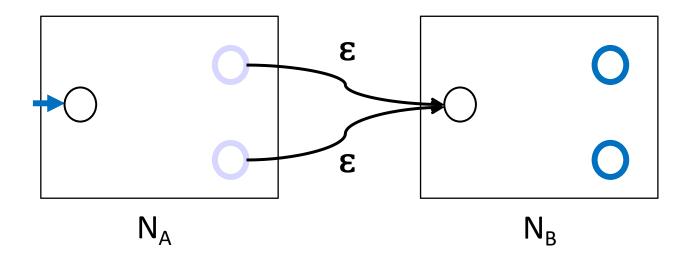




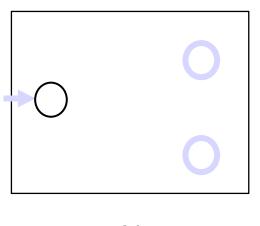
Case AB:



Case AB:

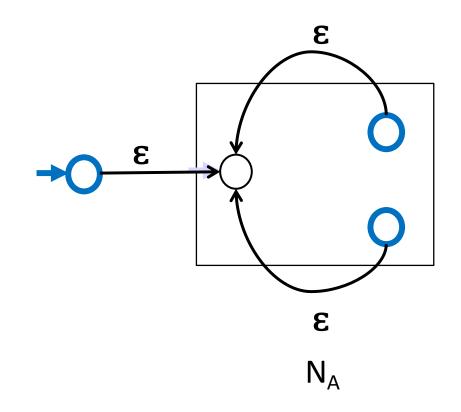


Case A*

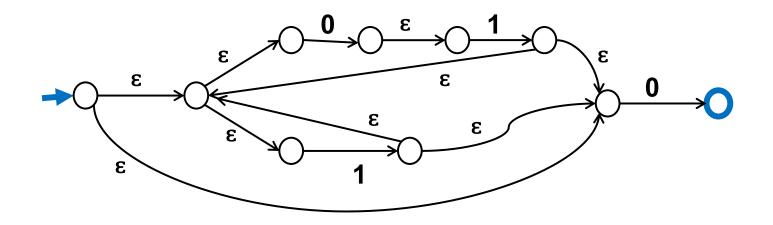


 N_A

Case A*



(01 ∪1)*0



The story so far...

Every DFA is an NFA

DFAs have requirements that NFAs don't have

Can NFAs recognize more languages?

Every DFA is an NFA

DFAs have requirements that NFAs don't have

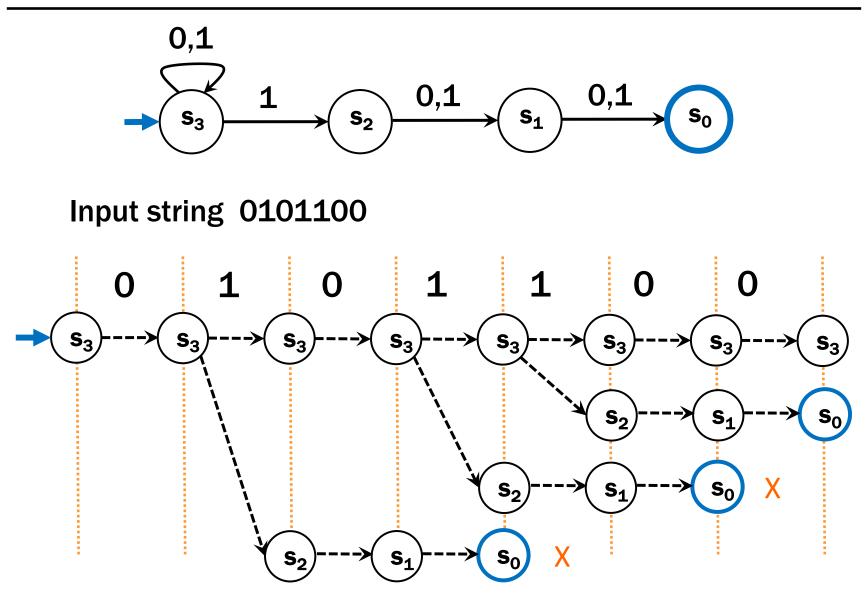
Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that recognizes exactly the same language

Three ways of thinking about NFAs

- Perfect guesser: The NFA has input x and whenever there is a choice of what to do it magically guesses a good one (if one exists)
- Parallel exploration: The NFA computation runs all possible computations on x step-by-step at the same time in parallel
- Outside observer: Is there a path labeled by x from the start state to some final state?

Parallel Exploration view of an NFA



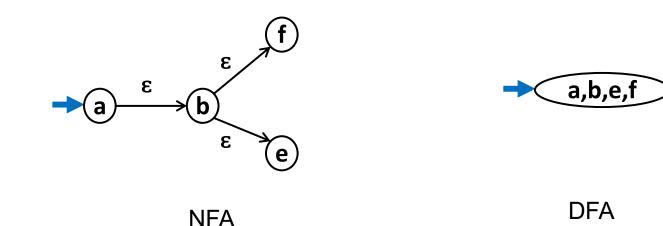
- Construction Idea:
 - The DFA keeps track of ALL states reachable in the NFA along a path labeled by the input so far

(Note: not all *paths*; all *last states* on those paths.)

 There will be one state in the DFA for each subset of states of the NFA that can be reached by some string

New start state for DFA

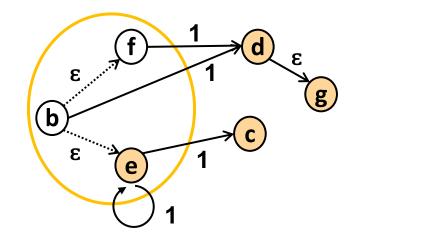
– The set of all states reachable from the start state of the NFA using only edges labeled ϵ



Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of states of the NFA and each symbol s

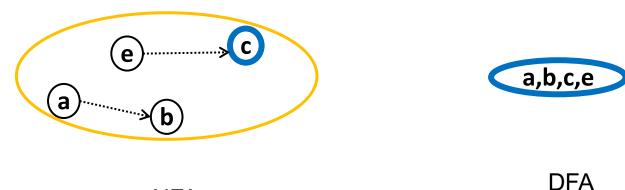
- Add an edge labeled s to state corresponding to T, the set of states of the NFA reached by
 - \cdot starting from some state in S, then
 - \cdot following one edge labeled by s, and then following some number of edges labeled by ϵ
- T will be \varnothing if no edges from S labeled s exist



c,d,e,g b,e,f

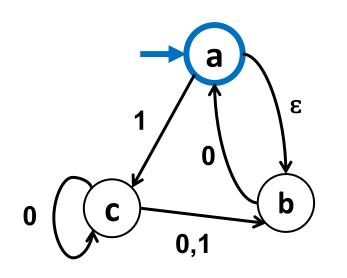
Final states for the DFA

 All states whose set contain some final state of the NFA



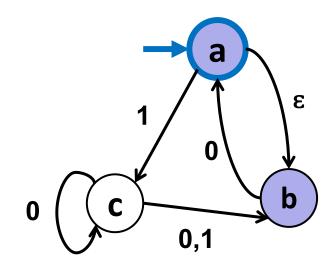
NFA

Example: NFA to DFA



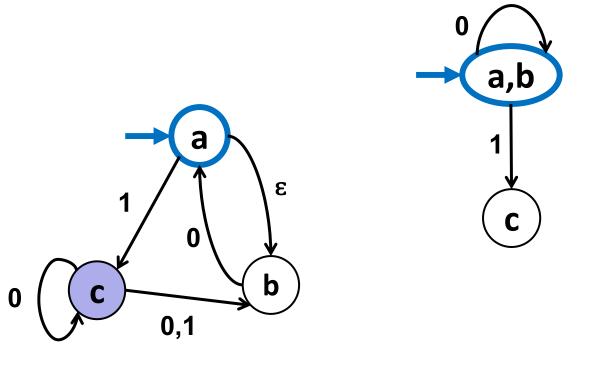
NFA

DFA



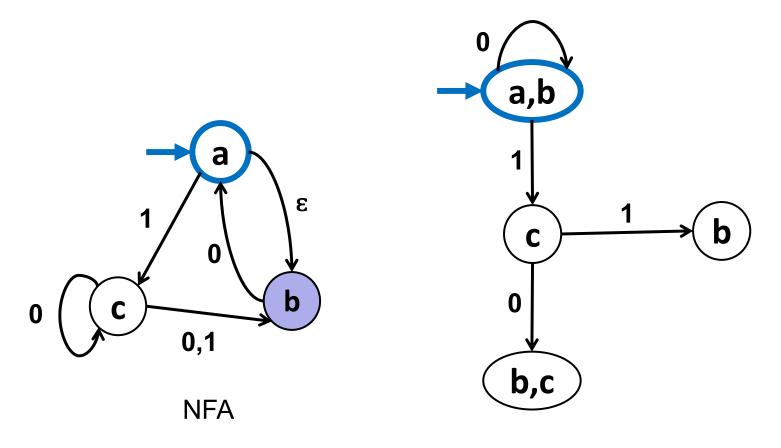
NFA

DFA

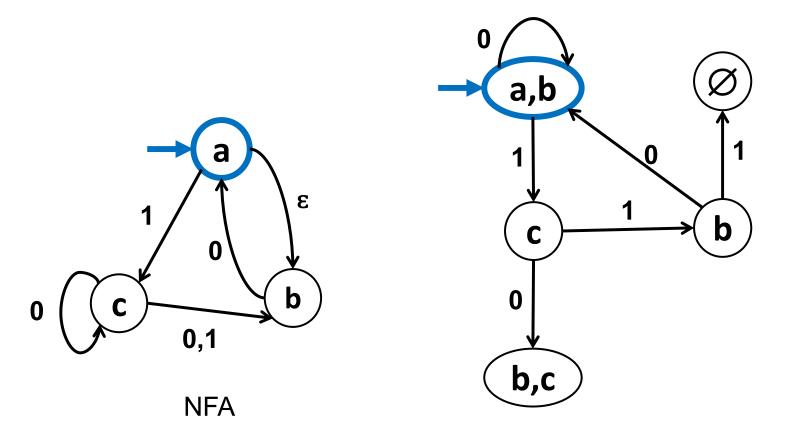


NFA

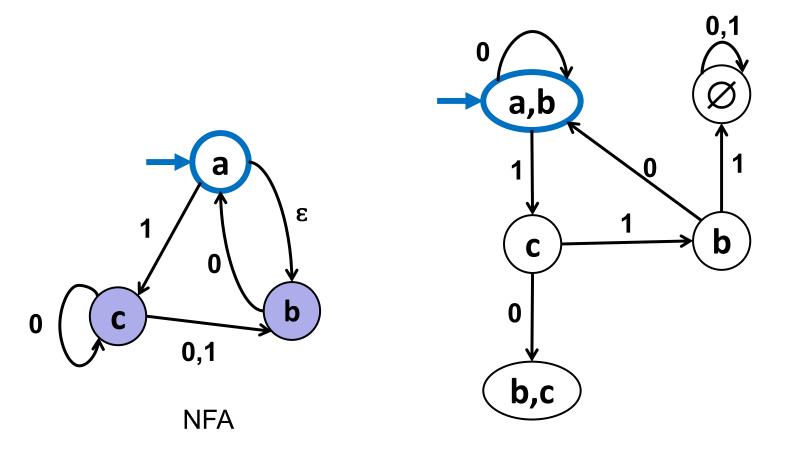
DFA



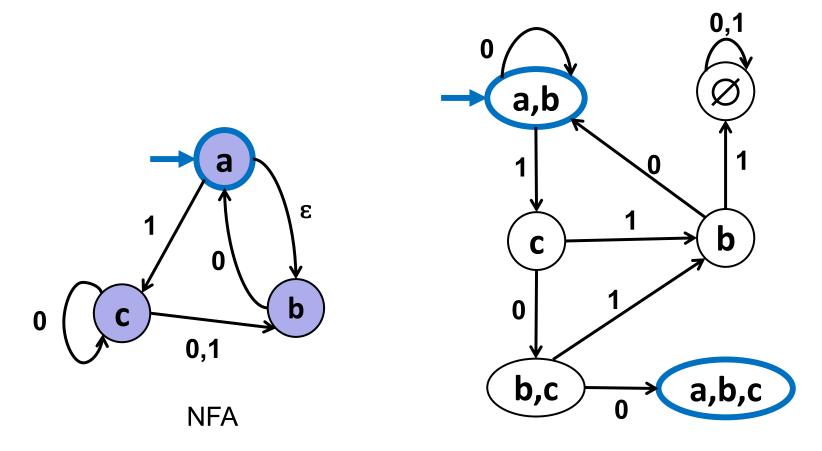
DFA



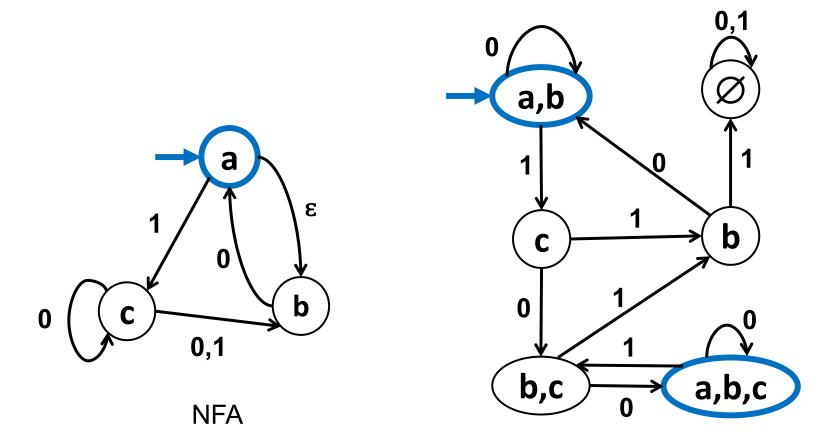
DFA



DFA

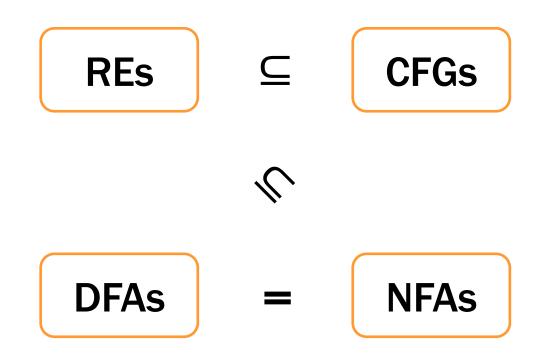


DFA



DFA

The story so far...



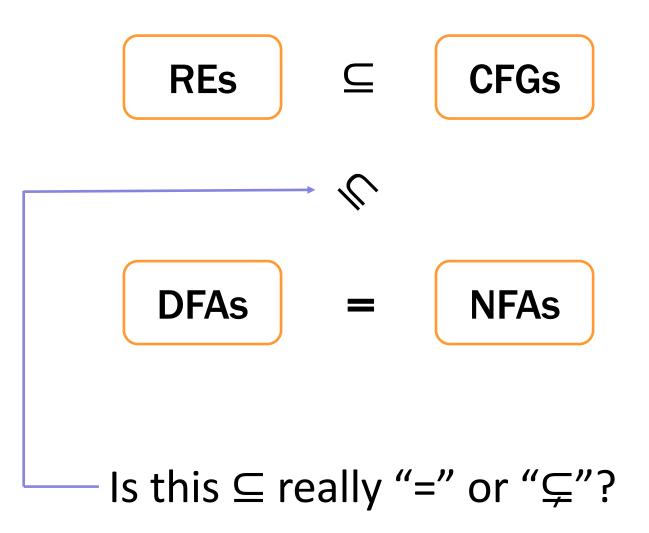
Regular expressions \subseteq NFAs \equiv DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)

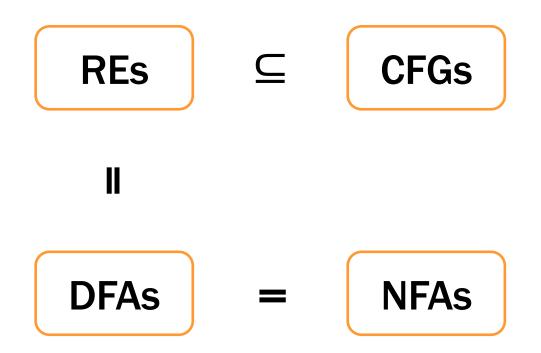


Theorem: For any NFA, there is a regular expression that accepts the same language

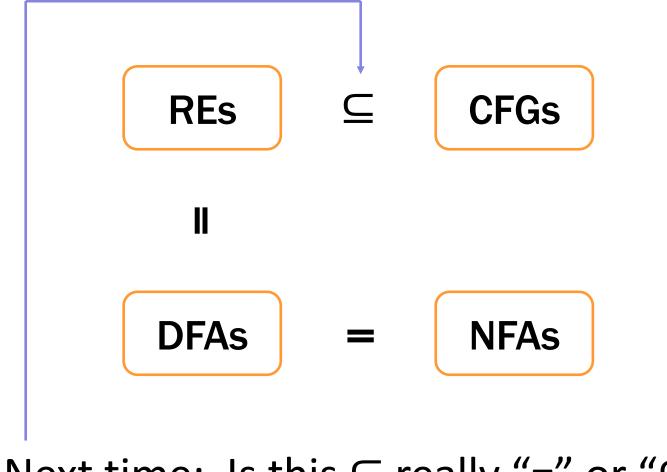
Corollary: A language is recognized by a DFA (or NFA) if and only if it has a regular expression

You need to know these facts

 the construction for the Theorem is included in the slides after this, but you will not be tested on it The story so far...



The story so far...



<u>Next time</u>: Is this \subseteq really "=" or " \subsetneq "?

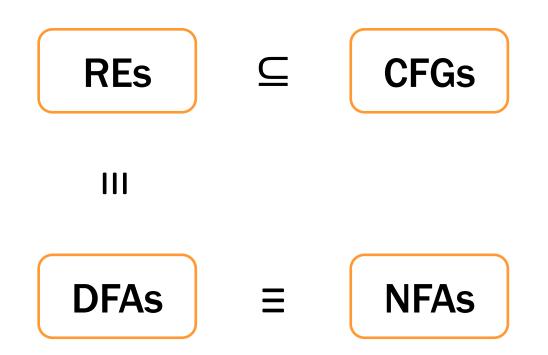
Recall: Algorithms for Regular Languages

We have seen algorithms for

- RE to NFA
- NFA to DFA
- DFA/NFA to RE
- **DFA** minimization

(not tested)

Practice three of these in HW. (May also be on the final.)



Languages represented by DFA, NFAs, or regular expressions are called **Regular Languages**

Regular expressions ≡ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every regular expression

- Build NFA
- Convert NFA to DFA using subset construction
- Minimize resulting DFA

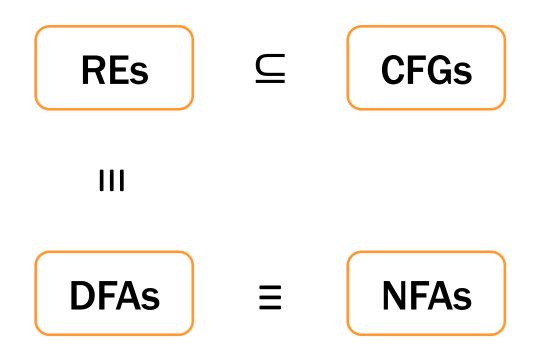
Thus, we could now implement a RegExp library

- most RegExp libraries actually simulate the NFA
- (even better: one can combine the two approaches: apply DFA minimization lazily while simulating the NFA)

Corollary: If A is the language of a regular expression, then \overline{A} is the language of a regular expression*.

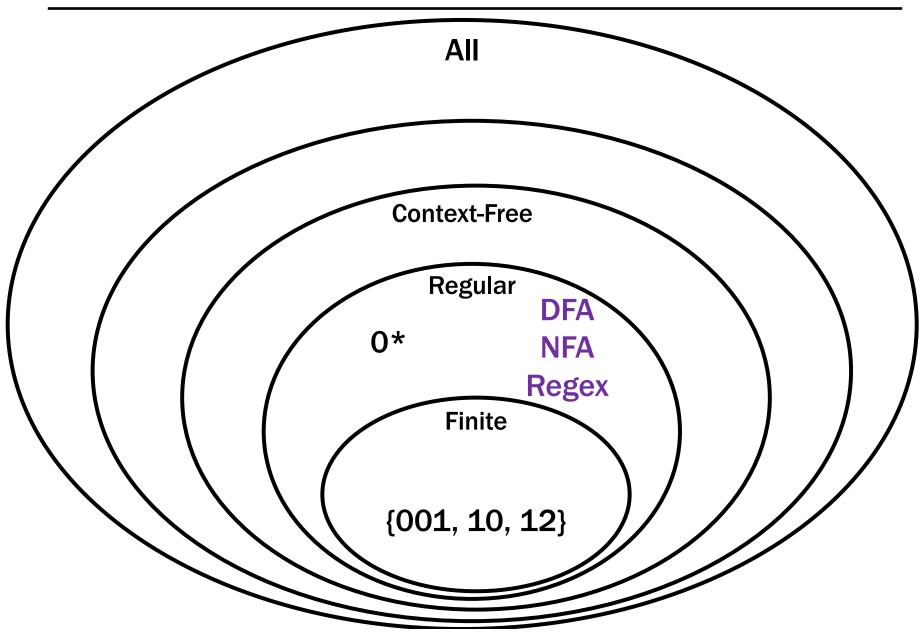
(This is the complement with respect to the universe of all strings over the alphabet, i.e., $\overline{A} = \Sigma^* \setminus A$.)

The story so far...

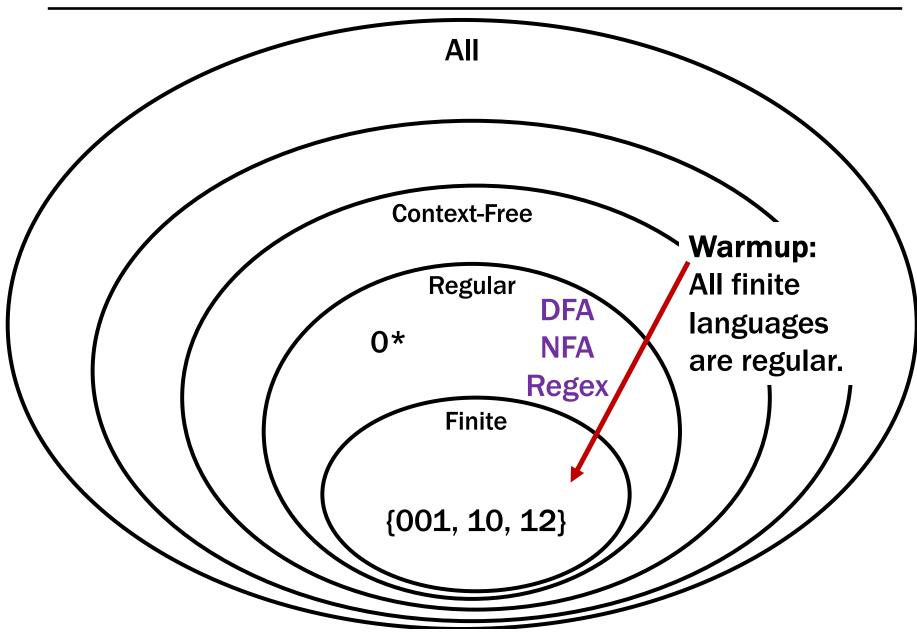


All of them?

Languages and Representations!



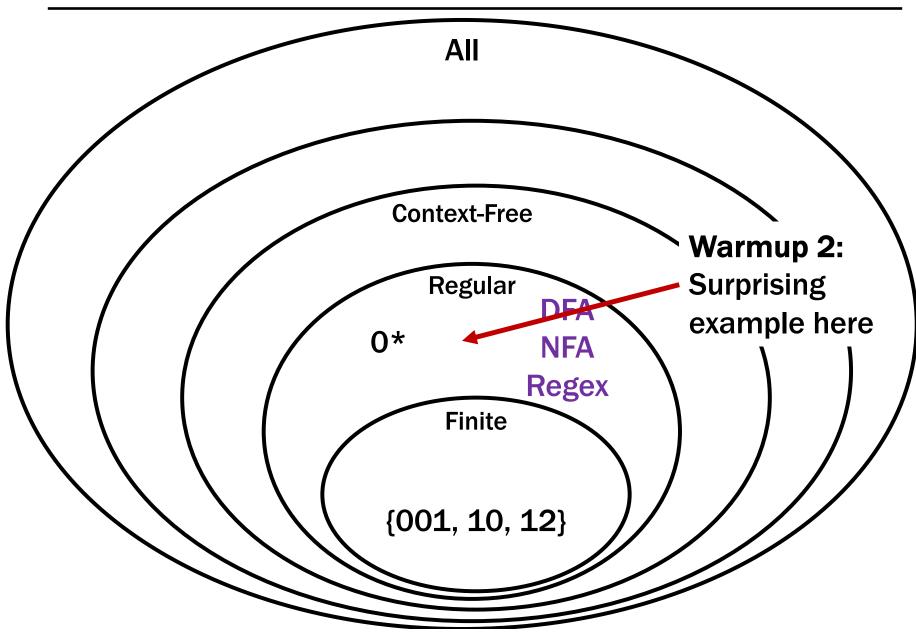
Languages and Representations!



Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!



An Interesting Infinite Regular Language

 $L = {x \in {0, 1}^*: x \text{ has an equal number of substrings 01 and 10}.$

L is infinite.

0, 00, 000, ...

L is regular. How could this be?

That seems to require comparing counts...

- easy for a CFG
- but seems hard for DFAs!

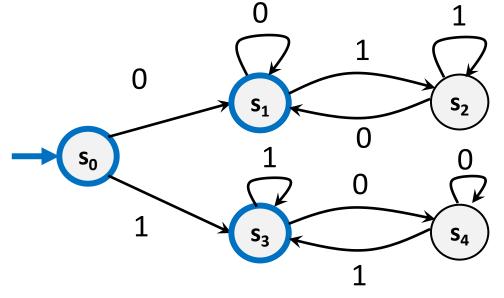
An Interesting Infinite Regular Language

 $L = {x \in {0, 1}^*: x \text{ has an equal number of substrings 01 and 10}.$

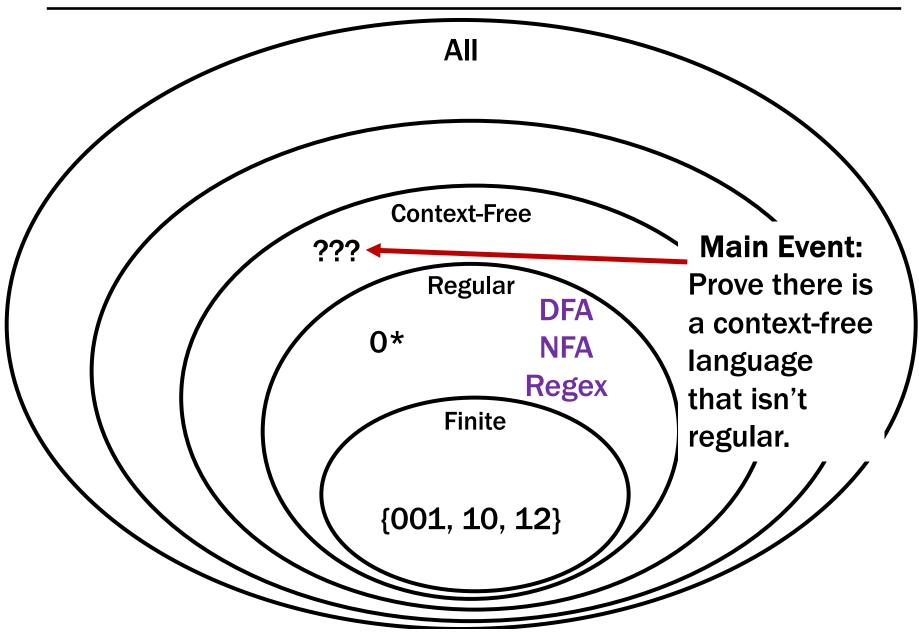
L is infinite.

0, 00, 000, ...

L is regular. How could this be? It is just the set of binary strings that are empty or begin and end with the same character!



Languages and Representations!



The language of "Binary Palindromes" is Context-Free

$\textbf{S} \rightarrow \epsilon$ | 0 | 1 | 0S0 | 1S1

Intuition (NOT A PROOF!):

- **Q**: What would a DFA need to keep track of to decide?
- A: It would need to keep track of the "first part" of the input in order to check the second part against it

...but there are an infinite # of possible first parts and we only have finitely many states.

Proof idea: any machine that does not remember the entire first half will be wrong for some inputs

Lemma 1: If DFA **M** takes $x, y \in \Sigma^*$ to the same state, then for every $z \in \Sigma^*$, M accepts $x \cdot z$ iff it accepts $y \cdot z$.

M can't remember that the input was **x**, not **y**.

 $x \cdot z = x_1 x_2 \dots x_n z_1 z_2 \dots z_k$ $y \cdot z = y_1 y_2 \dots y_m z_1 z_2 \dots z_k$ Lemma 2: If DFA M has n states and a set S contains *more* than n strings, then M takes at least two strings from S to the same state.

M can't take n+1 or more strings to different states because it doesn't have n+1 different states.

So, some pair of strings must go to the same state.

Suppose for contradiction that some DFA, M, recognizes B. We will show M accepts or rejects a string it shouldn't. Consider S = $\{1, 01, 001, 0001, ...\} = \{0^n 1 : n \ge 0\}$.

We will show M accepts or rejects a string it shouldn't.

Consider S = {1, 01, 001, 0001, 00001, ...} = { $0^n 1 : n \ge 0$ }.

Since there are finitely many states in **M** and infinitely many strings in *S*, by Lemma 2, there exist strings $0^{\circ}1 \in S$ and $0^{b}1 \in S$ with $a \neq b$ that end in the same state of **M**.

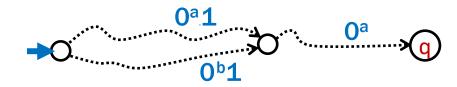
SUPER IMPORTANT POINT: You do not get to choose what a and b are. Remember, we've just proven they exist...we must take the ones we're given!

We will show M accepts or rejects a string it shouldn't.

Consider S = {1, 01, 001, 0001, 00001, ...} = { $0^n 1 : n \ge 0$ }.

Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^{a}1 \in S$ and $0^{b}1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending *O^a* to both strings.

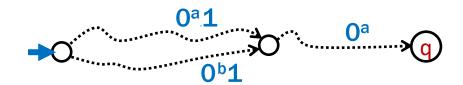


We will show M accepts or rejects a string it shouldn't.

Consider S = {1, 01, 001, 0001, 00001, ...} = { $0^{n}1 : n \ge 0$ }.

Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^{a}1 \in S$ and $0^{b}1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending 0^a to both strings.



Since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since $0^{a}10^{a} \in B$, but M would accept $0^{b}10^{a} \notin B$, which is an error.

We will show M accepts or rejects a string it shouldn't.

Consider S = {1, 01, 001, 0001, 00001, ...} = { $0^{n}1 : n \ge 0$ }.

Since there are finitely many states in M and infinitely many strings in S, by Lemma 2, there exist strings $0^{a}1 \in S$ and $0^{b}1 \in S$ with $a \neq b$ that end in the same state of M.

Now, consider appending 0^a to both strings.

Since $0^{a}1$ and $0^{b}1$ end in the same state, $0^{a}10^{a}$ and $0^{b}10^{a}$ also end in the same state, call it q. But then M makes a mistake: q needs to be an accept state since $0^{a}10^{a} \in B$, but M would accept $0^{b}10^{a} \notin B$, which is an error.

This proves that **M** does not recognize **B**, contradicting our assumption that it does. Thus, no DFA recognizes **B**.

Showing that a Language L is not regular

- **1.** "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an INFINITE set S of prefixes (which we intend to complete later).
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion **t** to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Thus, no DFA recognizes L."

Showing that a Language L is not regular

The choice of **S** is the creative part of the proof

You must find an <u>infinite</u> set **S** with the property that *no two* strings can be taken to the same state

i.e., for every pair of strings S there is an <u>"accept"</u>
 <u>completion</u> that the two strings DO NOT SHARE

Prove $A = \{0^n 1^n : n \ge 0\}$ is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Suppose for contradiction that some DFA, M, recognizes A.

Let $S = \{0^n : n \ge 0\}$. Since S is infinite and M has finitely many states, there must be two strings, 0^a and 0^b for some $a \ne b$ that end in the same state in M.

Consider appending 1^a to both strings.

Note that $0^a1^a \in A$, but $0^b1^a \notin A$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $0^a1^a \in A$, state q must be an accept state but then M would incorrectly accept $0^b1^a \notin A$ so M does not recognize A.

Thus, no DFA recognizes A.

Let S =

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

Suppose for contradiction that some DFA, M, recognizes P.

Let $S = \{ (n : n \ge 0) \}$. Since S is infinite and M has finitely many states, there must be two strings, (a and (b for some a \neq b that end in the same state in M.

Consider appending)^a to both strings.

Note that $(^{a})^{a} \in P$, but $(^{b})^{a} \notin P$ since $a \neq b$. But they both end up in the same state of M, call it q. Since $(^{a})^{a} \in P$, state q must be an accept state but then M would incorrectly accept $(^{b})^{a} \notin$ P so M does not recognize P.

Thus, no DFA recognizes P.

Showing that a Language L is not regular

- 1. "Suppose for contradiction that some DFA M recognizes L."
- 2. Consider an INFINITE set S of prefixes (which we intend to complete later). It is imperative that for *every pair* of strings in our set there is an <u>"accept" completion</u> that the two strings DO NOT SHARE.
- 3. "Since S is infinite and M has finitely many states, there must be two strings s_a and s_b in S for $s_a \neq s_b$ that end up at the same state of M."
- 4. Consider appending the (correct) completion **t** to each of the two strings.
- 5. "Since s_a and s_b both end up at the same state of M, and we appended the same string t, both $s_a t$ and $s_b t$ end at the same state q of M. Since $s_a t \in L$ and $s_b t \notin L$, M does not recognize L."
- 6. "Thus, no DFA recognizes L."

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If **S** is infinite, then **L** is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

- Suppose that for a language L, the set S is a largest set of prefixes with the property that, for every pair s_a≠ s_b ∈ S, there is some string t such that one of s_at, s_bt is in L but the other isn't.
- If **S** is infinite, then **L** is not regular
- If S is finite, then the minimal DFA for L has precisely
 |S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.

 we separated *exactly* those states for which some t would make one accept and another not accept

- It is not necessary for our strings xz with x ∈ L to allow any string in the language
 - we only need to find a small "core" set of strings that must be distinguished by the machine
- It is not true that, if L is irregular and L ⊆ U, then
 U is irregular!
 - we always have $L \subseteq \Sigma^*$ and Σ^* is regular!
 - our argument needs different answers: $xz \in L \nleftrightarrow yz \in L$

for **Σ***, both strings are always in the language

Do not claim in your proof that, because $L \subseteq U$, U is also irregular