CSE 311.: Foundations of Computing

Topic 9: Languages

OH NO! THE KILLER || BUT TO FIND THEM WED HAVE T0 SEARCH
WHENEVER T LEARN A | | MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
NEW SKILL T CoNCoCT | | HER ON VACATION ! smrrf; FORMATTED LIKE AN ADDRESS!

== PR et
Commess | (R
o (Y
N K
m R R s A

Theoretical Computer Science

Strings

 An alphabet X is any finite set of characters

 The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000,001, .. and *’

 2* is defined recursively by
— Basis: £ € X* (¢ is the empty string, i.e., “”)
— Recursive: ifw e 2*,a € 2, thenwa € 2*

Languages: Sets of Strings

* Subsets of strings are called languages

* Examples:
— >" = All strings over alphabet X
— Palindromes over X~
— Binary strings that don’t have a O aftera 1
— Binary strings with an equal # of O’'s and 1's
— Legal variable names in Java/C/C++
— Syntactically correct Java/C/C++ programs
— Valid English sentences

Foreword on Intro to Theory C.S.

* Look at different ways of defining languages

 See which are more expressive than others
— i.e., which can define more languages

e Later: connect ways of defining languages to
different types of (restricted) computers

— computers capable of recognizing those languages
I.e., distinguishing strings in the language from not

 Consequence: computers that recognize more
expressive languages are more powerful

Palindromes

Palindromes are strings that are the same when
read backwards and forwards

Basis:

e is a palindrome
any a € 2 is a palindrome

Recursive step:

If p is a palindrome,
then apa is a palindrome for every a € 2

Regular Expressions

Regular expressions over X

* Basis:
€ is a regular expression (could also include &)
a is a regular expression forany a € X

* Recursive step:
If A and B are regular expressions, then so are:
AUB
AB
A*

Each Regular Expression is a “pattern”

€ matches only the empty string
a matches only the one-character string a

A U B matches all strings that either A matches
or B matches (or both)

AB matches all strings that have a first part that A
matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another (e U A U AA U AAA U ...)

[Definition of the language]

matched by a regular expression

Language of a Regular Expression

The language defined by a regular expression:
L(e) = {¢}
L(a) = {a}
LLAUB) = L(A) U L(B)
L(AB) ={x : 3y € L(A),3z€ L(B) (x =y * z)}
L(A") = Up=o L(A™)
A" defined recursively by
A =0
ANt — An gy

Examples

001*

O*1*

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

Oouilo0m0ulo

(0*1*)*

Examples

Oouilo0m0ulo

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings

Examples

* All binary strings that contain 0110

(Ou1)*0110 (0w 1)*

* All binary strings that begin with a string of doubled
characters (00 or 11) followed by 01010 or 10001

(00 LU 11)* (01010 10001) (O U 1)*

Examples

* All binary strings that have an even # of 1’s

e.g., 0*(10*10*)*

* All binary strings that don’t contain 101

e.g., 0%(1 U 1000*)*(e U 10)

at least two Os between 1s

Finite languages vs Regular Expressions

* All finite languages have a regular expression.

(a language is finite if its elements can be put into a list)
Why?
* Given a list of strings s, s-, ..., S,
Construct the regular expression
s;Us,U..Us,

(Could make this formal by induction on n)

Finite languages vs Regular Expressions

* Every regular expression that does not use *
generates a finite language.

Why?

* Prove by structural induction on the syntax of regular
expressions!

Star-free implies finite

Let A be a regular expression that does not use *. Then
L(A) is finite.

Proof: We proceed by structural induction on A.

Case ¢: L(€) = {&}, which is finite
Case a: L(a) = {a}, which is finite
Case A U B:

L(AU B)=L(A) U L(B)
By the IH, each is finite, so their union is finite.

Star-free implies finite

Let A be a regular expression that does not use *. Then
L(A) is finite.

Proof: We proceed by structural induction on A.
Case AB:
L(AB) ={x : 3y € L(A),3z€ L(B) (x =y ¢ z)}
By the IH, L(A) and L(B) are finite.

Every element of L(AB) is covered by a pair (y, z) where
y € L(A) and z € L(B), so L(AB) is finite.

(No case for A*!)

Finite languages vs Regular Expressions

Key takeaways:

— Regular expressions can represent all finite languages

— To prove a language is represented by a regular
expression, just describe the regular expression.

— Regular expressions are more powerful than finite
languages (e.g., 0* is an infinite language)

— To prove something about all regular expressions, use
structural induction on the syntax.

Regular Expressions in Practice

« Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Used in grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral “startofstring $ end ofstring

[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(al|b) aorb (A U B)
a? zero or one of a (AU g)
ax zero or more of a A*

a+ one or more of a AA*

* eg ~[\-+]1?2[0-91*(\.|\,)?[0-9]+S
General form of decimal number e.g. 9.12 or -9,8 (Europe)

Limitations of Regular Expressions

* Not all languages can be specified by regular
expressions

* Even some easy things like

— Palindromes
— Strings with equal number of O's and 1’s

 But also more complicated structures in
programming languages
— Matched parentheses
— Properly formed arithmetic expressions
— efc.

