CSE 311: Foundations of Computing

Topic 7: Induction
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Mathematical Induction

Method for proving statements about all natural numbers

— A new logical inference rule!
* It only applies over the natural numbers

 The idea is to use the special structure of the naturals
to prove things more easily

— Particularly useful for reasoning about programs!
for (int i=0; i < n; n++) { .. }
* Show P(i) holds after i times through the loop



Prove va,bm>0vVkeN ((a=,, b) » (ak =mn bk))

Let a, b, m > 0 be arbitrary. Let k € N be arbitrary.
Suppose that a =,,, b.
We know ((a =, b) A (a =, b)) — (a?=,, b?) by multiplying
congruences. So, applying this repeatedly, we have:
((@a=m b)A(a =, b)) - (a m b?)
((a =m bz) Aa=nm b)) a =m b* )

(@ =m 1) A (a =m b)) - m b")

The “...”s is a problem! We don’t have a proof rule that
allows us to say “do this over and over”.



But there is such a rule for the natural numbers!

Domain: Natural Numbers

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(3)?



Induction Is A Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PM#)  P(®5)

First, we have P(0).
Since P(n) — P(n+1) for all n, we have P(0) — P(1).

Since P(0) is true and P(0) — P(1), by Modus Ponens, P(1) is true.
Since P(n) — P(n+1) for all n, we have P(1) — P(2).

Since P(1) is true and P(1) — P(2), by Modus Ponens, P(2) is true.



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)




Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)

4. Vk(P(k) — P(k+1))
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)
2. Let k be an arbitrary integer >0

3. P(k) > P(k+1)
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Using The Induction Rule In A Formal Proof

P(0)
vk (P(k) — P(k + 1))

. Vn P(n)

1. P(0)
2. Let k be an arbitrary integer >0
3.1. P(k) Assumption
3.2. ..
3.3. P(k+1)
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) > P(k+1)) IntroV: 2, 3
5. VnP(n) Induction: 1, 4



Translating to an English Proof

P(0)
vk (P(k) — P(k+ 1))
. Vn P(n)

1. Prove P(0) Base Case

2. Let k be an arbitrary integer >0
3.1. Suppose that P(k) is true

Inductive
Hypothesis

3.2. ... Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Yk (P(k) > P(k+1)) Intro V: 2, 3

5. Vn P(n) Induction: 1, 4



Translating to an English Proof

1. Prove P(0) | Base Case

2. Let k be an arbitrary integer 20
3.1. Assume that P(k) is true
3.2. ..

Inductive
Hypothesis

Inductive
3.3. Prove P(k+1) is true Step
3. P(k) > P(k+1) Direct Proof Rule
4. Vk(P(k) > P(k+1)) Intro V: 2, 3
5. ¥nP(n) Induction: 1, 4

Induction English Proof Template
[...Define P(n)...]
We will show that P(n) is true for every n € N by Induction.

Base Case: [...proof of P(0) here...]
Induction Hypothesis:

Suppose that P (k) is true for an arbitrary k € N.
Induction Step:

[...proof of P(k + 1) here...]

The proof of P(k + 1) must invoke the IH somewhere.
So, the claim is true by induction.




Inductive Proofs In 5 Easy Steps

Basic induction template
Proof:

1. “Let P(n) be... . We will show that P(n) is true for every
n = 0 by Induction.”

2. “Base Case:” Prove P(0)
3. “Inductive Hypothesis:
Suppose P (k) is true for an arbitrary integer k > 0”
4. “Inductive Step:” Prove that P(k + 1) is true.
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !))
5. “Conclusion: Result follows by induction”



Whatis1 + 2 + 4 + ... + 2™?

.« 1 = 1
¢ 1+ 2 = 3
1 +2+4 = 7
c14+24+4+48 = 15

*1+2+ 4+ 38+ 16 31

It sure looks like this sum is 21 — 1
How can we prove it?

We could prove itforn =1,n=2,n =3, ... but
that would literally take forever.

Good that we have induction!



Provel + 2 + 4 + ... + 2n =2n+l_1




Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.

2. Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.



Provel + 2 + 4 + ... + 2n =2n+l_1

1. LetP(n)be “20+ 21+ ... +2"=2"1-1" We will show P(n) is true
for all natural numbers by induction.
2. Base Case (n=0): 2°=1=2-1=2%1-1s0 P(0)is true.

3. Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that|2° + 21 + ... + 2k = 2k+1 — 1,




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.
Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
Goal: Show P(k+1), i.e. show 20 + 21 + ... + 2k 4 2k+1 = Jk+2 _ 1




Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
204214+ | +2k=2k1_-1 pylH
Adding 21 to both sides, we get:
20+ 21+ + 2k 4 2k+l = Dkt 4 D+l _q
Note that 2k+1 + 2k+1 = 2(2k+1) = Qk+2,
So, we have 20 + 21 + . + 2k + 2k+1 = Jk+2 _ 1 which is
exactly P(k+1).



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.

Base Case (n=0): 2°=1=2-1=2%1-1so0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

Alternative way of writing the inductive step



Provel + 2 + 4 + ... + 2n =2n+l_1

1.

N

Let P(n) be “20+ 21+ ...+ 2" =2"1—-1", We will show P(n) is true
for all natural numbers by induction.
Base Case (n=0): 2°=1=2-1=2%1-1s0P(0)is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k >0, i.e., that 20 + 21 + ... + 2k = 2k+1 — 1,

Induction Step:
We can calculate
20421+ |+ 2k + 2k 1 = (204214 |+ 2Kk) 4 2k+1
= (2k+1 — 1) + 2k+1 by the IH
— 2(2k+1) -1
— 2k+2 - 1’
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Prove 1 +2 +3 4+ ..+ n=nn+1)/2




Prove 1 +2 +3 4+ ..+ n=nn+1)/2

Summation Notation
toli=0+1+2+3+ ...+ n




Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

Summation Notation
Poi=04+1+2+3+ ..+n




Prove 1 +2 +3 4+ ..+ n=nn+1)/2

1. LetP(n)be “0+1+2+..+n=n(n+1)/2". We will show P(n) is
true for all natural numbers by induction.

2. Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.



Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

2.
3.

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.

Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k F k(k+1)/2

“some” or “an”
not any!



Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ...+ k+ (k+1) = (k+1)(k+2)/2




Prove 1 + 2+ 3 4+ ... + n

nn+1)/2

1.

N

Let P(n)be “0+1+2+..+n=n(n+1)/2"”. We will show P(n) is
true for all natural numbers by induction.
Base Case (n=0): 0=0(0+1)/2. Therefore P(0) is true.

Induction Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 0. l.e., suppose 1 + 2 + ...+ k = k(k+1)/2

Induction Step:
1+2+ ... +k+(k+t1)=(1+2+..+k)+ (k+1)
= k(k+1)/2 + (k+1) by IH
= (k+1)(k/2 + 1)
= (k+1)(k+2)/2
So, we have shown 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2,
which is exactly P(k+1).

5. Thus P(n) is true for all n €N, by induction.



Induction: Changing the start line

* What if we want to prove that P(n) is true
for all integers n = b for some integer b?

 Define predicate Q(k) = P(k + b) for all k.
—Then VnQ(n) =vn=b P(n)

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) — Q(k+ 1)) =Vk > b(P(k) — P(k + 1))



Inductive Proofs In 5 Easy Steps

Template for induction from a different base case

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k > b”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))
5. “Conclusion: P(n) is true for all integers n > b”




Prove 3" > n? + 3 foralln > 2




Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n2+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+3=2%+3s0 P(2)is true.

3. Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3k> k2+3.



Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k1> (k+1)2+3




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4
Jk+l = 3(3k)

> 3(k?+3) by the IH

= 3k?+9

= k2+2k?+9

> k2+2k+4 = (k+1)?+3 since k > 1.
Therefore P(k+1) is true.




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

Base Case (n=2): 32=92>7 =443 =2%+3s0 P(2) is true.

Inductive Hypothesis: Suppose that P(k) is true for some
arbitrary integer k > 2. l.e., suppose 3%> k2+3.

Inductive Step:
Goal: Show P(k+1), i.e. show 3k*1> (k+1)2+3=k2+2k+4
Jk+l = 3(3k)
> 3(k?+3) by the IH
= k2+2k?+9
> k2+2k+4 = (k+1)%+3 since k > 1.
Therefore P(k+1) is true.

5. Thus P(n) is true for all integers n > 2, by induction.



Checkerboard Tiling

* Prove that a 2" x 2" checkerboard with one square
removed can be tiled with:




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1




Checkerboard Tiling

1. Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

2. Base Case: n=1

3. Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1




Checkerboard Tiling

1.

Let P(n) be any 2" x 2" checkerboard with one square
removed can be tiled with |
We prove P(n) for all n = 1 by mductlon onh n.

Base Case: n=1

Inductive Hypothesis: Assume P(k) for some
arbitrary integer k=1

Inductive Step: Prove P(k+1)

Apply IH to
each quadrant
| then fill with
extra tile.




Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) P2 P@3) PMA)  P(5)



Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)—P(4) P(4)-P(5)

TN T N TN TN N
P(0) P() P2 PGB P@H  PO)

We made it harder than we needed to ...
When we proved P(2) we knew BOTH P(0) and P(1)
When we proved P(3) we knew P(0) and P(1) and P(2)
When we proved P(4) we knew P(0), P(1), P(2),P(3)
etc.

That’s the essence of the idea of Strong Induction.



Strong Induction

P(0) vk (Vi (0<j<k-P(3)) - Plk+1))

~VnP(n)



Strong Induction

P(0) vk (Vi (0<j<k-P()) - Plk+1))

~VnP(n)

Strong induction for P follows from ordinary induction for
where

Q(k) == vj(0<j<k-P())

Note that Q(0) = P(0)and Q(k+1) =Q(k) AP(k+ 1)
and vn Q(n) = vn P(n)



Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(k) is true”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1))

5. “Conclusion: P(n) is true for all integers n > b”



Strong Inductive Proofs In 5 Easy Steps

1. “Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(j) is true for every integer j from b to k”
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using LH. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) 1)

5. “Conclusion: P(n) is true for all integers n = b”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime
factorization

48 = 2¢222+3

591 =3« 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 « 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer = 2 is a product of (one or more) primes.




Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.



Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.



Every integer = 2 is a product of (one or more) primes.

1. Let P(n) be “nis a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.
2. Base Case (n=2): 2is prime, so it is a product of (one) prime.
Therefore P(2) is true.

3. Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k



Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.
Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k
Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that
P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that

P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b

where 2 <a, b <k.




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that

P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a, b < k. By our IH, P(a) and P(b) are true so we have

a=pipz - prand b=qiq; - qs
for some primes py,p,,..., P, d1,92,--+) Q-
Thus, k+1 =ab =p;p, :*- p,919, *** q; which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true.




Every integer = 2 is a product of (one or more) primes.

1.

2.

Let P(n) be “n is a product of some list of primes”. We will show that

P(n) is true for all integers n = 2 by strong induction.

Base Case (n=2): 2 is prime, so it is a product of (one) prime.
Therefore P(2) is true.

Inductive Hyp: Suppose that for some arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 < a, b < k. By our IH, P(a) and P(b) are true so we have

a=pipz - prand b=qiq; - qs
for some primes py,p,,..., P, d1,92,--+) Q-
Thus, k+1 =ab =p;p, :*- p,919, *** q; which is a product of primes.
Since k > 2, one of these cases must happen and so P(k+1) is true.

5. Thus P(n) is true for all integers n = 2, by strong induction.



Strong Induction is particularly useful when...

...we need to analyze methods that on input kK make
a recursive call for an input different from k — 1.

e.g.: Recursive Modular Exponentiation:

— For exponent k > 0 it made a recursive call with
exponentj = k/2 when k was evenorj =k — 1 when k
was odd.



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {

long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

a*’mod m = (a’ mod m)zmod m
a**Imodm = ((a modm) - (a¥ mod m)) mod m



