
CSE 311: Foundations of Computing

Topic 8:  Recursive Data & Functions



Recursive definitions of functions 

• 0! = 1;	 (𝑛 + 1)! = (𝑛 + 1) + 𝑛!  for all 𝑛 ≥ 	0.

• 𝐹(0) = 0; 	 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 	0. 

• 𝐺(0) = 1; 	 𝐺(𝑛 + 1) = 2 + 𝐺(𝑛) for all 𝑛 ≥ 	0. 

• 𝐻(0) = 1; 	 𝐻(𝑛 + 1) = 2! "  for all 𝑛 ≥ 	0.



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



1. Let P(n) be “n! ≤ nn”.  We will show that P(n) is true for all                 
integers n ≥ 1 by induction.

2. Base Case (n=1):    1!=1·0!=1·1=1=11 so P(1) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 1. I.e., suppose k! ≤ kk.
4. Inductive Step:  
          Goal:  Show P(k+1), i.e. show (k+1)! ≤ (k+1)k+1

         (k+1)! = (k+1)·k!            by definition of !
                                 ≤ (k+1)· kk           by the IH
                             ≤ (k+1)· (k+1)k    since k ≥ 0
                      = (k+1)k+1

   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ≥ 1, by induction.

Prove 𝑛! ≤ 𝑛𝑛 for all 𝑛 ≥ 1



More Recursive Definitions

Suppose that ℎ:ℕ	 → ℝ.  

Then we have familiar summation notation: 
∑!"## ℎ 𝑖 = ℎ(0)
∑!"#$%&ℎ 𝑖 = ℎ 𝑛 + 1 + ∑!"#$ ℎ 𝑖  for 𝑛 ≥ 0

There is also product notation:  
∏!"#
# ℎ 𝑖 = ℎ(0)

∏!"#
$%&ℎ 𝑖 = ℎ(𝑛 + 1) 2 ∏!"#

$ ℎ 𝑖  for 𝑛 ≥ 0



Fibonacci Numbers

𝑓# = 0 
𝑓& = 1 
𝑓$ = 𝑓$'& + 𝑓$'(  for all 𝑛 ≥ 2



Fibonacci Numbers

𝑓# = 0 
𝑓& = 1 
𝑓$ = 𝑓$'& + 𝑓$'(  for all 𝑛 ≥ 2

𝑓$ mi  ≈  𝑓$%& km



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

           Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          ≤ 2k + 2k-1 by the IH                                       

            ≤ 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

           Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          ≤ 2k + 2k-1 by the IH                                       

            ≤ 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          ≤ 2k + 2k-1 by the IH                                       

            ≤ 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          ≤ 2k + 2k-1 by the IH                                       

            ≤ 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.
  Case k+1 ≥ 2: Then fk+1 = fk   +  fk-1 by definition
                                                          ≤ 2k + 2k-1 by the IH                            

            ≤ 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          < 2k + 2k-1 by the IH since k-1 ≥ 0                        

            < 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

              These are the only cases so P(k+1) follows.
5. Therefore by strong induction, 
                fn < 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          < 2k + 2k-1 by the IH since k-1 ≥ 0
            < 2k + 2k = 2·2k 

            = 2k+1

    so P(k+1) is true in this case.
   These are the only cases so P(k+1) follows. 𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 

𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Case: f0=0 < 1= 20  so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

           Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.
  Case k+1 ≥ 2:  Then fk+1 = fk   +  fk-1 by definition
                                                          < 2k + 2k-1 by the IH since k-1 ≥ 0                        

            < 2k + 2k = 2·2k  = 2k+1                                   
      so P(k+1) is true in this case.

              These are the only cases so P(k+1) follows.
5. Therefore by strong induction, 
       fn < 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Inductive Proofs with Multiple Base Cases

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝑏 by induction.”
2. “Base Cases:” Prove 𝑃(𝑏), 𝑃(𝑏 + 1), …, 𝑃(𝑐)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝑐”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Inductive Proofs With Multiple Base Cases

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝑏 by strong induction.”
2. “Base Cases:” Prove 𝑃(𝑏), 𝑃(𝑏 + 1), …, 𝑃(𝑐)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑐,	
  	 𝑃(𝑗) is true for every integer 𝑗	from 𝑏	to 𝑘”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true) 

and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Bounding Fibonacci I:  𝑓$ < 2$ for all 𝑛 ≥ 0
1. Let P(n) be “fn < 2n”.   We prove that P(n) is true for all 

integers n ≥ 0 by strong induction.
2. Base Cases: f0 = 0 < 1 = 20  so P(0) is true.

    f1 = 1 < 2 = 21  so P(1) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 1, we have fj < 2j for every integer j from 0 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

  We have  fk+1 = fk   +  fk-1  by definition since k+1 ≥ 2
                                         < 2k + 2k-1  by the IH since k-1 ≥ 0                        

                 < 2k + 2k = 2·2k  = 2k+1                                   
 so P(k+1) is true.

5. Therefore, by strong induction, fn < 2n for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1  so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

           Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

  Case k+1 ≥ 4:    fk+1 = fk   +  fk-1 by definition
         ≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                  

        ≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1         
 So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1  so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

           Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

  Case k+1 ≥ 4:    fk+1 = fk   +  fk-1 by definition
         ≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                  

        ≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1         
 So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1  so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

           Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

  Case k+1 ≥ 4:    fk+1 = fk   +  fk-1 by definition
        ≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2 
        ≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1                 

 So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1  so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

           Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

  Case k+1 ≥ 4:    fk+1 = fk   +  fk-1 by definition
        ≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2 
        ≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1                 

 So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1  so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

           Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

  Case k+1 ≥ 4:    fk+1 = fk   +  fk-1 by definition
        ≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2 
        ≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1                 

 So P(k+1) is true in both cases.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐

No need for cases for the definition here:
 fk+1 = fk + fk-1  since k+1 ≥ 2
Now just want to apply the IH to get P(k) and P(k-1)
Problem:  Though we can get P(k) since k ≥ 2,
                   k-1 may only be 1 so we can’t conclude P(k-1)
Solution: Separate cases for when k-1=1 (or k+1=3).



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1  so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1  so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

  We have fk+1 = fk   +  fk-1   by definition since k+1 ≥ 2
      ≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2
       ≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1 
    so P(k+1) is true.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Bounding Fibonacci II:  𝑓! ≥ 2 ⁄! #	%	& for all 𝑛 ≥ 2

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Cases: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1  so P(2) holds
    f3 = f2 + f1 = 2 ≥ 21/2 = 23/2-1 =2(k+1)/2 -1 so P(3) holds

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

  We have fk+1 = fk   +  fk-1   by definition since k+1 ≥ 2
      ≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2
       ≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1 
    so P(k+1) is true.
5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 2.

𝒇𝟎 = 𝟎	 𝒇𝟏 = 𝟏 
𝒇𝒏 = 𝒇𝒏$𝟏 + 𝒇𝒏$𝟐  for all 𝒏 ≥ 𝟐



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

Why does this help us bound the running time of Euclid’s 
Algorithm?

We already proved that 𝑓! ≥ 2 ⁄! %	'	# so 𝑓!"# ≥ 2 ⁄(!'#) %

Therefore: if Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0 
                  then 𝑎 ≥ 2 ⁄(!'#) %

   so (𝑛 − 1)/2 ≤ log%	𝑎  or 𝑛 ≤ 1 + 2	log%	𝑎
   i.e., # of steps ≤ 1 + twice the # of bits in 𝑎.



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

An informal way to get the idea:   Consider an n step gcd 
calculation starting with rn+1=a and rn=b:
 rn+1 =   qnrn   +  rn-1

 rn    = qn-1rn-1 + rn-2
   …
 r3    =   q2r2    + r1
 r2    =   q1r1 

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the 
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 
     By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
          for all integers j s.t. 1 ≤ j ≤ k



Running time of Euclid’s algorithm
Theorem:  Suppose that Euclid’s Algorithm takes 𝑛 steps
   for gcd(𝑎, 𝑏) with 𝑎 ≥ 𝑏 > 0.  Then, 𝑎 ≥ 𝑓!"#.

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1   Suppose Euclid’s Algorithm with a ≥ b > 0  takes 1 step. 
     By assumption, a ≥ b ≥ 1 = f2 so P(1) holds.

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
          for all integers j s.t. 1 ≤ j ≤ k

Inductive Step: We want to show: if gcd(a,b) with a ≥ b > 0 takes k+1 
         steps, then a ≥ fk+2.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

          for all integers j s.t. 1 ≤ j ≤ k     
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Now if k+1=2, then Euclid’s algorithm on a and b can be written as 
 a = q2b  + r1 

 b = q1r1 
and r1 > 0.
                          

Also, since a ≥ b > 0, we must have q2 ≥ 1 and b ≥ 1. 

So a = q2b + r1 ≥ b + r1 ≥ 1+1 = 2 = f3 = fk+2 as required.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

          for all integers j s.t. 1 ≤ j ≤ k     
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have
 a = qk+1 b + rk 

 b  = qk rk + rk-1 
       rk  = qk-1 rk-1 + rk-2 
and there are k-2 more steps after this.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

          for all integers j s.t. 1 ≤ j ≤ k     
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have
 a = qk+1 b + rk 

 b  = qk rk + rk-1 
       rk  = qk-1 rk-1 + rk-2 
and there are k-2 more steps after this.   Note that this means that 
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1, by the IH we have b ≥ fk+1 and rk ≥ fk.



Running time of Euclid’s algorithm
Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 

          for all integers j s.t. 1 ≤ j ≤ k     
Inductive Step: Goal: if gcd(a,b) with a ≥ b>0 takes k+1 steps, then a ≥ fk+2.

Next suppose that k+1 ≥ 3 so for the first 3 steps of Euclid’s 
algorithm on a and b we have
 a = qk+1 b + rk 

 b  = qk rk + rk-1 
       rk  = qk-1 rk-1 + rk-2 
and there are k-2 more steps after this.   Note that this means that 
the gcd(b, rk) takes k steps and gcd(rk, rk-1) takes k-1 steps.

So since k, k-1 ≥ 1, by the IH we have b ≥ fk+1 and rk ≥ fk.

Also, since a ≥ b, we must have qk+1 ≥ 1. 

So a = qk+1b + rk ≥ b + rk ≥ fk+1+ fk= fk+2 as required.



Last time: Recursive definitions of functions 

• 0! = 1;	 (𝑛 + 1)! = (𝑛 + 1) + 𝑛!  for all 𝑛 ≥ 	0.

• 𝐹(0) = 0; 	 𝐹(𝑛 + 1) = 𝐹(𝑛) + 1 for all 𝑛 ≥ 	0. 

• 𝐺(0) = 1; 	 𝐺(𝑛 + 1) = 2 + 𝐺(𝑛) for all 𝑛 ≥ 	0. 

• 𝐻(0) = 1; 	 𝐻(𝑛 + 1) = 2! "  for all 𝑛 ≥ 	0.



Last time: Recursive definitions of functions 

• Recursive functions allow general computation
– saw examples not expressible with simple expressions

• So far, we have considered only simple data
– inputs and outputs were just integers

• We need general data as well...
– these will also be described recursively
– will allow us to describe data of real programs

e.g., strings, lists, trees, expressions, propositions, …

• We’ll start simple: sets of numbers



Recursive Definitions of Sets (Data)

Natural numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+1 ∈	S 

Even numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+2 ∈	S 



Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 ∈	S
• Recursive Step: If x ∈	S, then x + 2 ∈	S

The only elements in S are those that follow from
the basis step and a finite number of recursive steps



Recursive Definitions of Sets

Basis:    (0, 0) ∈	S, (1, 1) ∈	S
Recursive:   If (n-1, x) ∈	S and (n, y) ∈	S,
     then (n+1, x + y) ∈	S.

Powers of 3:
 Basis: 1 ∈	S
 Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+1 ∈	S 

Even numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+2 ∈	S 

?



Recursive Definitions of Sets

Powers of 3:
 Basis: 1 ∈	S
 Recursive: If x ∈	S, then 3x ∈	S.

Natural numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+1 ∈	S 

Even numbers
 Basis:    0 ∈	S
 Recursive:   If x ∈	S, then x+2 ∈	S 

Fibonacci numbers
Basis:    (0, 0) ∈	S, (1, 1) ∈	S
Recursive:   If (n-1, x) ∈	S and (n, y) ∈	S,
     then (n+1, x + y) ∈	S.



Last time: Recursive definitions of functions 

• Before, we considered only simple data
– inputs and outputs were just integers

• Proved facts about those functions with induction
– n! ≤ nn

– fn < 2n and fn ≥ 2n/2-1

• How do we prove facts about functions that work 
with more complex (recursively defined) data?
– we need a more sophisticated form of induction



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	

Basis:    0 ∈	S
Recursive:   If x ∈	S, then x+2 ∈	S 



Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of 
structural induction:

Recursive definition of ℕ
Basis:   0 ∈	ℕ
Recursive step:  If 𝑘	∈	ℕ then 𝑘 + 1	∈	ℕ

Structural induction follows from ordinary 
induction:

Define 𝑄(𝑛) to be “for all 𝑥 ∈	𝑆	that can be  
                        constructed in at most                             

       𝑛 recursive steps, 𝑃(𝑥) is true.”



Using Structural Induction

• Let 𝑆 be given by…
– Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
– Recursive:  if 𝑥, 𝑦 ∈ 𝑆	 then	𝑥 + 𝑦 ∈ 𝑆.

Claim:  Every element of 𝑆 is divisible by 3.



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

      for some arbitrary x,y	∈	S
4. Inductive Step:  Goal:  Show P(x+y)

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

      for some arbitrary x,y	∈	S
4. Inductive Step:  Goal:  Show P(x+y)
      Since P(x) is true, 3|x and so x=3m for some integer m and   

since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

       Hence P(x+y) is true.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Claim:  Every element of 𝑆 is divisible by 3.

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x ∈	S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true
3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 

      for some arbitrary x,y	∈	S
4. Inductive Step:  Goal:  Show P(x+y)
      Since P(x) is true, 3|x and so x=3m for some integer m and   

since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).

       Hence P(x+y) is true.
5. Therefore by induction 3|x for all x ∈	S.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,	then	𝑥 + 𝑦 ∈ 𝑆



Using Structural Induction

• Let 𝑇 be given by…
– Basis: 6	Î	𝑇; 	 15	Î	𝑇
– Recursive:  if 𝑥 ∈ 𝑇,	then	𝑥 + 6 ∈ 𝑇	and	𝑥 + 15 ∈ 𝑇

• Two base cases and two recursive cases

Claim:  Every element of 𝑇 is also in 𝑆.



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)
 Since P(x) holds, we have x ∈	S. From the recursive step of S,
  we can see that x + 6 ∈	S, so P(x+6) is true, and
 we can see that x + 15 ∈	S, so P(x+15) is true.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Claim:  Every element of 𝑇 is an element of 𝑆

1. Let P(x) be “x	∈	S”.  We prove that P(x) is true for all x ∈	T by  
structural induction.

2. Base Case: 6	∈	S and 15	∈	S so P(6) and P(15) are true 
3. Inductive Hypothesis:  Suppose that P(x) is true    
       for some arbitrary x	∈	T
4. Inductive Step:  Goal:  Show P(x+6) and P(x+15)
 Since P(x) holds, we have x ∈	S. From the recursive step of S,
  we can see that x + 6 ∈	S, so P(x+6) is true, and
 we can see that x + 15 ∈	S, so P(x+15) is true.
5. Therefore P(x) for all x ∈	T by induction.

Basis: 6	Î	𝑆; 	 15 ∈ 𝑆
Recursive:  if 𝑥, 𝑦 ∈ 𝑆,
 then	𝑥 + 𝑦 ∈ 𝑆

Basis: 6	Î	𝑇; 	15	Î	𝑇
Recursive:  if 𝑥 ∈ 𝑇, then 𝑥 + 6 ∈ 𝑇
            and 𝑥 + 15 ∈ 𝑇



Last time: Recursive Definitions

• Recursively defined functions and sets are our 
mathematical models of code and the data it uses
– any recursively defined set can be translated into a Java class
– any recursively defined function can be translated into a Java function

some (but not all) can be written more cleanly as loops

• Can now do proofs about CS-specific objects



Lists of Integers

• Basis: nil ∈ List
• Recursive step: 
  if L ∈ List and a ∈ ℤ,

  then a	::	L ∈ List

Examples:
– nil          
– 1	::	nil         1
– 1	::	2	::	nil        1 ➝ 2
– 1	::	2	::	3	::	nil       1 ➝ 2 ➝ 3



Functions on Lists

Length:

 len(nil)	:=	0
 len(a	::	L)	:=	len(L)	+	1   for any L ∈	List and a ∈	ℤ

Concatenation:
 concat(nil,	R) := R      for any R ∈	List
 concat(a	::	L,	R)	:=	a	::	concat(L,	R)		 for any L, R ∈	List and
                 any a ∈ ℤ	



Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Base Case (nil): By the definition of concat, we can see that 
concat(nil,	nil)	=	nil, which is P(nil).

Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Base Case (nil): By the definition of concat, we can see that 
concat(nil,	nil)	=	nil, which is P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., concat(L,	nil)	=	L.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ

Claim:  concat(L,	nil)	=	L for all L	∈ List



Let P(L) be “concat(L,	nil)	=	L” .   
We will prove P(L) for all L ∈	List by structural induction.

Base Case (nil): By the definition of concat, we can see that 
concat(nil,	nil)	=	nil, which is P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., concat(L,	nil)	=	L.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Let a	∈	ℤ be arbitrary. We can calculate as follows

 concat(a	::	L,	nil)	=	a	::	concat(L,	nil))  def of concat
	 	 	 	 	 	 =	a	::	L		 	 	   IH

which is P(a	::	L).

By induction, we have shown the claim holds for all L ∈ List.

Claim:  concat(L,	nil)	=	L for all L	∈ List



Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then,

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then,

	 len(concat(nil,	R))	=	len(R)		 	 	 	 def of concat
	 	 	 	 	 	 			=	0	+	len(R)	 	 	
	 	 	 	 	 	 			=	len(nil)	+	len(R)		 def of len

Since R was arbitrary, P(nil) holds.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Let a	∈	ℤ and R	∈	List be arbitrary. Then, 

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List ” .   
We prove P(L) for all L ∈	List by structural induction.

Base Case (nil): Let R	∈	List	be arbitrary. Then, len(concat(nil,	R))	
=	len(R)	=	0	+	len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R) for all R ∈	List.
Inductive Step:  Goal: Show that P(a	::	L) is true for any a	∈	ℤ.

Let a	∈	ℤ and R	∈	List be arbitrary. Then, we can calculate
 len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R))  def of concat
	 	 	 	 	 	 	 =	1	+	len(concat(L,	R))  def of len
	 	 	 	 	 	 	 =	1	+	len(L)	+	len(R)  IH
	 	 	 	 	 	 	 =	len(a	::	L)	+	len(R)  def of len
Since R was arbitrary, we have shown P(a	::	L).
By induction, we have shown the claim holds for all L ∈ List.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L,	R	∈ List



Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L	∈ List

Alternative Strategy:
• Do the direct proof outside the induction!

Let R be an arbitrary list.

 Prove P(L) by structural induction,
 where P(L) is “len(concat(L,	R))	=	len(L)	+	len(R)”

Since R was arbitrary, we have proven the claim.



Let R be an arbitrary list. We continue by induction.

Let P(L) be “len(concat(L,	R))	=	len(L)	+	len(R)” . We will prove 
P(L) for all L ∈	List by structural induction.
Base Case (nil): We have len(concat(nil,	R))	=	len(R)	=	0	+	
len(R)	=	len(nil)	+	len(R), showing P(nil).
Inductive Hypothesis:  Assume that P(L) is true for some arbitrary 

L	∈	List, i.e., len(concat(L,	R))	=	len(L)	+	len(R).
Inductive Step:  Let a	∈	ℤ be arbitrary. We can prove P(a	::	L) since
 len(concat(a	::	L,	R))	=	len(a	::	concat(L,	R))  def of concat
	 	 	 	 	 	 	 =	1	+	len(concat(L,	R))  def of len
	 	 	 	 	 	 	 =	1	+	len(L)	+	len(R)  IH
	 	 	 	 	 	 	 =	len(a	::	L)	+	len(R)  def of len
By induction, we have shown the claim holds for all L ∈ List.
Since R was arbitrary, we have proven the claim.

Claim: len(concat(L,	R))	=	len(L)	+	len(R)   for all L	∈ List



Rooted Binary Trees

• Basis:      •    is a rooted binary tree



Rooted Binary Trees

• Basis:      •    is a rooted binary tree
• Recursive step: 
 
   If                and                are rooted binary trees,

    

    then                      also is a rooted binary tree.   

T1 T2

T1 T2



Defining Functions on Rooted Binary Trees

• size(•) ::= 1

• size (                    ) ::= 1 + size(T1) + size(T2)

• height(•) ::= 0

• height (                     ) ::= 1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true.
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1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true. 
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
  rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P(          ).



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true. 
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
  rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P(          ).

         size(             )

          ≤ 2height(            )+1 – 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0, and 20+1–1=21–1=1 so P(•) is true. 
3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
  rooted binary trees T1 and T2, i.e., size(Tk) ≤ 2height(Tk) + 1 – 1 for k=1,2
4. Inductive Step:             Goal:  Prove P(          ).

    By def, size(             ) =1+size(T1)+size(T2) 
                              ≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

          by IH for T1 and T2

       ≤ 2height(T1)+1+2height(T2)+1–1  
       ≤ 2(2max(height(T1),height(T2))+1)–1  
       ≤ 2(2height(      )) – 1 ≤ 2height(            )+1 – 1 
                                                which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction. 



Strings

• An alphabet S is any finite set of characters

• The set S* of strings over the alphabet S
– example: {0,1}* is the set of binary strings

0, 1, 00, 01, 10, 11, 000, 001, …  and “”

•  S* is defined recursively by
– Basis: ε	Î	S∗ (ε is the empty string, i.e., “”)
– Recursive:  if 𝑤 Î S*, 𝑎 Î S, then 𝑤𝑎 Î S*



Last time: Structural Induction

How to prove ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	is true:

Base Case:  Show that 𝑃(𝑢) is true for all specific 
elements 𝑢	of 𝑆 mentioned in the Basis step

Inductive Hypothesis:  Assume that 𝑃	is true for some 
arbitrary values of each of the existing named 
elements	mentioned in the Recursive step

Inductive Step: Prove that 𝑃(𝑤) holds for each of the 
new elements 𝑤	constructed in the Recursive step 
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that ∀	𝑥 ∈	𝑆,	𝑃(𝑥)	



Functions on Recursively Defined Sets (on S*)
Length:
 len(ε) ::= 0
 len(wa) ::= len(w) + 1 for w ∈	S*, a ∈	S

Concatenation:
 x • ε ::= x for x ∈ S*
 x • wa ::= (x • w)a for x ∈	S*, a ∈	S

Reversal:
  ε R ::= ε
 (wa)R ::= εa • wR for w ∈	S*, a ∈	S

Number of c’s in a string:
 #c(ε) ::= 0
 #c(wc) ::= #c(w) + 1 for w ∈	S*
 #c(wa) ::= #c(w) for w ∈	S*, a ∈	S, a ≠ c

separate cases for
c  vs  a ≠ c



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x	∈	S* be arbitrary. Then, len(x • ε) = len(x) =
    len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Claim: len(x•y) = len(x) + len(y) for all x,y ∈	S*



Let P(y) be “len(x•y) = len(x) + len(y) for all x ∈	S* ” .   
We prove P(y) for all y ∈	S* by structural induction.

Base Case (y = ε): Let x	∈	S* be arbitrary. Then, len(x • ε) = len(x) =
    len(x) + len(ε) since len(ε)=0.  Since x was arbitrary, P(ε) holds.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(x•w) = len(x) + len(w) for all x

Inductive Step:  Goal: Show that P(wa) is true for every a	∈	S
Let a	∈	S and x	∈	S*. Then len(x•wa) = len((x•w)a)   by def of •
                                                                     =  len(x•w)+1   by def of len
                                                                     = len(x)+len(w)+1  by I.H.
                                                                     = len(x)+len(wa)   by def of len
Therefore, len(x•wa)= len(x)+len(wa) for all x	∈	S*, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y ∈ S*

Claim: len(x•y) = len(x) + len(y) for all x,y ∈	S*

Does this look 
familiar?



Lists versus Strings

• Our strings are basically lists
except that we draw them backward

[1, 2, 3]   1 :: 2 :: 3 :: nil   1➝ 2 ➝ 3

“abc”   εabc     a ⇠ b ⇠ c

– would be represented the same way in memory
– but we think of head as the right-most not left-most



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.

Claim:  len(xR) = len(x) for all x ∈	S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε*) = len(ε) by def of string reverse.

Claim:  len(xR) = len(x) for all x ∈	S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε*) = len(ε) by def of string reverse.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(wR) = len(w).

Inductive Step:  Goal: Show that len((wa)R) = len(wa) for every a

Claim:  len(xR) = len(x) for all x ∈	S*



Let P(x) be “len(xR) = len(x)”.
We will prove P(x) for all x ∈	S* by structural induction.
Base Case (x = ε): Then, len(ε*) = len(ε) by def of string reverse.

Inductive Hypothesis:  Assume that P(w) is true for some arbitrary 
       w	∈	S*, i.e., len(wR) = len(w).

Inductive Step:  Goal: Show that len((wa)R) = len(wa) for every a

Let a	∈	S. Then, len((wa)R) = len(εa • wR)  def of reverse
                                                  = len(εa) + len(wR)  by previous result
                                                  = len(εa) + len(w) IH
                                                  = 1 + len(w)   def of len (twice)
          = len(wa)   def of len

Therefore, len((wa)R)= len(wa), so P(wa) is true for every a	∈	S.

So, we have shown len(xR) = len(x) for all x ∈ S* by induction.

Claim:  len(xR) = len(x) for all x ∈	S*



More Theorems

Structural induction is the tool used to prove many 
more interesting theorems

• General associativity follows from our one rule
– likewise for generalized De Morgan’s laws

• Okay to substitute 𝑦 for 𝑥 everywhere in a modular 
equation when we know that 𝑥 ≡+ 𝑦

• More coming shortly…


