CSE 311: Foundations of Computing

Topic 8: Recursive Data & Functions

WHAT IS IT?




Recursive definitions of functions

Ol=1 (n+D!'=m+1)-n! foralln = 0.

F(0O)=0;, Fn+1)=Fn)+1foralln = 0.

GO0)=1; G(n+1)=2-G(n)foralln> 0.

HO0)=1; Hn+1) =2® foralln > 0.



Proven! <n"foralln>1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.

2. Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.



Proven! <n"foralln>1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 1. l.e., suppose k! < k.

Inductive Step:
Goal: Show P(k+1), i.e. show (k+1)! < (k+1)k+1
(k+1)! = (k+1)-k! by definition of !
< (k+1)- kX by the IH
< (k+1)- (k+1)k since k>0
= (k+1)k+
Therefore P(k+1) is true.

5. Thus P(n) is true for all n > 1, by induction.



More Recursive Definitions

Suppose that hi: N — R.

Then we have familiar summation notation:
_o h(i) = h(0)
Z”“ h(i)=h(n+ 1)+ X ,h(@) forn=>0

There is also product notation:
_o h(i) = h(0)
H“+1 h(i) =h(n+1)-[[~yh(i) forn >0



Fibonacci Numbers

fo=0
fi=1
fn = fn-1+t fn_p foralln = 2




Fibonacci Numbers

fo=0
fi=1
fn = fn1+ fnp foralln = 2

@ Tamas Gorbe
& @TamasGorbe

A Mathematician's Way* of Converting Miles to

Kilometers
3mi =~ 5 km
bmi ~ &8 km f,mi = f,1q km
Smi ~ 13 km



Bounding Fibonaccil: f,, < 2" foralln >0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonaccil: f,, < 2" foralln >0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0 < 1=2° so P(0) is true.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonaccil: f,, < 2" foralln >0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0 < 1=2° so P(0) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from 0 to k.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonaccil: f,, < 2" foralln >0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0 < 1=2° so P(0) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from 0 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2k

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonaccil: f,, < 2" foralln >0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0 < 1=2° so P(0) is true.
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from 0 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2k
Case k+1 = 1:
Case k+1 > 2:

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonaccil: f,, < 2" foralln >0

1. Let P(n) be “f,<2"". We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0 < 1=2° so P(0) is true.
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from 0 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,; < 21
Case k+1 =1: Then f;=1<2=2!s0 P(k+1) is true here.
Case k+1 > 2:

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonaccil: f,, < 2" foralln >0

1.

2.
3.

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from 0 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,; < 2k
Case k+1 =1: Then f;=1<2=2!s0 P(k+1) is true here.
Case k+1 > 2: Then f,,,=f, + f,_, by definition

< 2k+ 2k1py the IH since k-1 >0
< 2k4 2k=2.2k
— 2k+1

so P(k+1) is true in this case.

These are the only cases so P(k+1) follows. fo=0 fi=1

fn="Ffn-1+ fnp foraln =2




Bounding Fibonaccil: f,, < 2" foralln >0

1.

2.
3.

S.

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.
Base Case: f,=0 < 1=2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 0, we have f; < 2/ for every integer j from 0 to k.
Inductive Step:| Goal: Show P(k+1); that is, f,,; < 2k
Case k+1 =1: Then f;=1<2=2!s0 P(k+1) is true here.
Case k+1 > 2: Then f,,,=f, + f,_, by definition
< 2k+ 2k1py the IH since k-1 >0
< 2k4 2k = 2.2k = Dk+l
so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

Therefore by strong induction,
. : fo=0 f1=1
f, < 2" for all integers n > 0. fo= i+ fny foralln =2




Inductive Proofs with Multiple Base Cases

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Cases:” Prove|P(b), P(b + 1), ..., P(c)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer|/k > ¢
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”




Inductive Proofs With Multiple Base Cases

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Cases:” Prove|P(b), P(b + 1), ..., P(c)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer|k = ¢
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”




Bounding Fibonaccil: f,, < 2" foralln >0

1.

2.

S.

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.
Base Cases: f,=0<1=2° so P(0) is true.

f;=1<2=2! soP(1) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 1, we have f; < 2! for every integer j from 0 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,; < 2k*1
We have f ,=f + f by definition since k+1 > 2

< 2k 4 2kl by the IH since k-1 >0
< 2K+ 2k = 2.2k = k+l
so P(k+1) is true.
Therefore, by strong induction, f, < 2" for all integers n > 0.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(+1)/2-1

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1.

2.
3.

Let P(n) be “f, >2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%/2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1

No need for cases for the definition here:
feor=f+fi.y since k+1>2
Now just want to apply the IH to get P(k) and P(k-1)

Problem: Though we can get P(k) since k > 2,
k-1 may only be 1 so we can’t conclude P(k-1)

Solution: Separate cases for when k-1=1 (or k+1=3).

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.
2. Base Cases: f,=f;+fy=1 and 2%2-1=20=1 so P(2) holds
fy=f,+f, =2>212=2321 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Bounding Fibonacci ll: f, > 2"/2- 1 foralln > 2

1. Let P(n) be “f,>2"2-1"_ We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Cases: f,=f;+fy=1 and 2%2-1=20=1 so P(2) holds
fy=f,+f, =2 >212=72321=3(1)/2-1 g0 P(3) holds
3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 3, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1
We have f . ,=f + f by definition since k+1 > 2

> 2K/214 2(k1)/2-1 By the IH since k-1 > 2
> 2(k—1)/2—1 + 2(k—1)/2—1 — 2(k—1)/2 — 2(k+1)/2 -1

so P(k+1) is true.
5. Therefore by strong induction, f, > 2"/2-1 for all integers n > 2.

fo=0 fi1=1
fn="Ffn-1+ fnp foraln =2




Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

Why does this help us bound the running time of Euclid’s
Algorithm?

We already proved that f, > 2"/2~1so f,,, = 2(n~1/2
Therefore: if Euclid’s Algorithm takes n steps
for gcd(a, b) witha = b > 0

then q > 2(n—1)/2

so(n—1)/2<log,aorn<1+2log,a
i.e., # of steps < 1 + twice the # of bits in a.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,, ;1.

An informal way to get the idea: Consider an n step gcd
calculation starting with r,,,=a and r =b:
rn+1 = ann + rn—1
= +
= Gnafn1 ¥ Fooa Forallk>2,r _,=r.,, modr,
3 = Of, t0
M dir

Now r; > 1 and each q, must be > 1. If we replace all the
q¢’s by 1 and replace r, by 1, we can only reduce the r,’s.
After that reduction, r =f, for every k.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,,;1.

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a =2 b>0 takes n steps — a >f,,;” forall n > 1.

Base Case: n=1 Suppose Euclid’s Algorithm with a 2 b >0 takes 1 step.
By assumption,a=>b >1=1f, so P(1) holds.

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integers js.t. 1<j<k




Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then, a = f,,;1.

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a =2 b>0 takes n steps — a >f,,;” forall n > 1.

Base Case: n=1 Suppose Euclid’s Algorithm with a 2 b >0 takes 1 step.
By assumption,a=>b >1=1f, so P(1) holds.

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integers js.t. 1<j<k

Inductive Step: We want to show:|if gcd(a,b) with a =2 b > 0 takes k+1
steps, thena>f,,,




Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true

for all integersjs.t. 1 <j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, then a > f,,,

Now if k+1=2, then Euclid’s algorithm on a and b can be written as
a=qyb +rq

b=q;n
and r; > 0.

Also, sincea>b >0, we musthaveqg,>21andb>1.

Soa=q,b+r;2b+r; 2141 =2=f;="f,, as required.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true

for all integersjs.t. 1 <j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, then a > f,,,

Next suppose that k+1 > 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

d = Qk+1 b + Mk

b =qyr+ e

Mk = k1M1t N2
and there are k-2 more steps after this.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integersjs.t. 1 <j<k
Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, then a > f,,,

Next suppose that k+1 > 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

d = Qk+1 b + Mk

b =qyr+ e

Mk = k1M1t N2
and there are k-2 more steps after this. Note that this means that
the gcd(b, r,) takes k steps and gcd(ry, r,.1) takes k-1 steps.

So since k, k-1 > 1, by the IH we have b > f,; and r, > f,.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integersjs.t. 1 <j<k

Inductive Step:| Goal: if gcd(a,b) with a > b>0 takes k+1 steps, then a > f,,,

Next suppose that k+1 > 3 so for the first 3 steps of Euclid’s
algorithm on a and b we have

d = Qk+1 b + Mk

b =qyr+ e

Mk = k1M1t N2

and there are k-2 more steps after this. Note that this means that
the gcd(b, r,) takes k steps and gcd(r, r.1) takes k-1 steps.
So since k, k-1 > 1, by the IH we have b > f,; and r, > f,.

Also, since a > b, we must have q,,; > 1.

Soa=qb+r.2b+r 21+ fi=1,,as required. g



Last time: Recursive definitions of functions

Ol=1 (n+D!'=m+1)-n! foralln = 0.

F(0O)=0;, Fn+1)=Fn)+1foralln = 0.

GO0)=1; G(n+1)=2-G(n)foralln> 0.

HO0)=1; Hn+1) =2® foralln > 0.



Last time: Recursive definitions of functions

* Recursive functions allow general computation
— saw examples not expressible with simple expressions

e So far, we have considered only simple data
— Inputs and outputs were just integers

* We need general data as well...
— these will also be described recursively

— will allow us to describe data of real programs
e.g., strings, lists, trees, expressions, propositions, ...

We’'ll start simple: sets of numbers



Recursive Definitions of Sets (Data)

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S



Recursive Definition of Sets

Recursive definition of set S
 Basis Step: 0 €S
 Recursive Step: If x€ S, thenx+2 €S

The only elements in S are those that follow from
the basis step and a finite number of recursive steps



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.



Recursive Definitions of Sets

Natural numbers
Basis: 0€eS
Recursive: If x €S, thenx+t1 €S

Even humbers
Basis: 0eS
Recursive: If x €S, thenx+2 €S

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.

Basis: (0,00€eS,(4,1)eS
Recursive: If (n-1,x) €S and (n,y) €S,
then (n+1,x +y) €S.

Fibonacci numbers



Last time: Recursive definitions of functions

* Before, we considered only simple data
— Inputs and outputs were just integers

 Proved facts about those functions with induction
—n!'sn”
—f, <2"andf, 2 2v21

« How do we prove facts about functions that work

with more complex (recursively defined) data?
— we need a more sophisticated form of induction



Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Structural Induction | Basis:

Recursive: If x €S, then )gi-2 €S

How to prove V x € S, P(x) is trde:

Base Case: ﬂow that P(u) is true for all specific
elements u of S mentioned in the \Basis step

Inductive Hypothesis: Assume that P is/true for some
arbitrary values of each of the existing named
elements mentioned | Recursi

Inductive Step\Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of
structural induction:
Recursive definition of N

Basis: 0N
Recursive step: If ke Nthenk+1€N

Structural induction follows from ordinary

induction:
Define Q(n) to be “for all x € S that can be

constructed in at most
n recursive steps, P(x) is true.”



Using Structural Induction

* Let S be given by...

—Basis: 6e5; 15€ S
— Recursive: if x,y €S thenx +y € S.

Claim: Every element of S is divisible by 3.



Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

Basis: 6 S5; 15€ S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

Basis: 6 S5; 15€ S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Basis: 6 S5; 15€ S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.

Basis: 6 S5; 15€ S
Recursive: if x,y € S,thenx+y €S




Claim: Every element of S is divisible by 3.

1. Let P(x) be “3|x”. We prove that P(x) is true for all x € S by
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) and P(y) are true
for some arbitrary x,y € S

4. Inductive Step: |Goal: Show P(x+y)

Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.
Therefore x+y=3m+3n=3(m+n) and thus 3| (x+y).

Hence P(x+y) is true.
5. Therefore by induction 3|x for all x € S.

Basis: 6 S5; 15€ S
Recursive: if x,y € S,thenx+y €S




Using Structural Induction

* Let T be given by...

—Basis: 6 <T; 15T
— Recursive: ifxeT,thenx+6 €€Tandx +15€T

e Two base cases and two recursive cases

Claim: Every element of T is also in S.



Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

Basis: 6 S5; 15€S$ Basis: 6 T; 15T
Recursive: if x,y € §, Recursive: if x e T,thenx +6 €T
thenx +y €S andx+15€T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by
structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true

3. Inductive Hypothesis: Suppose that P(x) is true
for some arbitrary xe T

Basis: 6 S5; 15€S$ Basis: 6 T; 15T
Recursive: if x,y € §, Recursive: if x e T,thenx +6 €T
thenx +y €S andx+15€T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have x € S. From the recursive step of S,
we can see that x + 6 €S, so P(x+6) is true, and

we can see that x + 15 € S, so P(x+15) is true.

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Claim: Every element of T is an element of S

1. Let P(x) be “x € S”. We prove that P(x) is true for all x € T by

structural induction.

2. Base Case: 6 € Sand 15 € S so P(6) and P(15) are true
3. Inductive Hypothesis: Suppose that P(x) is true

for some arbitrary xe T

4. Inductive Step: |Goal: Show P(x+6) and P(x+15)

Since P(x) holds, we have x € S. From the recursive step of S,
we can see that x + 6 €S, so P(x+6) is true, and

we can see that x + 15 € S, so P(x+15) is true.
5. Therefore P(x) for all x € T by induction.

Basis: 6<S5; 15€ S
Recursive: if x,y € §,
thenx +y eSS

Basis: 6 T; 15T
Recursive: if x e T,thenx+ 6 €T
and x + 15 €T




Last time: Recursive Definitions

* Recursively defined functions and sets are our

mathematical models of code and the data it uses

— any recursively defined set can be translated into a Java class

— any recursively defined function can be translated into a Java function
some (but not all) can be written more cleanly as loops

e Can now do proofs about CS-specific objects



Lists of Integers

* Basis: nil € List

* Recursive step:
if L € List and a € Z,
then a:: L € List

Examples:
— nil
— 1 ::nil 1
— 1::2::nil 1—2

— 1::2:3::nil 1—2—3



Functions on Lists

Length:

len(nil) :=0
len(a:: L) :=1len(L) + 1 forany L € Listand a € Z

Concatenation:

concat(nil, R) :=R for any R € List
concat(a:: L,R):=a:: concat(L,LR) foranyl, R € List and
anya€Z



: Basis» nil € List
Structural Induction o .
Recursive step:

if L € Listand a € Z,

How to prove V x € S, P(x) is true: _
thena:: L € List

Base Case: Sho P(u) is trye for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) hol of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis

Conclude thatV x € S, P(x)



Claim: concat(L, nil) = L for all L € List




Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.



Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.

Base Case (nil): By the definition of concat, we can see that
concat(nil, nil) = nil, which is P(nil).



Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.

Base Case (nil): By the definition of concat, we can see that

concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., concat(L, nil) = L.

Inductive Step:| Goal: Show that P(a :: L) is true for any a € Z




Claim: concat(L, nil) = L for all L € List

Let P(L) be “concat(L, nil) =L".
We will prove P(L) for all L € List by structural induction.

Base Case (nil): By the definition of concat, we can see that
concat(nil, nil) = nil, which is P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., concat(L, nil) = L.
Inductive Step:| Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z be arbitrary. We can calculate as follows

concat(a:: L, nil) = a:: concat(L, nil)) def of concat
=a: L IH

which is P(a :: L).

By induction, we have shown the claim holds for all L € List.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

Length: Concatenation:
len(nil) :=0 concat(nil, R) :=R
len(a: L) :=len(L) +1 concat(a:: L, R) := a:: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then,

len(concat(nil, R)) =len(R) def of concat
=0 + len(R)
= len(nil) + len(R)  def of len

Since R was arbitrary, P(nil) holds.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R) for all R € List.



Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step:| Goal: Show that P(a :: L) is true for any a € Z.




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step:

Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z and R € List be arbitrary. Then,

Length:

len(nil) :=0
len(a::L):=len(L) +1

Concatenation:

concat(nil,R) :=R
concat(a:: L, R) := a:: concat(L, R)




Claim: len(concat(L, R)) =len(L) + len(R) forall L, R € List

Let P(L) be “len(concat(L, R)) =len(L) + len(R) for allR € List " .
We prove P(L) for all L € List by structural induction.

Base Case (nil): Let R € List be arbitrary. Then, len(concat(nil, R))
= len(R) = 0 + len(R) = len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) = len(L) + len(R) for all R € List.

Inductive Step:

Goal: Show that P(a :: L) is true for any a € Z.

Let a € Z and R € List be arbitrary. Then, we can calculate
len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat

= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len

Since R was arbitrary, we have shown P(a :: L).

By induction, we have shown the claim holds for all L € List.



Claim: len(concat(L, R)) = len(L) + len(R) for all L € List

Alternative Strategy:
* Do the direct proof outside the induction!

Let R be an arbitrary list.

Prove P(L) by structural induction,
where P(L) is “len(concat(L, R)) =len(L) + len(R)"

Since R was arbitrary, we have proven the claim.



Claim: len(concat(L, R)) = len(L) + len(R) for all L € List

Let R be an arbitrary list. We continue by induction.

Let P(L) be “len(concat(L, R)) =len(L) + len(R)" . We will prove
P(L) for all L € List by structural induction.

Base Case (nil): We have len(concat(nil, R)) =len(R) =0 +
len(R) =len(nil) + len(R), showing P(nil).

Inductive Hypothesis: Assume that P(L) is true for some arbitrary
L € List, i.e., len(concat(L, R)) =len(L) + len(R).
Inductive Step: Let a € Z be arbitrary. We can prove P(a :: L) since

len(concat(a:: L, R)) =len(a :: concat(L, R)) def of concat
= 1 + len(concat(L, R)) def of len
=1+ len(L) + len(R) IH
= len(a:: L) + len(R) def of len
By induction, we have shown the claim holds for all L € List.
Since R was arbitrary, we have proven the claim.



Rooted Binary Trees

* Basis: * |s arooted binary tree



Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

°
L



Defining Functions on Rooted Binary Trees

size(®) =1

) =1+ size(T,) + size(T,)

::= 1 + max{height(T,), height(T,)}



Basis: e is arooted binary tree

Last time: Structural Induction  |=>,

]: and ¢

Sl S

1 | |

How to prove V x € S, P(x) is true /N, oot ey v

............

Base Case: /S{ow that P(u) is truef/for all specific
elements u of S mentioned in the(Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step@ove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis
Conclude thatV x € S, P(x)



Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

size(*) =1 height(®) =0
size ( T1 T 2 ) =1 + size(T,) + size(T,) height ( T1 Tz ) ::= 1 + max{height(T,), height(T,)}




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.



Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightMJ+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P( T/\ ).

---------------




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.

3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2

4. Inductive Step: Goal: Prove P( T/\ ).
size( /\ )
o'qT1‘\‘ :'.Tz“‘
size(*) =1
size ( T/\T ) =1 + size(T,) + size(T,)
height(¢) =0
height T/\T ) ::= 1+ maxfheight(T,), height(T,)}| < 2height( ?/\ )+1 _ 1




Claim: For every rooted binary tree T, size(T) < 2heisht(T)+1_1]

1. Let P(T) be “size(T) < 2heieht(M+1_1"_ We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(®)=0, and 2°+'-1=21-1=1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,, i.e., size(T,) < 2heightTJ+1 — 1 for k=1,2
4. Inductive Step: Goal: Prove P( \r/\)

By def, size( T/\T ) =1+size(T,)+size(T,)

----------------

by IHforT,and T,
< 2height(Tq)+1 4 Yheight(T2)+1_1

< 2(2max(height(Tl),height(Tz))+1)_1

<2 ( 2 height( ;/\T

............................

which is what we wanted to show.
5. So, the P(T) is true for all rooted binary trees by structural induction.



Strings

 An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X

— example: {0,1}* is the set of binary strings
0,1, 00,01, 10, 11,000, 004, ...  and *"

 2* js defined recursively by
— Basis: ¢ € 2™ (¢ is the empty string, i.e., “”)
— Recursive: ifw € 2*,a € 2, then wa € 2*



Basis: ¢ € X *

Last time: Structural Induction ——=2., qive steps:

ifweX*anda e 2,

How to prove V x € S, P(x) is/true: | thenwa ¢ *

T

Base Case: S at P(u) is true for all specific
elements uof S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing nam
elements mentioned in the Recursive step

Inductive Step: Prove that S for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive

Hypothesis

Conclude thatV x € S, P(x)



Functions on Recursively Defined Sets (on X*)

Length:
len(€) ::=0
len(wa) ::=len(w) + 1forw eX*, ae X

Concatenation:
xeg=xforxe X"
xewa:=(xew)aforxeX” aeXx
Reversal:
gRu=¢g
(waR:=caewhRforweX* aeX

Number of c¢’s in a string:

#(g) =0
* Separate cases for
#C(WC) = #C(W) +1forw€E Z CVS a#C

#(wa) =#(w)forweX*, a€eX, a%c



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x € Z* " .
We prove P(y) for all y € X* by structural induction.

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X*, i.e., len(xew) = len(x) + len(w) for all x



Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for all x €| Does this look
We prove P(y) for all y € X* by structural indu familiar?

Base Case (y = €): Let x € Z* be arbitrary. Then, len(x ¢ €) = len(x) =
len(x) + len(€) since len(g)=0. Since x was arbitrary, P(€) holds.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w E X* i.e., len(xew) = len(x) + len(w) for all x
Inductive Step:| Goal: Show that P(wa) is true for every a € X

Let a € X and x € Z*. Then len(xewa) = len((xew)a) by def of o
= len(xew)+1 by def of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by def of len

Therefore, len(xewa)= len(x)+len(wa) for all x € £*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X~



Lists versus Strings

* Qur strings are basically lists
except that we draw them backward

[1, 2, 3] 1::2:3::nil 1—2—3

n

“abc gabc a<¢-be-C

— would be represented the same way in memory
— but we think of head as the right-most not left-most



Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".

We will prove P(x) for all x € * by structural induction.

Length:
len(g) ::=0
len(wa) ::=len(w) + LforweX*, aeX

Reversal:
eRu=¢
(Wa)k i=caewRforweX* aeX




Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.



Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X7, i.e., len(wR) = len(w).
Inductive Step: | Goal: Show that len((wa)?) = len(wa) for every a

Length: Reversal:
len(e) :=0 gfu=¢

len(wa) :=len(w) +1forweX* ae X (wa)f :=ca e wRforw€eX", a€X




Claim: len(x?) = len(x) forall x €X*

Let P(x) be “len(x?) = len(x)".
We will prove P(x) for all x € * by structural induction.
Base Case (x = €): Then, len(e®) = len(g) by def of string reverse.

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w € X7, i.e., len(wR) = len(w).
Inductive Step: | Goal: Show that len((wa)?) = len(wa) for every a

Let a € Z. Then, len((wa)R) = len(ca * wR) def of reverse
=len(ga) + len(w®) by previous result
=len(ga) + len(w) IH
=1+ len(w) def of len (twice)
= len(wa) def of len

Therefore, len((wa)?)= len(wa), so P(wa) is true for every a € 2.

So, we have shown len(x®) = len(x) for all x € X" by induction.



More Theorems

Structural induction is the tool used to prove many
more interesting theorems

* General associativity follows from our one rule
— likewise for generalized De Morgan’s laws

* Okay to substitute y for x everywhere in a modular
equation when we know that x =,,, y

* More coming shortly...



