CSE 311: Foundations of Computing

Topic 9: Languages

Theoretical Computer Science

Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} of strings over the alphabet Σ
- example: $\{0,1\}^{*}$ is the set of binary strings $0,1,00,01,10,11,000,001, \ldots$ and ""
- Σ^{*} is defined recursively by
- Basis: $\varepsilon \in \Sigma^{*}$ (ε is the empty string, i.e., "")
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$

Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
$-\Sigma^{*}=$ All strings over alphabet Σ
- Palindromes over Σ
- Binary strings that don't have a 0 after a 1
- Binary strings with an equal \# of 0's and 1's
- Legal variable names in Java/C/C++
- Syntactically correct Java/C/C++ programs
- Valid English sentences

Foreword on Intro to Theory C.S.

- Look at different ways of defining languages
- See which are more expressive than others
- i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
- computers capable of recognizing those languages i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:
ε is a palindrome
any $a \in \Sigma$ is a palindrome

Recursive step:
If p is a palindrome,
then apa is a palindrome for every $a \in \Sigma$

Regular Expressions

Regular expressions over Σ

- Basis:
ε is a regular expression
a is a regular expression for any $a \in \Sigma$
- Recursive step:

If \mathbf{A} and \mathbf{B} are regular expressions, then so are:
$A \cup B$
AB
A*

Each Regular Expression is a "pattern"

ε matches only the empty string
a matches only the one-character string a
$A \cup B$ matches all strings that either \mathbf{A} matches or B matches (or both)
$A B$ matches all strings that have a first part that A matches followed by a second part that B matches
A* matches all strings that have any number of strings (even 0) that A matches, one after another $(\varepsilon \cup \mathbf{A} \cup \mathbf{A A} \cup \mathbf{A A A} \cup \ldots)$

Language of a Regular Expression

The language defined by a regular expression:

$$
\begin{aligned}
& \mathrm{L}(\varepsilon)=\{\varepsilon\} \\
& \mathrm{L}(a)=\{a\} \\
& \mathrm{L}(A \cup B)=L(A) \cup L(B) \\
& \mathrm{L}(A B)=\{x: \exists y \in L(A), \exists z \in L(B)(x=y \bullet z)\} \\
& \mathrm{L}\left(A^{*}\right)=\cup_{n=0}^{\infty} L\left(A^{n}\right) \\
& \quad A^{n} \text { defined recursively by } \\
& \quad A^{0}=\emptyset \\
& \quad A^{n+1}=A^{n} A
\end{aligned}
$$

Examples
001*

0*1*

Examples

001*
$\{00,001,0011,00111, \ldots\}$

$0 * 1 *$

Any number of 0's followed by any number of 1's

Examples
$(0 \cup 1) 0(0 \cup 1) 0$
(0*1*)*

Examples

$(0 \cup 1) 0(0 \cup 1) 0$

$\{0000,0010,1000,1010\}$
(0*1*)*

All binary strings

Examples

- All binary strings that contain 0110

$$
(0 \cup 1) * 0110(0 \cup 1) *
$$

- All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

$$
(00 \cup 11)^{*}(01010 \cup 10001)(0 \cup 1)^{*}
$$

Examples

- All binary strings that have an even \# of 1's
e.g., o*(10*10*)*
- All binary strings that don't contain 101

$$
\begin{aligned}
& \text { e.g., } 0^{*}\left(1 \cup 1000^{*}\right)^{*}(\varepsilon \cup 10) \\
& \quad \text { at least two } 0 \text { s between 1s }
\end{aligned}
$$

Finite languages vs Regular Expressions

- All finite languages have a regular expression.
(a language is finite if its elements can be put into a list)

Why?

- Given a list of strings $s_{1}, s_{2}, \ldots, s_{n}$

Construct the regular expression

$$
\mathrm{s}_{1} \cup \mathrm{~s}_{2} \cup \ldots \cup \mathrm{~s}_{\mathrm{n}}
$$

(Could make this formal by induction on n)

Finite languages vs Regular Expressions

- Every regular expression that does not use * generates a finite language.

Why?

- Prove by structural induction on the syntax of regular expressions!

Star-free implies finite

Let A be a regular expression that does not use *. Then $L(A)$ is finite.

Proof: We proceed by structural induction on A.

Case ε :

$$
\mathrm{L}(\varepsilon)=\{\varepsilon\}, \text { which is finite }
$$

Case a:

$$
L(a)=\{a\}, \text { which is finite }
$$

Case A $\cup B$:

$$
L(A \cup B)=L(A) \cup L(B)
$$

By the IH, each is finite, so their union is finite.

Star-free implies finite

Let A be a regular expression that does not use *. Then $L(A)$ is finite.

Proof: We proceed by structural induction on A.
Case AB:

$$
\mathrm{L}(\mathrm{AB})=\{x: \exists y \in L(A), \exists z \in L(B)(x=y \bullet z)\}
$$

By the IH, L(A) and L(B) are finite.

Every element of $\mathrm{L}(\mathrm{AB})$ is covered by a pair (y, z) where $y \in L(A)$ and $z \in L(B)$, so $\mathrm{L}(\mathrm{AB})$ is finite.

Finite languages vs Regular Expressions

Key takeaways:

- Regular expressions can represent all finite languages
- To prove a language is represented by a regular expression, just describe the regular expression.
- Regular expressions are more powerful than finite languages (e.g., 0* is an infinite language)
- To prove something about all regular expressions, use structural induction on the syntax.

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();
[01] a 0 or a $1 \wedge$ start of string $\$$ end of string
[0-9] any single digit \. period
, comma \-minus
. any single character
$a b \quad a$ followed by b
(a|b) a orb
a? zero or one of a
$(A \cup \varepsilon)$
a* zero or more of a A*
a+ one or more of a $\mathbf{A A}^{*}$
- e.g. ^[\-+]? [0-9]*(\. $\$, $)$? [0-9]+\$

General form of decimal number e.g. 9.12 or $-9,8$ (Europe)

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
- Palindromes
- Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
- Matched parentheses
- Properly formed arithmetic expressions
- etc.

