
CSE 311: Foundations of Computing

Topic 10: Finite State Machines

Last time: Languages — REs and CFGs

Saw two new ways of defining languages
• Regular Expressions (0 È 1)* 0110 (0 È 1)*

– easy to understand (declarative)

• Context-free Grammars S ® SS | 0S1 | 1S0 | e
– more expressive
– (≈ recursively-defined sets)

We will connect these to machines shortly.
But first, we need some new math terminology….

Alternative Set Notation

We defined Cartesian Product as

Alternative notation for this is

“The set of all (a, b) such that a ∈ A and b ∈ B”

𝐴×𝐵 ∷= {𝑥 ∶ ∃𝑎 ∈ 𝐴, ∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))	}

𝐴×𝐵 ∷= {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

Relations

Let A and B be sets,
A binary relation from A to B is a subset of A ´ B

Let A be a set,
A binary relation on A is a subset of A ´ A

Relations You Already Know

≥ on ℕ
 That is: {(x,y) : x ≥ y and x, y Î ℕ}

< on ℝ
 That is: {(x,y) : x < y and x, y Î ℝ}

= on ∑*
 That is: {(x,y) : x = y and x, y Î ∑*}

⊆ on 𝓟(U) for universe U
 That is: {(A,B) : A ⊆ B and A, B Î 𝓟(U)}

More Relation Examples

R1 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) : x ≡5 y }

R3 = {(c1, c2) : c1 is a prerequisite of c2 }

R4 = {(s, c) : student s has taken course c }

Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b,a) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

R is transitive iff (a,b)Î R and (b,c)Î R implies (a,c) Î R

Which relations have which properties?

≥ on ℕ	:		
< on ℝ	:		
= on ∑*	:	
⊆ on 𝓟(U):
R2 = {(x, y) : x ≡5 y}:
R3 = {(c1, c2) : c1 is a prerequisite of c2 }:

 R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Which relations have which properties?

≥ on ℕ	:		Reflexive, Antisymmetric, Transitive
< on ℝ	:		Antisymmetric, Transitive
= on ∑*	:	Reflexive, Symmetric, Antisymmetric, Transitive

⊆ on 𝓟(U): Reflexive, Antisymmetric, Transitive
R2 = {(x, y) : x ≡5 y}: Reflexive, Symmetric, Transitive
R3 = {(c1, c2) : c1 is a prerequisite of c2 }: Antisymmetric

 R is reflexive iff (a,a) Î R for every a Î A
R is symmetric iff (a,b) Î R implies (b, a)Î R
R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R
R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

Combining Relations

Let 𝑹 be a relation from 𝑨 to 𝑩.
Let 𝑺 be a relation from 𝑩 to 𝑪.

The composition of 𝑹 and 𝑺, 𝑹 ∘ 𝑺 is the relation
from 𝑨 to 𝑪 defined by:

𝑹 ∘ 𝑺 = {(a, c) : $ b such that (a, b) Î 𝑹 and (b, c) Î 𝑺}

Intuitively, a pair is in the composition if there is a
“connection” from the first to the second.

Examples

(a,b) Î Parent iff b is a parent of a
(a,b) Î Sister iff b is a sister of a

When is (x,y)	Î Parent ∘ Sister?

When is (x,y)	Î Sister ∘ Parent?

R ∘ S = {(a, c) : $ b such that (a,b)Î R and (b,c)Î S}

Examples

Using only the relations Parent, Child, Father,
 Son, Brother, Sibling, Husband
and composition, express the following:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Powers of a Relation

𝑹𝟐 	 ∷= 𝑹 ∘ 𝑹
 = { 𝒂, 𝒄 ∶ ∃𝒃	such	that 𝒂, 𝒃 ∈ 𝑹	and 𝒃, 𝒄 ∈ 𝑹	}

𝑹𝟎 	 ∷= { 𝒂, 𝒂 ∶ 𝒂 ∈ 𝑨} “the equality relation on 𝑨”

𝑹𝒏$𝟏 ∷= 𝑹𝒏 ∘ 𝑹 for 𝒏 ≥ 𝟎

e.g., 𝑹𝟏 	= 	𝑹𝟎 ∘ 𝑹	 = 	 𝑹
 𝑹𝟐 	= 	𝑹𝟏 ∘ 𝑹	 = 	 𝑹 ∘ 𝑹

Non-constructive Definitions

Recursively defined sets and functions describe these
objects by explaining how to construct / compute them

But sets can also be defined non-constructively:

How can we define functions non-constructively?
– (useful for writing a function specification)

S = {x : P(x)}

Functions

A function 𝑓 ∶ 𝐴	 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

I.e., for every input 𝑎 ∈ 𝐴, there is one output 𝑏 ∈ 𝐵.
We denote this 𝑏 by 𝑓(𝑎).

(When attempting to define a function this way, we sometimes say
the function is “well defined” if the exactly one part holds)

Functions

A function 𝑓 ∶ 𝐴	 → 𝐵 (A as input and B as output) is a
special type of relation.

A function f from A to B is a relation from A to B such that:
for every 𝑎 ∈ 𝐴, there is exactly one 𝑏 ∈ 𝐵 with (𝑎, 𝑏) ∈ 𝑓

Ex: {((a, b), d) : d is the largest integer dividing a and b}

• gcd : ℕ	×	ℕ → ℕ
• defined without knowing how to compute it

Matrix Representation

Relation 𝑹 on 𝑨 = {𝑎!, … , 𝑎"}

{ (1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) }

1 2 3 4

1 1 1 0 1

2 1 0 1 0

3 0 1 1 0

4 0 1 1 0

𝒎𝒊𝒋 =
1	 if	 𝑎% , 𝑎& ∈ 𝑹	
0	 if	 𝑎% , 𝑎& ∉ 𝑹

Directed Graphs

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges (relation on vertices)

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑺

1

3

2 1

3

2

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

𝑎, 𝑐 ∈ 𝑅 ∘ 𝑅 = 𝑅! iff ∃𝑏	(𝑎, 𝑏 ∈ 𝑅	⋀	(𝑏, 𝑐) ∈ 𝑅)
 iff ∃𝑏 such that a, b, c is a path

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

𝑎, 𝑐 ∈ 𝑅 ∘ 𝑅 = 𝑅! iff ∃𝑏	(𝑎, 𝑏 ∈ 𝑅	⋀	(𝑏, 𝑐) ∈ 𝑅)
 iff ∃𝑏 such that a, b, c is a path

Relational Composition using Digraphs

If 𝑹 = 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑹 ∘ 𝑹

1

3

2 1

3

2

Special case: 𝑹 ∘ 𝑹 is paths of length 2.

• 𝑹 is paths of length 1
• 𝑹𝟎 is paths of length 0 (can’t go anywhere)
• 𝑹𝟑 = 𝑹𝟐 ∘ 𝑹 etc, so is 𝑹𝒏 paths of length n

Paths in Relations and Graphs

Let 𝑹 be a relation on a set 𝑨. There is a path of
length 𝒏 from a to b if and only if (a,b) Î	𝑹𝒏

Def: The length of a path in a graph is the number of
edges in it (counting repetitions if edge used > once).

Connectivity In Graphs

Let 𝑹 be a relation on a set 𝑨. The connectivity
relation 𝑹∗ consists of the pairs (𝑎,	𝑏) such that there is
a path from 𝑎 to 𝑏 in 𝑹.

Note: The text uses the wrong definition of this quantity.
What the text defines (ignoring k=0) is usually called R+

Def: Two vertices in a graph are connected iff there is a
path between them.

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b, a)Î R

R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) Î R for every a Î A

R is symmetric iff (a,b) Î R implies (b, a)Î R

R is transitive iff (a,b)Î R and (b, c)Î R implies (a, c) Î R

R is antisymmetric iff (a,b) Î R and a ¹ b implies (b,a) ∉ R

at every node

or

or or

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the
relation transitive and reflexive.

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to
make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation 𝑹 is the
connectivity relation 𝑹*

𝑛-ary Relations

Let 𝑨𝟏, 𝑨𝟐, … , 𝑨𝒏 be sets. An 𝒏-ary relation on
these sets is a subset of 𝑨𝟏´𝑨𝟐´ ⋯	´ 𝑨𝒏.

Relational Databases

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT

Back to Languages

Selecting strings using labeled graphs as “machines”

start

zero

one

0

1

1

0

0

1

Finite State Machines

start

zero

one

0

1

1

0

0

1

“Start
here”

“If I get this symbol, follow the
arrow…” The circles are called “states”

We’re only in a single state at
any point in time…

The “double circle” means “the
input is good if it ends here”

Which strings does this machine say are OK?

start

zero

one

0

1

1

0

0

1

Which strings does this machine say are OK?

start

zero

one

0

1

1

0

0

1

The set of all binary
strings that end in 0

Finite State Machines

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the

set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

0Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Finite State Machines

• Each machine designed for strings over some
fixed alphabet Σ.

• Must have a transition defined from each state for
every symbol in Σ.

s0 s2 s3s1
111

0,1

0

0

0

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

What language does this machine recognize?

s0 s2 s3s1
111

0,1

0

0

0

The set of all binary strings that contain 111
or don’t end in 1

Applications of FSMs (a.k.a. Finite Automata)

• Implementation of regular expression matching in
programs like grep

• Control structures for sequential logic in digital
circuits

• Algorithms for communication and cache-
coherence protocols
– Each agent runs its own FSM

• Design specifications for reactive systems
– Components are communicating FSMs

Applications of FSMs (a.k.a. Finite Automata)

• Formal verification of systems
– Is an unsafe state reachable?

• Computer games
– FSMs implement non-player characters

• Minimization algorithms for FSMs can be
extended to more general models used in
– Text prediction
– Speech recognition

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

s0 s1

2 0,10,1

2

FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {
 int sum = 0;

 for (int i = 0; i < str.length(); i++) {

 if (str.charAt(i) == '2’)

 sum = (sum + 2) % 3;
 if (str.charAt(i) == '1’)

 sum = (sum + 1) % 3;

 if (str.charAt(i) == ‘0’)
 sum = (sum + 0) % 3;

 }

 return sum == 0;
}

Strings over {0, 1, 2}

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

Strings over {0, 1, 2}

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

0

0

0
1 1

1

2 2

2

FSM as abstraction of Java code

boolean sumCongruentToZero(String str) {
 int sum = 0;

 for (int i = 0; i < str.length(); i++) {

 if (str.charAt(i) == '2’)

 sum = (sum + 2) % 3;
 if (str.charAt(i) == '1’)

 sum = (sum + 1) % 3;

 if (str.charAt(i) == ‘0’)
 sum = (sum + 0) % 3;

 }

 return sum == 0;
}

FSMs can model Java code with
a finite number of fixed-size variables

that makes one pass through input

FSM to Java code

int[][] TRANSITION = {...};

boolean sumCongruentToZero(String str) {

 int state = 0;

 for (int i = 0; i < str.length(); i++) {
 int d = str.charAt(i) - ‘0’;

 state = TRANSITION[state][d];

 }
 return state == 0;

}

State Machine Design Recipe

Given a language, how do you design a state machine for it?

Need enough states to:
• Decide whether to accept or reject at the end
• Update the state on each new character

State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

Can we get away with two states?
• One for 0 mod 3 and one for everything else

State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

Can we get away with two states?
• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can’t update the state on each new character

State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

Can we get away with two states?
• One for 0 mod 3 and one for everything else

This would be enough to decide at the end!

But can’t update the state on each new character:
• If you’re in the “not 0 mod 3” state, and the next

character is 1, which state should you go to?

State Machine Design Recipe

M2: Strings where the sum of digits mod 3 is 0

So, we need three states.
What information should we track?

t0 t2

t1

Strings over {0, 1, 2}

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

0

0

0
1 1

1

2 2

2

Strings over {0, 1, 2}

M1: Strings with an even number of 2’s

M2: Strings where the sum of digits mod 3 is 0

t0 t2

t1

0

0

0
1 1

1

2 2

2

s0 s1

2 0,10,1

2

Strings over {0,1,2} w/ even number of 2’s AND mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

Strings over {0,1,2} w/ even number of 2’s AND mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s XOR mod 3 sum 0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

The set of binary strings with a 1 in the 3rd position from the start

The set of binary strings with a 1 in the 3rd position from the start

s0 s2 As1
10,10,1

0,1

R

0
0,1

The set of binary strings with a 1 in the 3rd position from the end

3 bit shift register

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

“Remember the last three bits”

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

10

00 01 10 11

11

1

0

0 0

0 0 0 01

1

1
1

The set of binary strings with a 1 in the 3rd position from the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

The set of binary strings with a 1 in the 3rd position from the end

The beginning versus the end

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00
0 1

0

0

00

s0 s2 As1
10,10,1

0,1

R

0 0,1

Adding Output to Finite State Machines

• So far we have considered finite state
machines that just accept/reject strings
– called “Deterministic Finite Automata” or DFAs

• Now we consider finite state machines
with output
– These are the kinds used as controllers

Vending Machine

Enter 15 cents in dimes or nickels
Press S or B for a candy bar

Vending Machine, v0.1

0 5 10 15

D D

N N N, D

B, S

Basic transitions on N (nickel), D (dime), B (butterfinger), S (snickers)

Vending Machine, v0.2

0’
[B]

5 10

15

Adding output to states: N – Nickel, S – Snickers, B – Butterfinger

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D B

S

S

Vending Machine, v1.0

0’
[B]

5 10

15

Adding additional “unexpected” transitions to cover all symbols for each state

15’
[N]

0

0”
[S]

N

N

N

N

N

B

D

D

D

D

D
B

S

S

15”
[D]S

B

B,S

B,S

B,S

B,S B,S

N

N

N

D

D

D

Recall: Finite State Machines

• States
• Transitions on input symbols
• Start state and final states
• The “language recognized” by the machine is the

set of strings that reach a final state from the start

s0 s2 s3s1
111

0,1

0

0

0Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Old State 0 1
s0 s0 s1
s1 s0 s2
s2 s0 s3
s3 s3 s3

Recall: Finite State Machines

• Each machine designed for strings over some
fixed alphabet Σ.

• Must have a transition defined from each state for
every symbol in Σ.

s0 s2 s3s1
111

0,1

0

0

0

State Minimization

• Many FSMs (DFAs) for the same problem
• Take a given FSM and try to reduce its state

set by combining states
– Algorithm will always produce the unique

minimal equivalent machine (up to renaming of
states) but we won’t prove this

State Minimization Algorithm

• Put states into groups

• Try to find groups that can be collapsed into one state
– states can keep track of information that isn’t necessary to

determine whether to accept or reject

• Group states together until we can prove that
collapsing them can change the accept/reject result
– find a specific string x such that:

starting from state A, following edges according to x ends in accept
starting from state B, following edges according to x ends in reject

– (algorithm below could be modified to show these strings)

State Minimization Algorithm

1. Put states into groups based on their outputs
(whether they accept or reject)

State Minimization Algorithm

1. Put states into groups based on their outputs
(whether they accept or reject)

2. Repeat the following until no change happens
a. If there is a symbol s so that not all states in a group

G agree on which group s leads to, split G into smaller
groups based on which group the states go to on s

3. Finally, convert groups to states

G1

G2

G3

s
s

s

s

G10
G2

G3

s
s

s

s
G11

State Minimization Example

state
transition table

2
1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 0

State Minimization Example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

State Minimization Example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Put states into groups based on their
outputs (or whether they accept or reject)

If there is a symbol s so that not all states in
a group G agree on which group s leads to,
split G based on which group the states go
to on s

State Minimization Example

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S5 0
 S2 S1 S3 S2 S4 1
 S3 S1 S0 S4 S5 0
 S4 S0 S1 S2 S5 1
 S5 S1 S4 S0 S5 02

1

3

0

0

1

32

2

1

3
0

2
0

3

0

32

1

2

3
1

0

S0

S2

S4

S1

S3

S5

1

Finally convert groups to states:

Can combine states S0-S4 and
S3-S5.

In table replace all S4 with S0
and all S5 with S3

Minimized Machine

state
transition table

present next state output
 state 0 1 2 3
 S0 S0 S1 S2 S3 1
 S1 S0 S3 S1 S3 0
 S2 S1 S3 S2 S0 1
 S3 S1 S0 S0 S3 0
 2

1

3

0

0

1

3

2

2
0

0

3

1,2

S0

S2

S1

S3

1,3

A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

The set of all binary strings with # of 1’s ≣ # of 0’s (mod 2).

#0s is even

#0s is odd

#1s is even #1s is odd

A Simpler Minimization Example

s0

s2 s3

s1
1

1

1

1

0

0

0

0

Split states into
accept/reject groups

Every symbol causes
the DFA to go from one
group to the other so
neither group needs to
be split

Minimized DFA

s0
s3

s1
s2

0,1

0,1

= The set of all binary strings with even length.

The set of all binary strings with # of 1’s ≣ # of 0’s (mod 2).

length is even length is odd

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled
by symbols (like DFA) but
– Not required to have exactly 1 edge out of each state

labeled by each symbol--- can have 0 or >1
– Also can have edges labeled by empty string ε

• Definition: x is in the language recognized by an
NFA if and only if some valid execution of the
machine gets to an accept state

s0 s2 s3s1
111

0,10,1

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

Consider This NFA

What language does this NFA accept?

s0

s1

s5s4

1

1

1

0

1

s2 s3
1

0,1

10(10)* ⋃ 111 (0 ⋃ 1)*

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

NFA ε-moves

s0 s1

t0 t2

t1

2 0,10,1

2

0

0

0 1 1

1

2 2

2

q

ε

ε

Strings over {0,1,2} w/even # of 2’s OR sum to 0 mod 3

NFA for set of binary strings with a 1 in the 3rd position from the end

NFA for set of binary strings with a 1 in the 3rd position from the end

0,1

s3 s2 s1 s0
0,1 0,11

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11

Summary of NFAs

• Generalization of DFAs
– drop two restrictions of DFAs
– every DFA is an NFA

• Seem to be more powerful
– designing is easier than with DFAs

• Seem related to regular expressions

Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

• Outside observer: Is there a path labeled by x from
the start state to some accepting state?

001 011

111

110

101010000

100

1

11 0 1

1

1

1

00 0 1

0

0

00

Compare with the smallest DFA
0,1

s3 s2 s1 s0
0,1 0,11

0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3

0 1 0 1 1 0 0
s3

s1

s3

s2

s3

s0

s1

s3

s0

s2

s3 s3

s0

X

s3

s1

s2

X

Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

• Outside observer: Is there a path labeled by x from
the start state to some accepting state?

Path Labels

Def: The label of path v0, v1, ..., vn is the
 concatenation of the labels of the edges
 (v0, v1), (v1, v2), …, (vn-1, vn)

Example: The label of path s0, s1, s2, s0, s0 is 1100

s0 s2 s3s1
111

0,1

0

0

Deterministic Finite Automata (DFA)

• Theorem: x is in the language recognized by an
DFA if and only if x labels a path from the start
state to some final state

• Path v0, v1, ..., vn with v0 = s0 and label x describes
a correct simulation of the DFA on input x
– i-th step must match the i-th character of x

s0 s2 s3s1
111

0,1

0

0

0

Nondeterministic Finite Automata (NFA)

• Graph with start state, final states, edges labeled by
symbols (like DFA) but
– Not required to have exactly 1 edge out of each state labeled

by each symbol--- can have 0 or >1
– Can also have edges labeled by empty string ε

• Theorem: x is in the language recognized by an NFA
if and only if x labels some path from the start state to
an accepting state

s0 s2 s3s1
111

0,10,1

Summary of NFAs

• Generalization of DFAs
– drop two restrictions of DFAs
– every DFA is an NFA

• Seem to be more powerful
– designing is easier than with DFAs

• Seem related to regular expressions

The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

Theorem: For any set of strings (language)
𝐴 described by a regular expression, there is
an NFA that recognizes 𝐴.

Proof idea: Structural induction based on the
recursive definition of regular expressions...

NFAs and regular expressions

Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions, then so are:

A È B
AB
A*

• Case ɛ:

• Case a:

Base Case

• Case ɛ:

• Case a:

Base Case

• Case ɛ:

• Case a:

Base Case

a

Regular Expressions over S

• Basis:
– ɛ is a regular expression
– a is a regular expression for any a Î S

• Recursive step:
– If A and B are regular expressions, then so are:

A È B
AB
A*

Inductive Hypothesis

• Suppose that for some regular expressions
A and B there exist NFAs NA and NB such
that NA recognizes the language given by A
and NB recognizes the language given by B

NA NB

Inductive Step

Case A È B:

NA

NB

Inductive Step

Case A È B:

ɛ

ɛ

NA

NB

Inductive Step

Case AB:

NA NB

Inductive Step

Case AB:

ɛ

ɛ

NA NB

Inductive Step

Case A*

NA

Inductive Step

Case A*

ɛ

ɛ

ɛ
NA

Build an NFA for (01 È1)*0

Solution

(01 È1)*0

0
ɛ

ɛ

ɛ

ɛ

0

1

1

ɛ

ɛ

ɛ

ɛ

ɛ

The story so far...

⊆

⊆

REs

DFAs NFAs

CFGs

⊆

NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages?

NFAs and DFAs

Every DFA is an NFA
– DFAs have requirements that NFAs don’t have

Can NFAs recognize more languages? No!

Theorem: For every NFA there is a DFA that
recognizes exactly the same language

Three ways of thinking about NFAs

• Perfect guesser: The NFA has input x and whenever
there is a choice of what to do it magically guesses a
good one (if one exists)

• Parallel exploration: The NFA computation runs all
possible computations on x step-by-step at the same
time in parallel

• Outside observer: Is there a path labeled by x from
the start state to some final state?

0,1

s3 s2 s1 s0
0,1 0,11

Parallel Exploration view of an NFA

Input string 0101100

s3 s3 s3 s3 s3 s3 s3

0 1 0 1 1 0 0

s2 s1 s0

s2 s1 s0

s2 s1 s0

s3

X

X

Conversion of NFAs to a DFAs

• Construction Idea:
– The DFA keeps track of ALL states reachable in

the NFA along a path labeled by the input so far
(Note: not all paths; all last states on those paths.)

– There will be one state in the DFA for each
subset of states of the NFA that can be reached
by some string

Conversion of NFAs to a DFAs

New start state for DFA
– The set of all states reachable from the start

state of the NFA using only edges labeled ɛ

a,b,e,f

f

e

ba
ɛ

ɛ

ɛ

NFA DFA

Conversion of NFAs to a DFAs

For each state of the DFA corresponding to a set S of
states of the NFA and each symbol s

– Add an edge labeled s to state corresponding to T, the
set of states of the NFA reached by

· starting from some state in S, then
· following one edge labeled by s, and
 then following some number of edges labeled by ɛ

– T will be Æ if no edges from S labeled s exist

f

e

b

ɛ

ɛ
c

d

g
ɛ

1

1

1

1

b,e,f c,d,e,g1

Conversion of NFAs to a DFAs

Final states for the DFA
– All states whose set contain some final state of

the NFA

a,b,c,e
ce

ba

NFA DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Æ

10

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

Æ

1

0,1

0

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1

Example: NFA to DFA

c

a

b
0

ɛ

0,1

1

0

NFA

a,b

DFA

0

c

1

b

b,c

1

0

a,b,c

Æ

1

0,1

0

0

1

1
0

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Regular expressions ⊆ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every
regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

 apply DFA minimization lazily while simulating the NFA)

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

⊆

Is this ⊆ really “=” or “⊊”?

Regular expressions ≡ NFAs ≡ DFAs

Theorem: For any NFA, there is a regular expression
 that accepts the same language

Corollary: A language is recognized by a DFA (or NFA)
 if and only if it has a regular expression

You need to know these facts
– the construction for the Theorem is included in the slides

after this, but you will not be tested on it

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=

The story so far...

⊆

=

REs

DFAs NFAs

CFGs

=
Next time: Is this ⊆ really “=” or “⊊”?

Recall: Algorithms for Regular Languages

We have seen algorithms for
• RE to NFA
• NFA to DFA
• DFA/NFA to RE (not tested)
• DFA minimization

Practice three of these in HW.
(May also be on the final.)

The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

≡
Languages represented by DFA, NFAs, or regular expressions
are called Regular Languages

Regular expressions ≡ NFAs ≡ DFAs

We have shown how to build an optimal DFA for every
regular expression

– Build NFA
– Convert NFA to DFA using subset construction
– Minimize resulting DFA

Thus, we could now implement a RegExp library
– most RegExp libraries actually simulate the NFA
– (even better: one can combine the two approaches:

 apply DFA minimization lazily while simulating the NFA)

Example Corollary of These Results

(This is the complement with respect to the universe of all strings
over the alphabet, i.e., G𝐀 = 𝚺∗	\	𝐀.)

Corollary: If 𝐀 is the language of a regular expression,
then G𝐀 is the language of a regular expression*.

The story so far...

⊆

≡

REs

DFAs NFAs

CFGs

≡

What languages have DFAs? CFGs?

All of them?

Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

{001, 10, 12}

Languages and Representations!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup:
All finite
languages
are regular.

DFAs Recognize Any Finite Language

DFAs Recognize Any Finite Language

Construct a DFA for each string in the language.

Then, put them together using the union construction.

Languages and Machines!

All

Context-Free

Regular

Finite

{001, 10, 12}

0*
DFA
NFA

Regex

Warmup 2:
Surprising
example here

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.
 0, 00, 000, …

L is regular. How could this be?
That seems to require comparing counts...

– easy for a CFG
– but seems hard for DFAs!

An Interesting Infinite Regular Language

L = {x∊ {0, 1}*: x has an equal number of substrings 01 and 10}.

L is infinite.
 0, 00, 000, …

L is regular. How could this be? It is just the set of binary strings
that are empty or begin and end with the same character!

s0

0

1 s4s3

0

1

01

s2s1

1

0

10

Languages and Representations!

All

Context-Free

Regular

Finite

0*
DFA
NFA

Regex

??? Main Event:
Prove there is
a context-free
language
that isn’t
regular.

{001, 10, 12}

The language of “Binary Palindromes” is Context-Free

S → ε | 0 | 1 | 0S0 | 1S1

Is the language of “Binary Palindromes” Regular ?

Intuition (NOT A PROOF!):
 Q: What would a DFA need to keep track of to decide?
 A: It would need to keep track of the “first part” of the input

 in order to check the second part against it
 …but there are an infinite # of possible first parts and we

 only have finitely many states.

Proof idea: any machine that does not remember the entire first
half will be wrong for some inputs

Useful Lemmas about DFAs

Lemma 1: If DFA M takes 𝐱, 𝐲 ∈ 𝚺∗ to the same state,
then for every 𝐳 ∈ 𝚺∗, M accepts 𝐱 • 𝐳 iff it accepts 𝐲 • 𝐳.

M can’t remember that the input was 𝐱, not 𝐲.

x z
y

x•z = x1 x2 … xn z1 z2 … zk

y•z = y1 y2 … ym z1 z2 … zk

Useful Lemmas about DFAs

Lemma 2: If DFA M has n states and a set S contains
more than n strings, then M takes at least two strings
from S to the same state.

M can’t take n+1 or more strings to different states
because it doesn’t have n+1 different states.
So, some pair of strings must go to the same state.

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, recognizes B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b	that end in the same state of M.

SUPER IMPORTANT POINT: You do not get to
choose what a and b are. Remember, we’ve just
proven they exist…we must take the ones we’re
given!

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b	that end in the same state of M.
Now, consider appending 0a to both strings.

0aa1
q0a

0
b1

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b	that end in the same state of M.
Now, consider appending 0a to both strings.

Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a also
end in the same state, call it q. But then M makes a mistake:
q needs to be an accept state since 0a10a ∈	B, but M would
accept 0b10a ∉ B, which is an error.

0aa1
q0a

0
b1

B = {binary palindromes} can’t be recognized by any DFA

Suppose for contradiction that some DFA, M, accepts B.
We will show M accepts or rejects a string it shouldn’t.
Consider S = {1, 01, 001, 0001, 00001, ...} = {0n1 : n ≥ 0}.
Since there are finitely many states in M and infinitely many
strings in S, by Lemma 2, there exist strings 0a1 ∈ S and 0b1 ∈ S
with a≠b	that end in the same state of M.
Now, consider appending 0a to both strings.
Since 0a1 and 0b1 end in the same state, 0a10a and 0b10a also
end in the same state, call it q. But then M makes a mistake:
q needs to be an accept state since 0a10a ∈	B, but M would
accept 0b10a ∉ B, which is an error.
This proves that M does not recognize B, contradicting our
assumption that it does. Thus, no DFA recognizes B.

Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M recognizes L.”
2. Consider an INFINITE set S of prefixes (which we intend to

complete later).
3. “Since S is infinite and M has finitely many states, there

must be two strings sa and sb in S for sa ≠ sb that end up at
the same state of M.”

4. Consider appending the (correct) completion t to each of
the two strings.

5. “Since sa and sb both end up at the same state of M, and
we appended the same string t, both sat and sbt end at the
same state q of M. Since sat ∈ L and sbt ∉ L, M does not
recognize L.”

6. “Thus, no DFA recognizes L.”

Showing that a Language L is not regular

The choice of S is the creative part of the proof

You must find an infinite set S with the property that no two
strings can be taken to the same state

– i.e., for every pair of strings S there is an “accept”
completion that the two strings DO NOT SHARE

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S =

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely many
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely many
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.

Consider appending 1a to both strings.

Prove A = {0n1n : n ≥ 0} is not regular

Suppose for contradiction that some DFA, M, recognizes A.

Let S = {0n : n ≥ 0}. Since S is infinite and M has finitely many
states, there must be two strings, 0a and 0b for some a ≠ b
that end in the same state in M.

Consider appending 1a to both strings.

Note that 0a1a ∈ A, but 0b1a ∉ A since a ≠ b. But they both end
up in the same state of M, call it q. Since 0a1a ∈ A, state q
must be an accept state but then M would incorrectly accept
0b1a ∉ A so M does not recognize A.
Thus, no DFA recognizes A.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, accepts P.

Let S =

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many
states, there must be two strings, (a and (b for some a ≠ b that
end in the same state in M.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many
states, there must be two strings, (a and (b for some a ≠ b that
end in the same state in M.

Consider appending)a to both strings.

Prove P = {balanced parentheses} is not regular

Suppose for contradiction that some DFA, M, recognizes P.

Let S = { (n : n ≥ 0}. Since S is infinite and M has finitely many
states, there must be two strings, (a and (b for some a ≠ b that
end in the same state in M.

Consider appending)a to both strings.

Note that (a)a ∈ P, but (b)a ∉ P since a ≠ b. But they both end up
in the same state of M, call it q. Since (a)a ∈ P, state q must
be an accept state but then M would incorrectly accept (b)a ∉
P so M does not recognize P.
Thus, no DFA recognizes P.

Showing that a Language L is not regular
1. “Suppose for contradiction that some DFA M recognizes L.”
2. Consider an INFINITE set S of prefixes (which we intend to

complete later). It is imperative that for every pair of
strings in our set there is an “accept” completion that the
two strings DO NOT SHARE.

3. “Since S is infinite and M has finitely many states, there
must be two strings sa and sb in S for sa ≠ sb that end up at
the same state of M.”

4. Consider appending the (correct) completion t to each of
the two strings.

5. “Since sa and sb both end up at the same state of M, and
we appended the same string t, both sat and sbt end at the
same state q of M. Since sat ∈ L and sbt ∉ L, M does not
recognize L.”

6. “Thus, no DFA recognizes L.”

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest set of
prefixes with the property that, for every pair sa≠ sb ∈ S,
there is some string t such that one of sat, sbt is in L but the
other isn’t.

• If S is infinite, then L is not regular
• If S is finite, then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

Fact: This method is optimal

• Suppose that for a language L, the set S is a largest set of
prefixes with the property that, for every pair sa≠ sb ∈ S,
there is some string t such that one of sat, sbt is in L but the
other isn’t.

• If S is infinite, then L is not regular
• If S is finite, then the minimal DFA for L has precisely

|S| states, one reached by each member of S.

Corollary: Our minimization algorithm was correct.
– we separated exactly those states for which some t would make

one accept and another not accept

Important Notes

• It is not necessary for our strings xz with x ∈ L to
allow any string in the language
– we only need to find a small “core” set of strings that

must be distinguished by the machine

• It is not true that, if L is irregular and L ⊆ U, then
U is irregular!
– we always have L ⊆ Σ* and Σ* is regular!
– our argument needs different answers: xz	∈	L	↮	yz	∈	L

for Σ*, both strings are always in the language

Do not claim in your proof that,
because L ⊆ U, U is also irregular

