## CSE 311: Foundations of Computing

## Topic 8: Recursive Data \& Functions



## Recursive definitions of functions

- $0!=1 ;(n+1)!=(n+1) \cdot n!$ for all $n \geq 0$.
- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$.
- $G(0)=1 ; G(n+1)=2 \cdot G(n)$ for all $n \geq 0$.
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$.


## Prove $n!\leq n^{n}$ for all $n \geq 1$

1. Let $P(n)$ be " $n!\leq n^{n "}$. We will show that $P(n)$ is true for all integers $\mathrm{n} \geq 1$ by induction.
2. Base Case ( $n=1$ ): $\quad 1!=1 \cdot 0!=1 \cdot 1=1=1^{1}$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. l.e., suppose $k!\leq k^{k}$.

## Prove $n!\leq n^{n}$ for all $n \geq 1$

1. Let $P(n)$ be " $n!\leq n^{n "}$. We will show that $P(n)$ is true for all integers $n \geq 1$ by induction.
2. Base Case ( $n=1$ ): $1!=1 \cdot 0!=1 \cdot 1=1=1^{1}$ so $P(1)$ is true.
3. Inductive Hypothesis: Suppose that $P(k)$ is true for some arbitrary integer $k \geq 1$. I.e., suppose $k!\leq k^{k}$.
4. Inductive Step:

Goal: Show $P(k+1)$, i.e. show $(k+1)!\leq(k+1)^{k+1}$

$$
\begin{aligned}
(k+1)! & =(k+1) \cdot k! & & \text { by definition of ! } \\
& \leq(k+1) \cdot k^{k} & & \text { by the } I H \\
& \leq(k+1) \cdot(k+1)^{k} & & \text { since } k \geq 0 \\
& =(k+1)^{k+1} & &
\end{aligned}
$$

Therefore $P(k+1)$ is true.
5. Thus $P(n)$ is true for all $n \geq 1$, by induction.

## More Recursive Definitions

Suppose that $h: \mathbb{N} \rightarrow \mathbb{R}$.
Then we have familiar summation notation:
$\sum_{i=0}^{0} h(i)=h(0)$
$\sum_{i=0}^{n+1} h(i)=h(n+1)+\sum_{i=0}^{n} h(i)$ for $n \geq 0$

There is also product notation:
$\prod_{i=0}^{0} h(i)=h(0)$
$\prod_{i=0}^{n+1} h(i)=h(n+1) \cdot \prod_{i=0}^{n} h(i)$ for $n \geq 0$

## Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$



## Fibonacci Numbers

$$
\begin{aligned}
& f_{0}=0 \\
& f_{1}=1 \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq 2
\end{aligned}
$$

Tamás Görbe
@TamasGorbe
A Mathematician's Way* of Converting Miles to Kilometers
$3 \mathrm{mi} \approx 5 \mathrm{~km}$
$5 \mathrm{mi} \approx 8 \mathrm{~km}$
$f_{n} \mathrm{mi} \approx f_{n+1} \mathrm{~km}$
$8 \mathrm{mi} \approx 13 \mathrm{~km}$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n " .}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n " .}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer $j$ from 0 to $k$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer $j$ from 0 to $k$.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1}<2^{k+1}$

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n " .}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer $j$ from 0 to $k$.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

Case $k+1=1$ :
Case $k+1 \geq 2$ :

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n " .}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer $j$ from 0 to $k$.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1}<2^{k+1}$

Case $k+1=1$ : Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$ :

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n " .}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer $j$ from 0 to $k$.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

Case $k+1=1$ : Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$ : Then $f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& <2^{k}+2^{k-1} \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k} \\
& =2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true in this case.
These are the only cases so $P(k+1)$ follows.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n "}$. We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Case: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 0$, we have $f_{j}<2^{j}$ for every integer $j$ from 0 to $k$.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

Case $k+1=1$ : Then $f_{1}=1<2=2^{1}$ so $P(k+1)$ is true here.
Case $k+1 \geq 2$ : Then $f_{k+1}=f_{k}+f_{k-1}$ by definition

$$
\begin{aligned}
& <2^{k}+2^{k-1} \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true in this case.
These are the only cases so $P(k+1)$ follows.
5. Therefore by strong induction, $f_{n}<2^{n}$ for all integers $n \geq 0$.

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Inductive Proofs with Multiple Base Cases

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by induction."
2. "Base Cases:" Prove $P(b), P(b+1), \ldots, P(c)$
3. "Inductive Hypothesis:

Assume $P(k)$ is true for an arbitrary integer $k \geq c$,
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are using it. (Don't assume $P(k+1)$ !!)
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

## Inductive Proofs With Multiple Base Cases

1. "Let $P(n)$ be... . We will show that $P(n)$ is true for all integers $n \geq b$ by strong induction."
2. "Base Cases:" Prove $P(b), P(b+1), \ldots, P(c)$
3. "Inductive Hypothesis:

Assume that for some arbitrary integer $k \geq c$.
$P(j)$ is true for every integer $j$ from $b$ to $k$ "
4. "Inductive Step:" Prove that $P(k+1)$ is true:

Use the goal to figure out what you need.
Make sure you are using I.H. (that $P(b), \ldots, P(k)$ are true) and point out where you are using it.
(Don't assume $P(k+1)!!$ )
5. "Conclusion: $P(n)$ is true for all integers $n \geq b$ "

## Bounding Fibonacci I: $f_{n}<2^{n}$ for all $n \geq 0$

1. Let $P(n)$ be " $f_{n}<2^{n}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 0$ by strong induction.
2. Base Cases: $f_{0}=0<1=2^{0}$ so $P(0)$ is true.

$$
f_{1}=1<2=2^{1} \text { so } P(1) \text { is true. }
$$

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 1$, we have $f_{j}<2^{j}$ for every integer $j$ from 0 to $k$.
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{k}+1)$; that is, $\mathrm{f}_{\mathrm{k}+1}<2^{\mathrm{k}+1}$

We have $f_{k+1}=f_{k}+f_{k-1} \quad$ by definition since $k+1 \geq 2$

$$
\begin{aligned}
& <2^{k}+2^{k-1} \quad \text { by the IH since } k-1 \geq 0 \\
& <2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}
\end{aligned}
$$

so $P(k+1)$ is true.
5. Therefore, by strong induction, $\mathrm{f}_{\mathrm{n}}<2^{\mathrm{n}}$ for all integers $\mathrm{n} \geq 0$.

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{\boldsymbol{n}}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer $j$ from 2 to $k$.

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer $j$ from 2 to $k$.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $\mathrm{n} \geq 2$ by strong induction.
2. Base Case: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ is true.
3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 2, P(j)$ is true for every integer $j$ from 2 to $k$.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

No need for cases for the definition here:

$$
f_{k+1}=f_{k}+f_{k-1} \text { since } k+1 \geq 2
$$

Now just want to apply the IH to get $P(k)$ and $P(k-1)$
Problem: Though we can get $P(k)$ since $k \geq 2$,
$k-1$ may only be 1 so we can't conclude $P(k-1)$
Solution: Separate cases for when $k-1=1$ (or $k+1=3$ ).

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $P(n)$ be " $f_{n} \geq 2^{n / 2-1}$ ". We prove that $P(n)$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ holds

$$
f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1} \text { so } P(3) \text { holds }
$$

3. Inductive Hypothesis: Assume that for some arbitrary integer $k \geq 3, P(j)$ is true for every integer $j$ from 2 to $k$.
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

$$
\begin{aligned}
& \boldsymbol{f}_{0}=\mathbf{0} \quad \boldsymbol{f}_{1}=\mathbf{1} \\
& \boldsymbol{f}_{n}=\boldsymbol{f}_{n-1}+\boldsymbol{f}_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Bounding Fibonacci II: $f_{n} \geq 2^{n / 2-1}$ for all $n \geq 2$

1. Let $\mathrm{P}(\mathrm{n})$ be " $\mathrm{f}_{\mathrm{n}} \geq 2^{\mathrm{n} / 2-1}$ ". We prove that $\mathrm{P}(\mathrm{n})$ is true for all integers $n \geq 2$ by strong induction.
2. Base Cases: $f_{2}=f_{1}+f_{0}=1$ and $2^{2 / 2-1}=2^{0}=1$ so $P(2)$ holds

$$
f_{3}=f_{2}+f_{1}=2 \geq 2^{1 / 2}=2^{3 / 2-1}=2^{(k+1) / 2-1} \text { so } P(3) \text { holds }
$$

3. Inductive Hypothesis: Assume that for some arbitrary integer $\mathrm{k} \geq 3, \mathrm{P}(\mathrm{j})$ is true for every integer j from 2 to k .
4. Inductive Step: Goal: Show $P(k+1)$; that is, $f_{k+1} \geq 2^{(k+1) / 2-1}$

We have $f_{k+1}=f_{k}+f_{k-1} \quad$ by definition since $k+1 \geq 2$

$$
\begin{aligned}
& \geq 2^{k / 2 /-1}+2^{(k-1) / 2-1} \quad \text { by the IH since } k-1 \geq 2 \\
& \geq 2^{(k-1) / 2-1}+2^{(k-1) / 2-1}=2^{(k-1) / 2}=2^{(k+1) / 2-1}
\end{aligned}
$$

so $\mathrm{P}(\mathrm{k}+1)$ is true.
5. Therefore by strong induction, $f_{n} \geq 2^{n / 2-1}$ for all integers $n \geq 2$.

$$
\begin{aligned}
& f_{0}=\mathbf{0} \quad f_{1}=\mathbf{1} \\
& f_{n}=f_{n-1}+f_{n-2} \text { for all } n \geq \mathbf{2}
\end{aligned}
$$

## Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes $n$ steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

## Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes $n$ steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

Why does this help us bound the running time of Euclid's Algorithm?

We already proved that $f_{n} \geq 2^{n / 2-1}$ so $f_{n+1} \geq 2^{(n-1) / 2}$
Therefore: if Euclid's Algorithm takes $n$ steps
for $\operatorname{gcd}(a, b)$ with $a \geq b>0$
then $a \geq 2^{(n-1) / 2}$
so $(n-1) / 2 \leq \log _{2} a$ or $n \leq 1+2 \log _{2} a$
i.e., \# of steps $\leq 1+$ twice the \# of bits in $a$.

## Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes $n$ steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

An informal way to get the idea: Consider an n step gcd calculation starting with $r_{n+1}=a$ and $r_{n}=b$ :

$$
\begin{aligned}
r_{n+1} & =q_{n} r_{n}+r_{n-1} \\
r_{n} & =q_{n-1} r_{n-1}+r_{n-2} \\
& \cdots \\
r_{3} & =q_{2} r_{2}+r_{1} \\
r_{2} & =q_{1} r_{1}
\end{aligned}
$$

For all $k \geq 2, r_{k-1}=r_{k+1} \bmod r_{k}$

Now $r_{1} \geq 1$ and each $q_{k}$ must be $\geq 1$. If we replace all the $q_{k}$ 's by 1 and replace $r_{1}$ by 1 , we can only reduce the $r_{k}$ 's. After that reduction, $r_{k}=f_{k}$ for every $k$.

## Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes $n$ steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

We go by strong induction on $n$.
Let $P(n)$ be " $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $n$ steps $\rightarrow a \geq f_{n+1}$ " for all $n \geq 1$.
Base Case: $n=1$ Suppose Euclid's Algorithm with $a \geq b>0$ takes 1 step. By assumption, $a \geq b \geq 1=f_{2}$ so $P(1)$ holds.

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$

## Running time of Euclid's algorithm

Theorem: Suppose that Euclid's Algorithm takes $n$ steps for $\operatorname{gcd}(a, b)$ with $a \geq b>0$. Then, $a \geq f_{n+1}$.

We go by strong induction on $n$.
Let $P(n)$ be " $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $n$ steps $\rightarrow a \geq f_{n+1}$ " for all $n \geq 1$.
Base Case: $n=1$ Suppose Euclid's Algorithm with $a \geq b>0$ takes 1 step. By assumption, $a \geq b \geq 1=f_{2}$ so $P(1)$ holds.

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$

Inductive Step: We want to show: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $a \geq f_{k+2}$.

## Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $k \geq 1, P(j)$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$
Inductive Step: Goal: if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Now if $k+1=2$, then Euclid's algorithm on $a$ and $b$ can be written as

$$
a=q_{2} b+r_{1}
$$

$$
b=q_{1} r_{1}
$$

and $r_{1}>0$.

Also, since $a \geq b>0$, we must have $q_{2} \geq 1$ and $b \geq 1$.
So $a=q_{2} b+r_{1} \geq b+r_{1} \geq 1+1=2=f_{3}=f_{k+2}$ as required.

## Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $\mathrm{k} \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers $j$ s.t. $1 \leq j \leq k$
Inductive Step: Goal: if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})$ with $\mathrm{a} \geq \mathrm{b}>0$ takes $\mathrm{k}+1$ steps, then $\mathrm{a} \geq \mathrm{f}_{\mathrm{k}+2}$.

Next suppose that $k+1 \geq 3$ so for the first 3 steps of Euclid's algorithm on $a$ and $b$ we have

$$
\begin{aligned}
& a=q_{k+1} b+r_{k} \\
& b=q_{k} r_{k}+r_{k-1} \\
& r_{k}=q_{k-1} r_{k-1}+r_{k-2}
\end{aligned}
$$

and there are k-2 more steps after this.

## Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $k \geq 1, P(j)$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$
Inductive Step: Goal: if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Next suppose that $k+1 \geq 3$ so for the first 3 steps of Euclid's algorithm on $a$ and $b$ we have

$$
\begin{aligned}
& a=q_{k+1} b+r_{k} \\
& b=q_{k} r_{k}+r_{k-1} \\
& r_{k}=q_{k-1} r_{k-1}+r_{k-2}
\end{aligned}
$$

and there are k-2 more steps after this. Note that this means that the $\operatorname{gcd}\left(b, r_{k}\right)$ takes $k$ steps and $\operatorname{gcd}\left(r_{k}, r_{k-1}\right)$ takes $k-1$ steps.

So since $k, k-1 \geq 1$, by the IH we have $b \geq f_{k+1}$ and $r_{k} \geq f_{k}$.

## Running time of Euclid's algorithm

Induction Hypothesis: Suppose that for some integer $k \geq 1, \mathrm{P}(\mathrm{j})$ is true for all integers j s.t. $1 \leq \mathrm{j} \leq \mathrm{k}$
Inductive Step: Goal: if $\operatorname{gcd}(a, b)$ with $a \geq b>0$ takes $k+1$ steps, then $a \geq f_{k+2}$.

Next suppose that $k+1 \geq 3$ so for the first 3 steps of Euclid's algorithm on $a$ and $b$ we have

$$
\begin{aligned}
& a=q_{k+1} b+r_{k} \\
& b=q_{k} r_{k}+r_{k-1} \\
& r_{k}=q_{k-1} r_{k-1}+r_{k-2}
\end{aligned}
$$

and there are k-2 more steps after this. Note that this means that the $\operatorname{gcd}\left(b, r_{k}\right)$ takes $k$ steps and $\operatorname{gcd}\left(r_{k}, r_{k-1}\right)$ takes $k-1$ steps.

So since $k, k-1 \geq 1$, by the IH we have $b \geq f_{k+1}$ and $r_{k} \geq f_{k}$.
Also, since $a \geq b$, we must have $q_{k+1} \geq 1$.
So $a=q_{k+1} b+r_{k} \geq b+r_{k} \geq f_{k+1}+f_{k}=f_{k+2}$ as required.

## Last time: Recursive definitions of functions

- $0!=1 ;(n+1)!=(n+1) \cdot n!$ for all $n \geq 0$.
- $F(0)=0 ; F(n+1)=F(n)+1$ for all $n \geq 0$.
- $G(0)=1 ; G(n+1)=2 \cdot G(n)$ for all $n \geq 0$.
- $H(0)=1 ; H(n+1)=2^{H(n)}$ for all $n \geq 0$.


## Last time: Recursive definitions of functions

- Recursive functions allow general computation
- saw examples not expressible with simple expressions
- So far, we have considered only simple data
- inputs and outputs were just integers
- We need general data as well...
- these will also be described recursively
- will allow us to describe data of real programs e.g., strings, lists, trees, expressions, propositions, ...
- We'll start simple: sets of numbers


## Recursive Definitions of Sets (Data)

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

## Recursive Definition of Sets

Recursive definition of set $S$

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x+2 \in S$

The only elements in S are those that follow from the basis step and a finite number of recursive steps

## Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$
Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad(0,0) \in S,(1,1) \in S$
Recursive: If $(n-1, x) \in S$ and $(n, y) \in S$,
then $(n+1, x+y) \in S$.

## Recursive Definitions of Sets

Natural numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+1 \in S$
Even numbers
Basis: $\quad 0 \in S$
Recursive: If $x \in S$, then $x+2 \in S$

Powers of 3:
Basis: $1 \in S$
Recursive: If $x \in S$, then $3 x \in S$.
Basis: $\quad(0,0) \in S,(1,1) \in S$

Recursive: If $(\mathrm{n}-1, \mathrm{x}) \in \mathrm{S}$ and $(\mathrm{n}, \mathrm{y}) \in \mathrm{S}$, Fibonacci numbers then $(n+1, x+y) \in S$.

## Last time: Recursive definitions of functions

- Before, we considered only simple data
- inputs and outputs were just integers
- Proved facts about those functions with induction
$-n!\leq n^{n}$
$-f_{n}<2^{n}$ and $f_{n} \geq 2^{n / 2-1}$
- How do we prove facts about functions that work with more complex (recursively defined) data?
- we need a more sophisticated form of induction


## Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

## Structural Induction <br> $$
\begin{aligned} & \text { Basis: } 0 \in S \\ & \text { Recursive: If } x \in S \text {, then } x+2 \in S \end{aligned}
$$

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

## Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of $\mathbb{N}$
Basis: $0 \in \mathbb{N}$
Recursive step: If $k \in \mathbb{N}$ then $k+1 \in \mathbb{N}$

Structural induction follows from ordinary induction:

Define $Q(n)$ to be "for all $x \in S$ that can be constructed in at most $n$ recursive steps, $P(x)$ is true."

## Using Structural Induction

- Let $S$ be given by...
- Basis: $6 \in S ; 15 \in S$
- Recursive: if $x, y \in S$ then $x+y \in S$.

Claim: Every element of $S$ is divisible by 3 .

## Claim: Every element of $S$ is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

## Claim: Every element of $S$ is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true

## Claim: Every element of $S$ is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $\mathrm{P}(\mathrm{x}+\mathrm{y})$

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

## Claim: Every element of $S$ is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer $m$ and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer $n$.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

## Claim: Every element of $S$ is divisible by 3.

1. Let $P(x)$ be " $3 \mid x$ ". We prove that $P(x)$ is true for all $x \in S$ by structural induction.
2. Base Case: $3 \mid 6$ and $3 \mid 15$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ and $P(y)$ are true for some arbitrary $x, y \in S$
4. Inductive Step: Goal: Show $P(x+y)$

Since $P(x)$ is true, $3 \mid x$ and so $x=3 m$ for some integer $m$ and since $P(y)$ is true, $3 \mid y$ and so $y=3 n$ for some integer $n$.
Therefore $x+y=3 m+3 n=3(m+n)$ and thus $3 \mid(x+y)$.
Hence $P(x+y)$ is true.
5. Therefore by induction $3 \mid x$ for all $x \in S$.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

## Using Structural Induction

- Let $T$ be given by...
- Basis: $6 \in T ; 15 \in T$
- Recursive: if $x \in T$, then $x+6 \in T$ and $x+15 \in T$
- Two base cases and two recursive cases

Claim: Every element of $T$ is also in $S$.

## Claim: Every element of $T$ is an element of $S$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in T$ by structural induction.

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $6 \in T ; 15 \in T$
Recursive: if $x \in T$, then $x+6 \in T$ and $x+15 \in T$

## Claim: Every element of $T$ is an element of $S$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in T$ by structural induction.
2. Base Case: $6 \in S$ and $15 \in S$ so $P(6)$ and $P(15)$ are true

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $6 \in T ; 15 \in T$
Recursive: if $x \in T$, then $x+6 \in T$ and $x+15 \in T$

## Claim: Every element of $T$ is an element of $S$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in T$ by structural induction.
2. Base Case: $6 \in S$ and $15 \in S$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ is true for some arbitrary $x \in T$

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $6 \in T ; 15 \in T$
Recursive: if $x \in T$, then $x+6 \in T$ and $x+15 \in T$

## Claim: Every element of $T$ is an element of $S$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in T$ by structural induction.
2. Base Case: $6 \in S$ and $15 \in S$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ is true for some arbitrary $x \in T$
4. Inductive Step: Goal: Show $P(x+6)$ and $P(x+15)$

Basis: $6 \in S ; 15 \in S$
Recursive: if $x, y \in S$, then $x+y \in S$

Basis: $6 \in T ; 15 \in T$
Recursive: if $x \in T$, then $x+6 \in T$ and $x+15 \in T$

## Claim: Every element of $T$ is an element of $S$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in T$ by structural induction.
2. Base Case: $6 \in S$ and $15 \in S$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ is true for some arbitrary $x \in T$
4. Inductive Step: Goal: Show $P(x+6)$ and $P(x+15)$ Since $P(x)$ holds, we have $x \in S$. From the recursive step of $S$, we can see that $x+6 \in S$, so $P(x+6)$ is true, and we can see that $x+15 \in S$, so $P(x+15)$ is true.

Basis: $6 \in S ; 15 \in S \quad$ Basis: $6 \in T ; 15 \in T$
Recursive: if $x, y \in S$, then $x+y \in S$

Recursive: if $x \in T$, then $x+6 \in T$ and $x+15 \in T$

## Claim: Every element of $T$ is an element of $S$

1. Let $P(x)$ be " $x \in S$ ". We prove that $P(x)$ is true for all $x \in T$ by structural induction.
2. Base Case: $6 \in S$ and $15 \in S$ so $P(6)$ and $P(15)$ are true
3. Inductive Hypothesis: Suppose that $P(x)$ is true for some arbitrary $x \in T$
4. Inductive Step: Goal: Show $P(x+6)$ and $P(x+15)$ Since $P(x)$ holds, we have $x \in S$. From the recursive step of $S$, we can see that $x+6 \in S$, so $P(x+6)$ is true, and we can see that $x+15 \in S$, so $P(x+15)$ is true.
5. Therefore $P(x)$ for all $x \in T$ by induction.

Basis: $6 \in S ; 15 \in S \quad$ Basis: $6 \in T ; 15 \in T$
Recursive: if $x, y \in S$, then $x+y \in S$

Recursive: if $x \in T$, then $x+6 \in T$ and $x+15 \in T$

## Last time: Recursive Definitions

- Recursively defined functions and sets are our mathematical models of code and the data it uses
- any recursively defined set can be translated into a Java class
- any recursively defined function can be translated into a Java function some (but not all) can be written more cleanly as loops
- Can now do proofs about CS-specific objects


## Lists of Integers

- Basis: nil $\in$ List
- Recursive step:


## if $L \in$ List and $a \in \mathbb{Z}$, then $\mathrm{a}: \mathrm{L} \mathrm{L} \in$ List

Examples:

- nil
- 1 :: nil

1

- 1 :: 2 :: nil
- 1 :: 2 :: 3 :: nil
$1 \rightarrow 2$
$1 \rightarrow 2 \rightarrow 3$


## Functions on Lists

Length:

$$
\begin{aligned}
& \operatorname{len}(\text { nil }):=0 \\
& \operatorname{len}(\mathrm{a}:: \mathrm{L}):=\operatorname{len}(\mathrm{L})+1
\end{aligned}
$$

$$
\text { for any } L \in \text { List and } a \in \mathbb{Z}
$$

Concatenation:

$$
\begin{array}{lc}
\operatorname{concat(nil,~R)~:=R} & \text { for any } R \in \text { List } \\
\operatorname{concat}(a:: L, R):=a:: \operatorname{concat}(L, R) & \text { for any } L, R \in \text { List and } \\
& \text { any } a \in \mathbb{Z}
\end{array}
$$

## Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

| Basis nil $\in$ List |
| :--- |
| Recursive step: |
| if $\mathrm{L} \in$ List and $\mathrm{a} \in \mathbb{Z}$, |
| then $\mathrm{a}:: \mathrm{L} \in$ List |

Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P(w)$ holds for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

## Claim: $\operatorname{concat}(\mathrm{L}$, nil $)=\mathrm{L}$ for all $\mathrm{L} \in$ List

## Claim: $\operatorname{concat}(\mathrm{L}$, nil $)=\mathrm{L}$ for all $\mathrm{L} \in$ List

Let $P(L)$ be "concat $(L$, nil $)=L$ " .
We will prove $P(L)$ for all $L \in$ List by structural induction.

## Claim: $\operatorname{concat}(\mathrm{L}$, nil $)=\mathrm{L}$ for all $\mathrm{L} \in$ List

Let $\mathrm{P}(\mathrm{L})$ be "concat $(\mathrm{L}$, nil) $=\mathrm{L}$ ".
We will prove $P(L)$ for all $L \in$ List by structural induction.
Base Case (nil): By the definition of concat, we can see that concat(nil, nil) = nil, which is $\mathrm{P}($ nil $)$.

## Claim: concat $(\mathrm{L}$, nil $)=\mathrm{L}$ for all $\mathrm{L} \in$ List

Let $\mathrm{P}(\mathrm{L})$ be "concat $(\mathrm{L}$, nil $)=\mathrm{L}$ " .
We will prove $P(L)$ for all $L \in$ List by structural induction.
Base Case (nil): By the definition of concat, we can see that concat(nil, nil) = nil, which is $\mathrm{P}($ nil $)$.
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{L})$ is true for some arbitrary
$\mathrm{L} \in$ List, i.e., $\operatorname{concat}(\mathrm{L}$, nil $)=\mathrm{L}$.
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true for any $\mathrm{a} \in \mathbb{Z}$

## Claim: concat $(\mathrm{L}$, nil $)=\mathrm{L}$ for all $\mathrm{L} \in$ List

Let $\mathrm{P}(\mathrm{L})$ be "concat $(\mathrm{L}$, nil $)=\mathrm{L}$ " .
We will prove $P(L)$ for all $L \in$ List by structural induction.
Base Case (nil): By the definition of concat, we can see that concat(nil, nil) = nil, which is $\mathrm{P}($ nil $)$.

Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{L})$ is true for some arbitrary
$\mathrm{L} \in$ List, i.e., $\operatorname{concat}(\mathrm{L}$, nil $)=\mathrm{L}$.
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true for any $\mathrm{a} \in \mathbb{Z}$.
Let $a \in \mathbb{Z}$ be arbitrary. We can calculate as follows

$$
\begin{aligned}
\operatorname{concat}(\mathrm{a}:: \mathrm{L}, \text { nil) } & =\mathrm{a}:: \text { concat(L, nil)) } & & \text { def of concat } \\
& =\mathrm{a}:: \mathrm{L} & & \text { IH }
\end{aligned}
$$

which is $\mathrm{P}(\mathrm{a}:: \mathrm{L})$.
By induction, we have shown the claim holds for all $L \in$ List.

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $\mathrm{P}(\mathrm{L})$ be "len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{R} \in \operatorname{List}$ " . We prove $P(L)$ for all $L \in$ List by structural induction.

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $P(L)$ be "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then,

## Length:

len(nil) :=0
$\operatorname{len}(\mathrm{a}:: \mathrm{L}):=\operatorname{len}(\mathrm{L})+1$

## Concatenation:

concat(nil, R) := R
concat(a :: L, R) :=a :: $\operatorname{concat(L,R)~}$

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $\mathrm{P}(\mathrm{L})$ be "len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{R} \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then,

$$
\begin{aligned}
\operatorname{len}(\operatorname{concat}(\text { nil, } R)) & =\operatorname{len}(R) & & \operatorname{def} \text { of con } \\
& =0+\operatorname{len}(R) & & \\
& =\operatorname{len}(n i l)+\operatorname{len}(R) & & \operatorname{def} \text { of len }
\end{aligned}
$$

Since R was arbitrary, P(nil) holds.

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $\mathrm{P}(\mathrm{L})$ be "len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{R} \in$ List" . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, $R$ ))
$=\operatorname{len}(R)=0+\operatorname{len}(R)=\operatorname{len}(n i l)+\operatorname{len}(R)$, showing $P(n i l)$.
Inductive Hypothesis: Assume that $P(L)$ is true for some arbitrary
$L \in$ List, i.e., len(concat(L, R)) $=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $R \in$ List.

## Claim: len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R) \quad$ for all $L, R \in \operatorname{List}$

Let $\mathrm{P}(\mathrm{L})$ be "len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{R} \in \operatorname{List}$ " . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R))
$=\operatorname{len}(R)=0+\operatorname{len}(R)=\operatorname{len}(n i l)+\operatorname{len}(R)$, showing $P($ nil $)$.
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{L})$ is true for some arbitrary
$L \in$ List, i.e., len(concat(L, R)) $=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List.
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true for any $\mathrm{a} \in \mathbb{Z}$.

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $\mathrm{P}(\mathrm{L})$ be "len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{R} \in \operatorname{List}$ " . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R))
$=\operatorname{len}(R)=0+\operatorname{len}(R)=\operatorname{len}(n i l)+\operatorname{len}(R)$, showing $P(n i l)$.
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{L})$ is true for some arbitrary
$L \in$ List, i.e., len(concat( $L, R$ )) $=\operatorname{len}(L)+\operatorname{len}(R)$ for all $R \in$ List.
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true for any $\mathrm{a} \in \mathbb{Z}$.
Let $a \in \mathbb{Z}$ and $R \in$ List be arbitrary. Then,

```
Length:
    len(nil) := 0
    len(a :: L) := len(L) + 1
```

Concatenation:
concat(nil, R) := R
$\operatorname{concat}(\mathrm{a}:: \mathrm{L}, \mathrm{R}):=\mathrm{a}:: \operatorname{concat}(\mathrm{L}, \mathrm{R})$

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L}, \mathrm{R} \in \operatorname{List}$

Let $\mathrm{P}(\mathrm{L})$ be "len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{R} \in \operatorname{List}$ " . We prove $P(L)$ for all $L \in$ List by structural induction.

Base Case (nil): Let $R \in$ List be arbitrary. Then, len(concat(nil, R))
$=\operatorname{len}(R)=0+\operatorname{len}(R)=\operatorname{len}(n i l)+\operatorname{len}(R)$, showing $P(n i l)$.
Inductive Hypothesis: Assume that $\mathrm{P}(\mathrm{L})$ is true for some arbitrary
$L \in$ List, i.e., len(concat(L, R)) $=$ len( $L$ ) + len $(R)$ for all $R \in$ List.
Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{a}:: \mathrm{L})$ is true for any $\mathrm{a} \in \mathbb{Z}$.
Let $a \in \mathbb{Z}$ and $R \in$ List be arbitrary. Then, we can calculate

$$
\begin{aligned}
\operatorname{len}(\operatorname{concat}(\mathrm{a}:: \mathrm{L}, \mathrm{R})) & =\operatorname{len}(\mathrm{a}:: \operatorname{concat}(\mathrm{L}, \mathrm{R})) & & \operatorname{def} \text { of con } \\
& =1+\operatorname{len}(\operatorname{concat}(\mathrm{L}, \mathrm{R})) & & \operatorname{def} \text { of len } \\
& =1+\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R}) & & \text { IH } \\
& =\operatorname{len}(\mathrm{a}:: L)+\operatorname{len}(\mathrm{R}) & & \operatorname{def} \text { of len }
\end{aligned}
$$

Since $R$ was arbitrary, we have shown $P(a:: L)$.
By induction, we have shown the claim holds for all $L \in$ List.

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L} \in \operatorname{List}$

Alternative Strategy:

- Do the direct proof outside the induction!

Let $R$ be an arbitrary list.
Prove $P(L)$ by structural induction, where $P(L)$ is "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ "

Since R was arbitrary, we have proven the claim.

## Claim: len $(\operatorname{concat}(\mathrm{L}, \mathrm{R}))=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$ for all $\mathrm{L} \in \operatorname{List}$

Let $R$ be an arbitrary list. We continue by induction.
Let $P(L)$ be "len $(\operatorname{concat}(L, R))=\operatorname{len}(L)+\operatorname{len}(R)$ ". We will prove $P(L)$ for all $L \in$ List by structural induction.
Base Case (nil): We have len(concat(nil, R)) $=\operatorname{len}(R)=0+$ $\operatorname{len}(R)=\operatorname{len}($ nil $)+\operatorname{len}(R)$, showing $P($ nil $)$.
Inductive Hypothesis: Assume that $P(L)$ is true for some arbitrary
$L \in \operatorname{List}$, i.e., len(concat(L, R)) $=\operatorname{len}(\mathrm{L})+\operatorname{len}(\mathrm{R})$.
Inductive Step: Let $a \in \mathbb{Z}$ be arbitrary. We can prove $P(a:: L)$ since

$$
\begin{aligned}
\operatorname{len}(\operatorname{concat}(a:: L, R)) & =\operatorname{len}(a:: \operatorname{concat}(L, R)) & & \text { def of concat } \\
& =1+\operatorname{len}(\operatorname{concat}(L, R)) & & \operatorname{def} \text { of len } \\
& =1+\operatorname{len}(L)+\operatorname{len}(R) & & \text { IH } \\
& =\operatorname{len}(a:: L)+\operatorname{len}(R) & & \operatorname{def} \text { of len }
\end{aligned}
$$

By induction, we have shown the claim holds for all $L \in$ List.
Since R was arbitrary, we have proven the claim.

## Rooted Binary Trees

- Basis:
- is a rooted binary tree


## Rooted Binary Trees

- Basis: - is a rooted binary tree
- Recursive step:



## Defining Functions on Rooted Binary Trees

- size(•) ::= 1

- height(•) ::= 0



## Last time: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step. Prove that $P(w)$ holds for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$

## Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height(T) }+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
```
size(` ) ::= 1
size (
```

height( $\cdot$ ) ::= 0
height $\left({ }_{c}\right):=1+\max \left\{\right.$ height $\left(T_{1}\right)$, height $\left.\left(T_{2}\right)\right\}$

## Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height(T) }+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\bullet)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\bullet)$ is true.

Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height(T) }+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\bullet)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees $T_{1}$ and $T_{2}$, i.e., size $\left(T_{k}\right) \leq 2^{\text {heigh }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

Goal: Prove $\mathrm{P}(\widehat{\star})$.

## Claim: For every rooted binary tree $T, \operatorname{size}(T) \leq 2^{\text {height(T) }+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\bullet)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees $T_{1}$ and $T_{2}$, i.e., size $\left(T_{k}\right) \leq 2^{\text {height }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

Goal: Prove $\mathrm{P}(\widehat{\star}, \widehat{\mathrm{A}})$.


```
size(•) ::= 1
size({
```

```
height(•) ::= 0
height (&,
```


## Claim: For every rooted binary tree $\mathbf{T}, \operatorname{size}(\mathrm{T}) \leq 2^{\text {height(T) }+1}-1$

1. Let $P(T)$ be "size $(T) \leq 2^{\text {height }(T)+1}-1$ ". We prove $P(T)$ for all rooted binary trees T by structural induction.
2. Base Case: $\operatorname{size}(\cdot)=1$, height $(\cdot)=0$, and $2^{0+1}-1=2^{1}-1=1$ so $P(\cdot)$ is true.
3. Inductive Hypothesis: Suppose that $P\left(T_{1}\right)$ and $P\left(T_{2}\right)$ are true for some rooted binary trees $T_{1}$ and $T_{2}$, i.e., size $\left(T_{k}\right) \leq 2^{\text {heigh }\left(T_{k}\right)+1}-1$ for $k=1,2$
4. Inductive Step:

By def, size $(\widehat{\rightarrow})=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right)$

$$
\leq 1+2^{\text {height }\left(T_{1}\right)+1}-1+2^{\text {height }\left(T_{2}\right)+1}-1
$$

by IH for $\mathrm{T}_{1}$ and $\mathrm{T}_{2}$
$\leq 2^{\text {height }\left(\mathbf{T}_{\mathbf{1}}\right)+1}+2^{\text {height }\left(\mathbf{T}_{2}\right)+1}-1$
$\leq 2\left(2^{\max \left(\text { height }\left(T_{1}\right), \text { height }\left(T_{2}\right)\right)+1}\right)-1$
$\left.\leq 2\left(2^{\text {height }(A)}\right)-1 \leq 2^{\operatorname{height}(A, ~} A\right)+1-1$
which is what we wanted to show.
5. So, the $P(T)$ is true for all rooted binary trees by structural induction.

## Strings

- An alphabet $\Sigma$ is any finite set of characters
- The set $\Sigma^{*}$ of strings over the alphabet $\Sigma$
- example: $\{0,1\}^{*}$ is the set of binary strings $0,1,00,01,10,11,000,001, \ldots$ and ""
- $\Sigma^{*}$ is defined recursively by
- Basis: $\varepsilon \in \Sigma^{*}$ ( $\varepsilon$ is the empty string, i.e., "")
- Recursive: if $w \in \Sigma^{*}, a \in \Sigma$, then $w a \in \Sigma^{*}$


## Last time: Structural Induction

How to prove $\forall x \in S, P(x)$ is true:
$\xrightarrow[\text { Recursive Steps: }]{\text { Basis: }} \varepsilon \in \Sigma^{*}$

$$
\text { if } w \in \Sigma^{*} \text { and } a \in \Sigma
$$ then $w a \in \Sigma^{*}$

Base Case: Show that $P(u)$ is true for all specific elements $u$ of $S$ mentioned in the Basis step

Inductive Hypothesis: Assume that $P$ is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that $P\left(w_{2}\right)$ hold's for each of the new elements $w$ constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

## Functions on Recursively Defined Sets (on $\Sigma^{*}$ )

Length:

$$
\begin{aligned}
& \operatorname{len}(\varepsilon)::=0 \\
& \operatorname{len}(w a)::=\operatorname{len}(w)+1 \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Concatenation:

$$
\begin{aligned}
& x \bullet \varepsilon::=x \text { for } x \in \Sigma^{*} \\
& x \bullet w a::=(x \bullet w) a \text { for } x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Reversal:

$$
\begin{aligned}
& \varepsilon^{R}::=\varepsilon \\
& (w a)^{R}::=\varepsilon a \bullet w^{R} \text { for } w \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Number of c's in a string:

$$
\begin{array}{lc}
\#_{c}(\varepsilon)::=0 & \text { separate cases for } \\
\#_{c}(w c)::=\#_{c}(w)+1 \text { for } w \in \Sigma^{*} & \text { c vs } a \neq c \\
\#_{c}(w a)::=\#_{c}(w) \text { for } w \in \Sigma^{*}, a \in \Sigma, a \neq c &
\end{array}
$$

## Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{y})$ be "len $(\mathrm{x} \bullet \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $\mathrm{x} \in \Sigma^{*}$ ".
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case $(y=\varepsilon)$ : Let $x \in \Sigma^{*}$ be arbitrary. Then, $\operatorname{len}(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Since $x$ was arbitrary, $P(\varepsilon)$ holds.

Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^{*}$, i.e., len $(x \cdot w)=\operatorname{len}(x)+\operatorname{len}(w)$ for all $x$

## Claim: $\operatorname{len}(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

Let $P(y)$ be "len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x \in$ We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural indu

Does this look familiar?

Base Case $(y=\varepsilon)$ : Let $x \in \Sigma^{*}$ be arbitrary. Then, len $(x \bullet \varepsilon)=\operatorname{len}(x)=$ len $(x)+\operatorname{len}(\varepsilon)$ since len $(\varepsilon)=0$. Since $x$ was arbitrary, $P(\varepsilon)$ holds.
Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary

$$
w \in \Sigma^{*} \text {, i.e., len }(x \bullet w)=\operatorname{len}(x)+\operatorname{len}(w) \text { for all } x
$$

Inductive Step: Goal: Show that $\mathrm{P}(\mathrm{wa})$ is true for every a $\in \Sigma$
Let $a \in \Sigma$ and $x \in \Sigma^{*}$. Then len $(x \bullet w a)=\operatorname{len}((x \bullet w) a) \quad$ by def of $\bullet$

$$
\begin{aligned}
& =\operatorname{len}(x \cdot w)+1 \quad \text { by def of Ien } \\
& =\operatorname{len}(x)+\operatorname{len}(w)+1 \quad \text { by I.H. } \\
& =\operatorname{len}(x)+\operatorname{len}(w a) \quad \text { by def of len }
\end{aligned}
$$

Therefore, len( $x \cdot w a$ ) $=\operatorname{len}(x)+\operatorname{len}(w a)$ for all $x \in \Sigma^{*}$, so $P(w a)$ is true.
So, by induction len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$

## Lists versus Strings

- Our strings are basically lists except that we draw them backward

| $[1,2,3]$ | $1:: 2:: 3::$ nil | $1 \rightarrow 2 \rightarrow 3$ |
| :--- | :--- | :--- |
| $" a b c "$ | $\varepsilon a b c$ | $a \leftarrow \cdots b \leftarrow \cdots c$ |

- would be represented the same way in memory
- but we think of head as the right-most not left-most


## Claim: $\operatorname{len}\left(x^{R}\right)=\operatorname{len}(x)$ for all $x \in \Sigma^{*}$

Let $P(x)$ be "len $\left(x^{R}\right)=\operatorname{len}(x)$ ".
We will prove $P(x)$ for all $x \in \Sigma^{*}$ by structural induction.

Length:
len $(\varepsilon)::=0$
$\operatorname{len}(w a)::=\operatorname{len}(w)+1$ for $w \in \Sigma^{*}, a \in \Sigma$

Reversal:
$\varepsilon^{R}::=\varepsilon$
(wa) $::=\varepsilon a \cdot w^{R}$ for $w \in \Sigma^{*}, a \in \Sigma$

## Claim: $\operatorname{len}\left(x^{R}\right)=\operatorname{len}(x)$ for all $x \in \Sigma^{*}$

Let $\mathrm{P}(\mathrm{x})$ be "len $\left(\mathrm{x}^{\mathrm{R}}\right)=\operatorname{len}(\mathrm{x})^{\prime}$ ".
We will prove $P(x)$ for all $x \in \Sigma^{*}$ by structural induction.
Base Case $(x=\varepsilon)$ : Then, len $\left(\varepsilon^{R}\right)=\operatorname{len}(\varepsilon)$ by def of string reverse.

## Claim: $\operatorname{len}\left(x^{R}\right)=\operatorname{len}(x)$ for all $x \in \Sigma^{*}$

Let $P(x)$ be "len $\left(x^{R}\right)=\operatorname{len}(x)$ ".
We will prove $P(x)$ for all $x \in \Sigma^{*}$ by structural induction.
Base Case $(x=\varepsilon)$ : Then, len $\left(\varepsilon^{R}\right)=$ len $(\varepsilon)$ by def of string reverse.
Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary

$$
w \in \Sigma^{*} \text {, i.e., len }\left(w^{R}\right)=\operatorname{len}(w) .
$$

Inductive Step: Goal: Show that len $\left((w a)^{\mathrm{R}}\right)=\operatorname{len}(w a)$ for every a

```
Length:
    len(\varepsilon) ::= 0
    len(wa) ::= len(w) + 1 for w }\in\mp@subsup{\Sigma}{}{*},a\in
```

```
Reversal:
    \varepsilon}\mp@subsup{}{}{R}::=
    (wa)R ::= \varepsilona \bullet ww
```


## Claim: $\operatorname{len}\left(x^{R}\right)=\operatorname{len}(x)$ for all $x \in \Sigma^{*}$

Let $P(x)$ be "len $\left(x^{R}\right)=\operatorname{len}(x)$ ".
We will prove $P(x)$ for all $x \in \Sigma^{*}$ by structural induction.
Base Case $(x=\varepsilon)$ : Then, len $\left(\varepsilon^{R}\right)=\operatorname{len}(\varepsilon)$ by def of string reverse.
Inductive Hypothesis: Assume that $P(w)$ is true for some arbitrary

$$
w \in \Sigma^{*} \text {, i.e., len }\left(w^{R}\right)=\operatorname{len}(w) .
$$

Inductive Step: Goal: Show that len $\left((w a)^{R}\right)=\operatorname{len}(w a)$ for every a
Let $a \in \Sigma$. Then, len $\left((w a)^{R}\right)=\operatorname{len}\left(\varepsilon a \bullet w^{R}\right) \quad$ def of reverse

$$
\begin{array}{ll}
=\operatorname{len}(\varepsilon a)+\operatorname{len}\left(w^{R}\right) & \text { by previous result } \\
=\operatorname{len}(\varepsilon a)+\operatorname{len}(w) & \text { IH } \\
=1+\operatorname{len}(w) & \\
=\operatorname{len}(w a) &
\end{array}
$$

Therefore, len $\left((w a)^{R}\right)=\operatorname{len}(w a)$, so $P(w a)$ is true for every a $\in \Sigma$.
So, we have shown len $\left(x^{R}\right)=\operatorname{len}(x)$ for all $x \in \Sigma^{*}$ by induction.

## More Theorems

## Structural induction is the tool used to prove many more interesting theorems

- General associativity follows from our one rule
- likewise for generalized De Morgan's laws
- Okay to substitute $y$ for $x$ everywhere in a modular equation when we know that $x \equiv_{m} y$
- More coming shortly...

