
CSE 311: Foundations of Computing

Topic 7:  Induction



Mathematical Induction

Method for proving statements about all natural numbers

– A new logical inference rule!
• It only applies over the natural numbers
• The idea is to use the special structure of the naturals 

to prove things more easily

– Particularly useful for reasoning about programs!
  for (int i=0; i < n; n++) { … }

• Show P(i) holds after i times through the loop



Prove ∀𝑎, 𝑏,𝑚 > 0	∀	𝑘 ∈ ℕ	((𝑎 ≡! 𝑏) → (𝑎" ≡! 𝑏"))

Let 𝑎, 𝑏,𝑚 > 0	be arbitrary. Let 𝑘 ∈ ℕ be arbitrary.
Suppose that 𝑎 ≡! 𝑏.

We know (𝑎 ≡! 𝑏) ∧ (𝑎 ≡! 𝑏) → (𝑎!≡! 𝑏!) by multiplying 
congruences.  So, applying this repeatedly, we have:

(𝑎 ≡! 𝑏) ∧ (𝑎 ≡! 𝑏) → (𝑎! ≡! 𝑏!)
(𝑎!≡! 𝑏!) ∧ (𝑎 ≡! 𝑏) → (𝑎" ≡! 𝑏"	)

…
(𝑎#$% ≡! 𝑏#$%	) ∧ (𝑎 ≡! 𝑏) → (𝑎# ≡! 𝑏#)

The “…”s is a problem!  We don’t have a proof rule that 
allows us to say “do this over and over”.



But there is such a rule for the natural numbers!

Domain: Natural Numbers

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(3)?

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Induction Is A Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

First, we have P(0).
Since P(n) → P(n+1) for all n, we have P(0) → P(1).  
 Since P(0) is true and P(0) → P(1), by Modus Ponens, P(1) is true.
Since P(n) → P(n+1) for all n, we have P(1) → P(2).
 Since P(1) is true and P(1) → P(2), by Modus Ponens, P(2) is true.

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)        
2. Let k be an arbitrary integer ≥ 0
           3.1.  Assume that P(k) is true
           3.2.  ...
           3.3.  Prove P(k+1) is true
3. P(k) ®  P(k+1)                         Direct Proof Rule
4.  "k (P(k) ® P(k+1))                Intro ": 2, 3
5.  "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)        
2. Let k be an arbitrary integer ≥ 0
           3.1.  Assume that P(k) is true
           3.2.  ...
           3.3.  Prove P(k+1) is true
3. P(k) ®  P(k+1)                         Direct Proof Rule
4.  "k (P(k) ® P(k+1))                Intro ": 2, 3
5.  "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Using The Induction Rule In A Formal Proof

1. P(0)
2. Let k be an arbitrary integer ≥ 0
           3.1. P(k)      Assumption
           3.2.  ...
           3.3.  P(k+1)
3. P(k) ®  P(k+1)                         Direct Proof Rule
4.  "k (P(k) ® P(k+1))                Intro ": 2, 3
5.  "n P(n)                                   Induction: 1, 4

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Translating to an English Proof

1. Prove P(0)
2. Let k be an arbitrary integer ≥ 0
           3.1. Suppose that P(k) is true
           3.2.  ...
           3.3.  Prove P(k+1) is true
3. P(k) ®  P(k+1)                         Direct Proof Rule
4. "k (P(k) ® P(k+1))                Intro ": 2, 3
5. "n P(n)                                   Induction: 1, 4

Base Case
Inductive 
Hypothesis

Inductive 
Step

Conclusion

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Translating to an English Proof

[…Define P(n)…]
We will show that 𝑃(𝑛) is true for every 𝑛 ∈ ℕ by Induction.
Base Case: […proof of 𝑃(0) here…]
Induction Hypothesis: 
 Suppose that 𝑃(𝑘) is true for an arbitrary 𝑘 ∈ ℕ.
Induction Step:
 […proof of 𝑃(𝑘 + 1) here…]
 The proof of 𝑃(𝑘 + 1) must invoke the IH somewhere.
So, the claim is true by induction.

Induction English Proof Template



Inductive Proofs In 5 Easy Steps

Proof: 
1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for every 
        𝑛	 ≥ 	0 by Induction.”
2. “Base Case:” Prove 𝑃(0)
3. “Inductive Hypothesis:
 Suppose 𝑃(𝑘) is true for an arbitrary integer 𝑘	 ≥ 	0”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true.
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: Result follows by induction”

Basic induction template



What is 1	 + 	2	 + 	4	 +	…	+ 	2𝑛 ?

• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 1
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 3
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 7
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 15
• 1	 + 	2	 + 	4	 + 	8	 + 	16	 = 	 31

   

It sure looks like this sum is 2,-. − 1
How can we prove it?
 We could prove it for 𝑛 = 1, 𝑛 = 2, 𝑛 = 3,… but 

that would literally take forever.
     Good that we have induction!



Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
         Goal:  Show P(k+1I.e.,), i.e. show 1 + 2 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1
  1 + 2 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
  1 + 2 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have  1 + 2 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
   20 + 21 + … + 2k = 2k+1 – 1   by IH
 Adding 2k+1 to both sides, we get:
   20 + 21 + … + 2k + 2k+1 = 2k+1 + 2k+1 – 1
 Note that 2k+1 + 2k+1 = 2(2k+1) = 2k+2.
 So, we have 20 + 21 + … + 2k + 2k+1 = 2k+2 – 1, which is 
 exactly P(k+1).
 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).

 5. Thus P(k) is true for all k ∈ℕ, by induction.  

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1

Alternative way of writing the inductive step



1. Let P(n) be “20 + 21 + … + 2n = 2n+1 – 1”.  We will show P(n) is true 
for all natural numbers by induction.

2. Base Case (n=0):    20 = 1 = 2 – 1 = 20+1 – 1 so P(0) is true.
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0, i.e., that 20 + 21 + … + 2k = 2k+1 – 1.
4. Induction Step:  
       We can calculate
         20 + 21 + … + 2k + 2k+1  = (20+21+ … + 2k) + 2k+1 
                                                         = (2k+1 – 1) + 2k+1   by the IH
                 = 2(2k+1) – 1
                 = 2k+2 – 1,
       which is exactly P(k+1).
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 1	 + 	2	 + 	4	 +	…	+ 	2𝑛	 = 2()*– 	1



Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

Summation Notation
 ∑+,-( 𝑖 = 0 + 1	 + 	2	 + 	3	 +	…	+ 	𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
  1 + 2 + … + n = n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

Summation Notation
 ∑+,-( 𝑖 = 0 + 1	 + 	2	 + 	3	 +	…	+ 	𝑛



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 0.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 1 + 2 + … + (n+1) = (n+1)(n+2)/2
  1 + 2 + … + n = n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some     

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
        
1 + 2 + … + n  n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2

“some” or “an”
not any!



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  
        Goal:  Show P(k+1), i.e. show 1 + 2 + …+ k+ (k+1) = (k+1)(k+2)/2
  1 + 2 + … + n = n(n+1)/2   by IH
 Adding n+1 to both sides, we get:
  1 + 2 + … + n + (n+1) = n(n+1)/2 + (n+1)
 Now n(n+1)/2 + (n+1) = (n+1)(n/2 + 1) = (n+1)(n+2)/2.
 So, we have  1 + 2 + … + n + (n+1) = (n+1)(n+2)/2, which is 
 exactly P(k+1).
  5. Thus P(k) is true for all k ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



1. Let P(n) be “0 + 1 + 2 + … + n = n(n+1)/2”.  We will show P(n) is 
true for all natural numbers by induction.

2. Base Case (n=0):    0 = 0(0+1)/2.   Therefore P(0) is true.  
3. Induction Hypothesis:  Suppose that P(k) is true for some    

arbitrary integer k ≥ 0. I.e., suppose 1 + 2 + …+ k  = k(k+1)/2
4. Induction Step:  
        1 + 2 + … + k + (k+1) = (1 + 2 + … + k) + (k+1) 
                                                    = k(k+1)/2 + (k+1)  by IH
            = (k+1)(k/2 + 1)
            = (k+1)(k+2)/2
  So, we have shown 1 + 2 + … + k + (k+1) = (k+1)(k+2)/2, 
  which is exactly P(k+1).
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove	 1	 + 	2	 + 	3	 +	…	+ 	𝑛	 = 	𝑛(𝑛 + 1)/2



Induction: Changing the start line 

• What if we want to prove that 𝑃(𝑛) is true 
for all integers 𝑛 ≥ 𝑏 for some integer 𝑏?

• Define predicate 𝑄 𝑘 = 𝑃(𝑘 + 𝑏) for all 𝑘.
– Then ∀𝑛	𝑄 𝑛 ≡ ∀𝑛 ≥ 𝑏	 𝑃(𝑛)

 

• Ordinary induction for 𝑄:  
– Prove	𝑄 0 ≡ 𝑃 𝑏
– Prove                                                        

∀𝑘 𝑄 𝑘 ⟶ 𝑄 𝑘 + 1 ≡ ∀𝑘 ≥ 𝑏 𝑃 𝑘 ⟶ 𝑃 𝑘 + 1



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
      integers 𝑛 ≥ 𝒃 by induction.”
2. “Base Case:” Prove 𝑃(𝒃)
3. “Inductive Hypothesis:
 Assume 𝑃(𝑘) is true for an arbitrary integer 𝑘 ≥ 𝒃”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)
5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝒃”

Template for induction from a different base case



Prove 3𝑛 ≥ 𝑛. + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):  32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Hypothesis:  Suppose that P(k) is true for some                                          

arbitrary integer k ≥ 2.
4. Induction Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛. + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some     

                                     arbitrary integer k ≥ 2.
4. Inductive Step:  
          Goal:  Show P(k+1), i.e. show 3k+1 ≥ (k+1)2+3=k2+2k+4
         3k+1 = 3(3k)
                             ≥ 3(k2+3) by the IH
                           = k2+2k2+9
         ≥ k2+2k+1 = (k+1)2  since k ≥ 1.
   Therefore P(k+1) is true.
  5. Thus P(n) is true for all n ∈ℕ, by induction.

Prove 3𝑛 ≥ 𝑛. + 3 for all 𝑛 ≥ 2



1. Let P(n) be “3n  ≥  n2+3”.  We will show P(n) is true for all      
integers n ≥ 2 by induction.

2. Base Case (n=2):    32 = 9 ≥	7 = 4+3 = 22+3 so P(2) is true.
3. Inductive Hypothesis:  Suppose that P(k) is true for some   

 arbitrary integer k ≥ 2. I.e., suppose 3k ≥ k2+3.
          =k2+2k+4
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Prove 3𝑛 ≥ 𝑛. + 3 for all 𝑛 ≥ 2
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Checkerboard Tiling

• Prove that a 2𝑛	´	2𝑛	checkerboard with one square 
removed can be tiled with:



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1



Checkerboard Tiling

1. Let P(n) be any 2n ´ 2n checkerboard with one square 
removed can be tiled with         .                                                
We prove P(n) for all n ≥	1	by induction on n.

2. Base Case: n=1
3. Inductive Hypothesis:  Assume P(k) for some    

              arbitrary integer k≥1
4. Inductive Step: Prove P(k+1)

Apply IH to 
each quadrant 
then fill with 
extra tile.



Recall: Induction Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)



Recall: Induction Rule of Inference
Domain: Natural Numbers

How do the givens prove P(5)?

𝑃(0) 𝑃(1) 𝑃(2) 𝑃(3) 𝑃(4) 𝑃(5)

P(0)→P(1)                  P(1)→P(2)    P(2)→P(3)     P(3)→P(4 )              P(4)→P(5)     

𝑃 0
∀𝑘	(𝑃 𝑘 ⟶ 𝑃 𝑘 + 1 )

∴ ∀𝑛	 𝑃(𝑛)

We made it harder than we needed to ...
 When we proved 𝑃(2) we knew BOTH 𝑃(0) and 𝑃(1)
      When we proved 𝑃(3) we knew 𝑃(0) and 𝑃(1) and 𝑃 2  
      When we proved 𝑃(4) we knew 𝑃(0),	𝑃(1),	𝑃 2 , 𝑃(3)
      etc.
That’s the essence of the idea of Strong Induction.



Strong Induction

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)



Strong Induction

Strong induction for 𝑃 follows from ordinary induction for 𝑄 
where

𝑄 𝑘 	∷=	∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗

Note that 𝑄 0 = 𝑃(0) and 𝑄(𝑘 + 1) ≡ 𝑄(𝑘) 	∧ 𝑃 𝑘 + 1  
and  ∀𝑛	𝑄 𝑛 ≡ ∀𝑛	𝑃(𝑛) 

𝑃 0 	 ∀𝑘 ∀𝑗 0 ≤ 𝑗 ≤ 𝑘 → 𝑃 𝑗 → 𝑃 𝑘 + 1

∴ ∀𝑛	𝑃(𝑛)



Inductive Proofs In 5 Easy Steps

1. “Let 𝑃(𝑛) be... . We will show that 𝑃(𝑛) is true for all 
       integers 𝑛 ≥ 𝑏 by induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,
                    𝑃(𝑘) is true” 
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. and point out where you are 

using it.  (Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”
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       integers 𝑛 ≥ 𝑏 by strong induction.”
2. “Base Case:” Prove 𝑃(𝑏)
3. “Inductive Hypothesis:
 Assume that for some arbitrary integer 𝑘 ≥ 𝑏,	
  	 𝑃(𝑗) is true for every integer 𝑗	from 𝑏	to 𝑘”   
4. “Inductive Step:” Prove that 𝑃(𝑘 + 1) is true:
     Use the goal to figure out what you need. 
 Make sure you are using I.H. (that 𝑃(𝑏), … , 𝑃(𝑘) are true) 

and point out where you are using it.                           
(Don’t assume 𝑃(𝑘 + 1) !!)

5. “Conclusion: 𝑃(𝑛) is true for all integers 𝑛 ≥ 𝑏”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime 
factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer ≥ 2 is a product of (one or more) primes.



1. Let P(n) be “n is a product of some list of primes”.  We will show that 
P(n) is true for all integers n ≥	2 by strong induction.

2. Base Case (n=2):    2 is prime, so it is a product of primes.  
    Therefore P(2) is true.

3. Inductive :  Suppose that for some arbitrary integer k ≥ 2, 
 P(j) is true for every integer j between 2 and k

4. Inductive Step:
              Goal:  Show P(k+1); i.e. k+1 is a product of primes
    Case: k+1 is prime:  Then by definition k+1 is a product of primes
    Case: k+1 is composite: Then k+1=ab for some integers a and b      

 where 2 ≤ a, b ≤ k. By our IH, P(a) and P(b) are true so we have      
             a = p1p2 ⋯	pm and  b = q1q2 ⋯                                                              
   for some primes p1,p2,...,	pm, q1,q2,..., qn.

         Thus, k+1 = ab = p1p2 ⋯ pmq1q2 ⋯	qn which is a product of primes. 
  Since k ≥ 1, one of these cases must happen and so P(k+1) is true: 

5. Thus P(n) is true for all integers n ≥	2, by induction.

Every integer ≥ 2 is a product of (one or more) primes.
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Strong Induction is particularly useful when...

...we need to analyze methods that on input 𝑘 make 
a recursive call for an input different from 𝑘 − 1.

e.g.:  Recursive Modular Exponentiation:
– For exponent 𝑘 > 0 it made a recursive call with 

exponent j = 𝑘/2 when 𝑘 was even or j = 𝑘 − 1 when 𝑘 
was odd.



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {
 
     if (k == 0) {
   return 1;

        } else if ((k % 2) == 0) {
   long temp = FastModExp(a,k/2,modulus);
   return (temp * temp) % modulus;

  } else {
   long temp = FastModExp(a,k-1,modulus);
   return (a * temp) % modulus;
  }
}

𝑎!"mod	𝑚 = 𝑎"	mod	𝑚 !mod	𝑚
𝑎!"#$mod𝑚 = (𝑎	mod	𝑚) 6 𝑎2𝑗mod𝑚 	mod𝑚


