CSE 311: Foundations of Computing

Topic 9: Languages

Theoretical Computer Science

Strings

- An alphabet ∑ is any finite set of characters
- The set Σ* of strings over the alphabet Σ
 - example: {0,1}* is the set of binary strings
 0, 1, 00, 01, 10, 11, 000, 001, ... and ""
- Σ* is defined recursively by
 - Basis: $\varepsilon \in \Sigma^*$ (ε is the empty string, i.e., "")
 - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Languages: Sets of Strings

- Subsets of strings are called languages
- Examples:
 - $-\Sigma^*$ = All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Binary strings with an equal # of 0's and 1's
 - Legal variable names in Java/C/C++
 - Syntactically correct Java/C/C++ programs
 - Valid English sentences

Foreword on Intro to Theory C.S.

- Look at different ways of defining languages
- See which are more expressive than others
 - i.e., which can define more languages
- Later: connect ways of defining languages to different types of (restricted) computers
 - computers capable of recognizing those languages
 i.e., distinguishing strings in the language from not
- Consequence: computers that recognize more expressive languages are more powerful

Palindromes

Palindromes are strings that are the same when read backwards and forwards

Basis:

 ε is a palindrome any $a \in \Sigma$ is a palindrome

Recursive step:

If p is a palindrome, then apa is a palindrome for every $a \in \Sigma$

Regular Expressions

Regular expressions over Σ

Basis:

```
\epsilon is a regular expression (could also include \varnothing) \alpha is a regular expression for any \alpha \in \Sigma
```

Recursive step:

```
If A and B are regular expressions, then so are:
```

 $A \cup B$

AB

A*

Each Regular Expression is a "pattern"

- ε matches only the empty string
- a matches only the one-character string a
- A ∪ B matches all strings that either A matches or B matches (or both)
- AB matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another ($\varepsilon \cup A \cup AA \cup AAA \cup ...$)

Definition of the *language* matched by a regular expression

Language of a Regular Expression

The language defined by a regular expression:

$$\begin{split} & L(\varepsilon) = \{\varepsilon\} \\ & L(a) = \{a\} \\ & L(A \cup B) = L(A) \cup L(B) \\ & L(AB) = \{x : \exists y \in L(A), \exists z \in L(B) \ (x = y \bullet z)\} \\ & L(A^*) = \bigcup_{n=0}^{\infty} L(A^n) \\ & A^n \text{ defined recursively by} \\ & A^0 = \emptyset \\ & A^{n+1} = A^n A \end{split}$$

001*

0*1*

001*

{00, 001, 0011, 00111, ...}

0*1*

Any number of 0's followed by any number of 1's

$$(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$$

$$(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$$

{0000, 0010, 1000, 1010}

$$(0*1*)*$$

All binary strings

All binary strings that contain 0110

$$(0 \cup 1)* 0110 (0 \cup 1)*$$

 All binary strings that begin with a string of doubled characters (00 or 11) followed by 01010 or 10001

$$(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$$

All binary strings that have an even # of 1's

e.g.,
$$0*(10*10*)*$$

All binary strings that don't contain 101

e.g.,
$$0*(1 \cup 1000*)*(\epsilon \cup 10)$$

at least two 0s between 1s

Finite languages vs Regular Expressions

All finite languages have a regular expression.

(a language is finite if its elements can be put into a list)

Why?

Given a list of strings s₁, s₂, ..., s_n

Construct the regular expression

$$s_1 \cup s_2 \cup ... \cup s_n$$

(Could make this formal by induction on n)

Finite languages vs Regular Expressions

 Every regular expression that does not use * generates a finite language.

Why?

Prove by structural induction on the syntax of regular expressions!

Star-free implies finite

Let A be a regular expression that does not use *. Then L(A) is finite.

Proof: We proceed by structural induction on A.

Case ε : $L(\varepsilon) = {\varepsilon}$, which is finite

Case a: $L(a) = \{a\}$, which is finite

Case A ∪ **B**:

 $L(A \cup B) = L(A) \cup L(B)$

By the IH, each is finite, so their union is finite.

Star-free implies finite

Let A be a regular expression that does not use *. Then L(A) is finite.

Proof: We proceed by structural induction on A.

Case AB:

$$L(AB) = \{x : \exists y \in L(A), \exists z \in L(B) (x = y \bullet z)\}\$$

By the IH, L(A) and L(B) are finite.

Every element of L(AB) is covered by a pair (y, z) where $y \in L(A)$ and $z \in L(B)$, so L(AB) is finite.

(No case for A*!)

Finite languages vs Regular Expressions

Key takeaways:

- Regular expressions can represent all finite languages
- To prove a language is represented by a regular expression, just describe the regular expression.
- Regular expressions are more powerful than finite languages (e.g., 0* is an infinite language)
- To prove something about all regular expressions, use structural induction on the syntax.

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in **grep**, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

```
Pattern p = Pattern.compile("a*b");
  Matcher m = p.matcher("aaaaab");
 boolean b = m.matches();
   [01] a 0 or a 1 ^ start of string $ end of string
   [0-9] any single digit \. period \, comma \- minus
          any single character
   ab a followed by b
                                (AB)
                              (\mathsf{A} \cup \mathsf{B})
   (a|b) a or b
   a? zero or one of a (A \cup \varepsilon)
   a* zero or more of a
                                A*
   a+ one or more of a AA*
e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
       General form of decimal number e.g. 9.12 or -9,8 (Europe)
```

Limitations of Regular Expressions

- Not all languages can be specified by regular expressions
- Even some easy things like
 - Palindromes
 - Strings with equal number of 0's and 1's
- But also more complicated structures in programming languages
 - Matched parentheses
 - Properly formed arithmetic expressions
 - etc.