
CSE 311: Foundations of Computing

Topic 9:  Languages



Theoretical Computer Science



Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, …  and “”

•  S* is defined recursively by
– Basis: ε	Î	S∗ (ε is the empty string, i.e., “”)
– Recursive:  if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Languages:  Sets of Strings

• Subsets of strings are called languages
• Examples:
– S*	=	All strings over alphabet S
– Palindromes over S
– Binary strings that don’t have a 0 after a 1
– Binary strings with an equal # of 0’s and 1’s
– Legal variable names in Java/C/C++
– Syntactically correct Java/C/C++ programs
– Valid English sentences



Foreword on Intro to Theory C.S.

• Look at different ways of defining languages
• See which are more expressive than others
– i.e., which can define more languages

• Later: connect ways of defining languages to 
different types of (restricted) computers
– computers capable of recognizing those languages

i.e., distinguishing strings in the language from not

• Consequence: computers that recognize more 
expressive languages are more powerful



Palindromes

Palindromes are strings that are the same when 
read backwards and forwards

Basis: 
 ε is a palindrome
  any 𝑎	∈ S is a palindrome

 Recursive step:
   If 𝑝 is a palindrome,
   then 𝑎𝑝𝑎 is a palindrome for every 𝑎 ∈ S



Regular Expressions

Regular expressions over S
•  Basis:

   e is a regular expression   (could also include Æ)
   a is a regular expression for any a Î S

• Recursive step:
If A and B are regular expressions, then so are:

A È B
AB
A*



Each Regular Expression is a “pattern”

e matches only the empty string
a matches only the one-character string a
A È B matches all strings that either A matches 

or B matches (or both)
AB matches all strings that have a first part that A 

matches followed by a second part that B 
matches

A* matches all strings that have any number of 
strings (even 0) that A matches, one after 
another (e	È A	È AA	È AAA È	…)

Definition of the language 
matched by a regular expression



Language of a Regular Expression

The language defined by a regular expression:

 L ε = {𝜀}
 L 𝑎 = {𝑎}
 L 𝐴 ∪ 𝐵 = 𝐿(𝐴) ∪ 𝐿(𝐵)
 L 𝐴𝐵 = {𝑥	 ∶ 	 ∃𝑦 ∈ 𝐿(𝐴), ∃𝑧 ∈ 𝐿 𝐵 𝑥 = 𝑦 • 𝑧 }
 L 𝐴∗ = ⋃"#$

% 𝐿(𝐴")
   𝐴!	defined recursively by
   𝐴" = ∅
   𝐴!#$ = 𝐴!𝐴



Examples

001*

0*1*



Examples

001*

0*1*

{00, 001, 0011, 00111, …}

Any number of 0’s followed by any number of 1’s



Examples

(0 È 1) 0 (0 È 1) 0
                    

(0*1*)*



Examples

(0 È 1) 0 (0 È 1) 0
                    

(0*1*)*

{0000, 0010, 1000, 1010}

All binary strings



Examples

• All binary strings that contain 0110

• All binary strings that begin with a string of doubled 
characters (00 or 11) followed by 01010 or 10001

(0 È 1)* 0110 (0 È 1)*

(00 È 11)* (01010 È 10001) (0 È 1)*



Examples

• All binary strings that have an even # of 1’s

• All binary strings that don’t contain 101

e.g.,  0*(10*10*)*

e.g.,  0*(1 ⋃ 1000*)*(ε ⋃ 10)

at least two 0s between 1s



Finite languages vs Regular Expressions

• All finite languages have a regular expression. 
     (a language is finite if its elements can be put into a list)

Why?

• Given a list of strings s1, s2, …, sn

Construct the regular expression 

      s1 ∪ s2 ∪ … ∪ sn

(Could make this formal by induction on n)



Finite languages vs Regular Expressions

• Every regular expression that does not use * 
generates a finite language.

Why?

• Prove by structural induction on the syntax of regular 
expressions!



Star-free implies finite

Let A be a regular expression that does not use *. Then 
L(A) is finite.

Proof: We proceed by structural induction on A.

Case ε:   

Case a:

Case A ∪ B:

L(ε) = {ε}, which is finite

L(a) = {a}, which is finite

L(A ∪ B) = L(A) ∪ L(B)
 By the IH, each is finite, so their union is finite.



Star-free implies finite

Let A be a regular expression that does not use *. Then 
L(A) is finite.

Proof: We proceed by structural induction on A.
Case AB:   
  L(AB) = {𝑥	 ∶ 	 ∃𝑦 ∈ 𝐿(𝐴), ∃𝑧 ∈ 𝐿 𝐵 𝑥 = 𝑦 • 𝑧 } 
 By the IH, L(A) and L(B) are finite. 

 Every element of L(AB) is covered by a pair (y, z) where
   𝑦 ∈ 𝐿(𝐴) and 𝑧 ∈ 𝐿(𝐵), so L(AB) is finite.
 

(No case for A*!)



Finite languages vs Regular Expressions

Key takeaways:

– Regular expressions can represent all finite languages

– To prove a language is represented by a regular 
expression, just describe the regular expression.

– Regular expressions are more powerful than finite 
languages (e.g., 0* is an infinite language)

– To prove something about all regular expressions, use 
structural induction on the syntax.



Regular Expressions in Practice

• Used to define the “tokens”: e.g., legal variable names, 
keywords in programming languages and compilers

• Used in grep, a program that does pattern matching 
searches in UNIX/LINUX

• Pattern matching using regular expressions is an essential 
feature of PHP

• We can use regular expressions in programs to process 
strings!



Regular Expressions in Java

• Pattern p = Pattern.compile("a*b"); 
• Matcher m = p.matcher("aaaaab"); 
• boolean b = m.matches();

[01]     a 0 or a 1     ^ start of string     $ end of string
[0-9]   any single digit       \.   period    \,  comma  \- minus
. any single character
ab         a followed by b            (AB)
(a|b)  a or b      (A È B)
a?       zero or one of a            (A È	e)
a*       zero or more of a          A*
a+       one or more of a          AA* 

• e.g.   ^[\-+]?[0-9]*(\.|\,)?[0-9]+$      
               General form of decimal number  e.g.  9.12  or -9,8 (Europe)



Limitations of Regular Expressions

• Not all languages can be specified by regular 
expressions

• Even some easy things like 
– Palindromes
– Strings with equal number of 0’s and 1’s

• But also more complicated structures in 
programming languages
– Matched parentheses
– Properly formed arithmetic expressions
– etc.


