
CSE 311: Foundations of Computing

Topic 6:  Set Theory



Sets

Sets are collections of objects called elements. 

Write a ∈	B  to say that a is an element of set B,
and a ∉	B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, Æ, α}



Some Common Sets

ℕ is the set of Natural Numbers; ℕ = {0, 1, 2, …}
ℤ is the set of Integers; ℤ = {…, -2, -1, 0, 1, 2, …}
ℚ is the set of Rational Numbers; e.g. ½, -17, 32/48
ℝ is the set of Real Numbers; e.g. 1, -17, 32/48, π, 2
[n] is the set {1, 2, …, n} when n is a natural number
Æ = {} is the empty set; the only set with no elements



Sets can be elements of other sets

For example
A = {{1},{2},{1,2},Æ}
B = {1,2}

Then B	∈	A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

A Í B  :=  " x (x Î A ® x Î B)

A = B  :=	 " x (x Î A « x Î B)



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Notes:

A Í B  :=  " x (x Î A ® x Î B)

A ⊇ B means B ⊆ A A ⊂ B means A ⊆ B

A = B  :=	 " x (x Î A « x Î B)



Definition: Equality

A and B are equal if they have the same elements

A = B  :=	 " x (x Î A « x Î B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal?



Definition: Subset

A is a subset of B if every element of A is also in B

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS
A Í B?
C Í B?
Æ Í A?

A Í B  :=  " x (x Î A ® x Î B)



Definition: Subset

A is a subset of B if every element of A is also in B

"xÎA (P(x))

Note the domain restriction!

We will use a shorthand restriction to a set

A Í B  :=  " x (x Î A ® x Î B)

Restricting all quantified variables improves clarity

"x (x Î A ® P(x))means



Sets & Logic



We can also define a set from a predicate P:

S = the set of all x for which P(x) is true

Every set S defines a predicate  P(x) := “x ∈ S”

Building Sets from Predicates

S  :=  {x : P(x)}

S  :=  {x ∈ U : P(x)}  =  {x : (x ∈ U) ∧ P(x)} 



When a set is defined this way,
we can reason about it using its definition:

Inference Rules on Sets

S  :=  {x : P(x)}

1.  𝒙 ∈ 𝑺      Given
2.  𝑷(𝒙)  Def of S

  …

8.  𝑷(𝒚)
9.  𝒚 ∈ 𝑺  Def of S

This will be our only 
inference rule for sets!



We have a definition of subset:

Suppose we want to prove A Í B.

Proofs About Sets

A Í B  :=  "x (x Î A ® x Î B)

A  :=  {x : P(x)} B  :=  {x : Q(x)}

We need to show that is definition holds



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

8.  ∀x	(x ∈ A → x ∈ B)  ??
9. A ⊆ B       Def of Subset: 8



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

Let x be arbitrary
  1.1.  x ∈ A         Assumption

  1.9. x ∈ B	    ??
1. x ∈ A → x ∈ B     Direct Proof
2.  ∀x	(x ∈ A → x ∈ B)  Intro ": 1
3. A ⊆ B       Def of Subset: 2



Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}

Let x be arbitrary
  1.1.  x ∈ A         Assumption

 1.2. P(x)     Def of A

 1.8. Q(x)        
  1.9. x ∈ B	    Def of B
1. x ∈ A → x ∈ B     Direct Proof
2.  ∀x	(x ∈ A → x ∈ B)  Intro ": 1
3. A ⊆ B       Def of Subset: 2



Prove that A Í B.

Proof: Let x be an arbitrary object.
Suppose that x ∈ A. By definition of A, this means P(x).
…
Thus, we have Q(x). By definition of B, this means x ∈ B.
Since x was arbitrary, we have shown, by definition, 
that A Í	B.

Proofs About Sets

A  :=  {x : P(x)} B  :=  {x : Q(x)}



Operations on Sets



Set Operations

𝐴 ∪ 𝐵	:=	{	𝑥 ∶ 𝑥 ∈ 𝐴 ∨ 𝑥	 ∈ 𝐵 }

𝐴 ∩ 𝐵	:= {	𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵 }

𝐴	\	𝐵	:= {	𝑥 ∶ 𝑥 ∈ 𝐴 ∧ 𝑥 ∉ 𝐵 }

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

𝐴⊕𝐵	:=	{	𝑥 ∶ 𝑥 ∈ 𝐴 ⊕ 𝑥 ∈ 𝐵 }

5𝐴	 = 𝐴! 	:= 	𝑥 ∶ 𝑥 ∈ 𝑈 ∧ 𝑥 ∉ 𝐴	
           (with respect to universe U)                   

Symmetric
 Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A ⊕ B = {3, 4, 6}
 !𝖠 = {4,5,6}



De Morgan’s Laws



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown,
by definition, that (𝐴 ∪ 𝐵)!= 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	
1. Let x be arbitrary
    2.1.  𝑥 ∈ 𝐴 ∪ 𝐵 !	         Assumption
    …            
    2.3.  𝑥 ∈ 𝐴! ∩ 𝐵!   
2. 𝑥 ∈ 𝐴 ∪ 𝐵 !®	𝑥 ∈ 𝐴! ∩ 𝐵!      Direct Proof
    3.1. 𝑥 ∈ 𝐴! ∩ 𝐵!	          Assumption
    …            
    3.3.  𝑥 ∈ 𝐴 ∪ 𝐵 !	  
3. 𝑥 ∈ 𝐴! ∩ 𝐵!®	𝑥 ∈ 𝐴 ∪ 𝐵 !      Direct Proof
4. 𝑥 ∈ 𝐴 ∪ 𝐵 !®	𝑥 ∈ 𝐴! ∩ 𝐵! 	Ù	(𝑥 ∈ 𝐴! ∩ 𝐵!®	𝑥 ∈ 𝐴 ∪ 𝐵 !) Intro Ù: 2, 3
5. 𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!      Biconditional: 4
6. ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	 	 	 	 	 Intro ∀: 1-5



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . 

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵).

…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…

Thus, we have 𝑥 ∈ 𝐴! ∩ 𝐵! .



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵).
…
Thus, 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵! , so we we have 𝑥 ∈ 𝐴! ∩ 𝐵!  
by the definition of intersection.



De Morgan’s Laws

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵). 
…
Thus, ¬(𝑥 ∈ 𝐴) and ¬(𝑥 ∈ 𝐵), so 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵!  
by the definition of compliment, and we can see that 
𝑥 ∈ 𝐴! ∩ 𝐵!  by the definition of intersection.



De Morgan’s Laws

Proof technique:
To show C = D show
x Î C ® x Î D and
x Î D ® x Î C

Prove that (𝐴 ∪ 𝐵)! 	= 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! . Then, by the definition of 
complement, we have ¬(𝑥 ∈ 𝐴 ∪ 𝐵). The latter says, 
by the definition of union, that ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵), or 
equivalently ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵) by De Morgan’s law. 
Thus, we have 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵!  by the definition of 
compliment, and we can see that 𝑥 ∈ 𝐴! ∩ 𝐵!  by the 
definition of intersection.



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
Suppose 𝑥 ∈ 𝐴 ∪ 𝐵 ! .... Then, 𝑥 ∈ 𝐴! ∩ 𝐵! .
Suppose 𝑥 ∈ 𝐴! ∩ 𝐵! . Then, by the definition of 
intersection, we have 𝑥 ∈ 𝐴!  and 𝑥 ∈ 𝐵! . That is, we 
have ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵), which is equivalent to 
¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) by De Morgan’s law. The last is 
equivalent to ¬(𝑥 ∈ 𝐴 ∪ 𝐵), by the definition of union, 
so we have shown 𝑥 ∈ 𝐴 ∪ 𝐵 ! , by the definition of 
complement.



Proofs About Set Equality

A lot of repetitive work to show → and ←.

Do we have a way to prove ↔ directly?

We can use an equivalence chain to prove that a 
biconditional holds.

Recall that A º B and (A « B) º T are the same



De Morgan’s Laws

Prove that 𝐴 ∪ 𝐵 ! = 𝐴! ∩ 𝐵!

Formally, prove ∀x	(𝑥 ∈ 𝐴 ∪ 𝐵 ! ↔ 𝑥 ∈ 𝐴! ∩ 𝐵!)	

Proof: Let x be an arbitrary object.
The stated biconditional holds since:
𝑥 ∈ 𝐴 ∪ 𝐵 !  ≡ ¬(𝑥 ∈ 𝐴 ∪ 𝐵)    Def of Comp
     ≡ ¬(𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)   Def of Union
     ≡ ¬(𝑥 ∈ 𝐴) ∧ ¬(𝑥 ∈ 𝐵)  De Morgan
     ≡ 𝑥 ∈ 𝐴! ∧ 𝑥 ∈ 𝐵!    Def of Comp
     ≡ 𝑥 ∈ 𝐴! ∩ 𝐵!      Def of Union
Since x was arbitrary, we have shown the sets are equal.

Chains of equivalences 
are often easier to read 
like this rather than as 

English text



Distributive Laws

𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∩ 𝐵 ∪ 𝐴 ∩ 𝐶
𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∪ 𝐵 ∩ 𝐴	 ∪ 𝐶

C

A B

C

A B

It’s Propositional Logic again!



The Meta Theorem Template

Meta-Theorem: Translate any Propositional Logic 
equivalence into “=” relationship between sets by 
replacing ∪ with ∨, ∩ with ∧, and =!  with ¬.

“Proof”: Let x be an arbitrary object.
The stated bi-condition holds since:
𝑥 ∈ left side  ≡ replace set ops with propositional logic
     ≡ apply Propositional Logic equivalence
     ≡ replace propositional logic with set ops
     ≡ 𝑥 ∈ right side
Since x was arbitrary, we have shown the sets are equal.



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

	 𝒫(Days)=?

    𝒫(Æ)=?

𝒫 𝐴 	:=	{𝐵 ∶ 𝐵 ⊆ 𝐴	}



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

	 𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

    𝒫(Æ)=?

𝒫 𝐴 	:=	{𝐵 ∶ 𝐵 ⊆ 𝐴	}



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

	 𝒫(Days)= 𝖬,𝖶, 𝖥 , 𝖬,𝖶 , 𝖬, 𝖥 , 𝖶, 𝖥 , 𝖬 , 𝖶 , 𝖥 ,Æ

    𝒫(Æ)={Æ} ≠ Æ

𝒫 𝐴 	:=	{𝐵 ∶ 𝐵 ⊆ 𝐴	}



Cartesian Product

𝐴×𝐵	:=	{𝑥 ∶ ∃𝑎 ∈ 𝐴	∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))	}

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A ×	B = {(1,a), (1,b), (1,c),
                 (2,a), (2,b), (2,c)}.



Cartesian Product

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A ×	B = {(1,a), (1,b), (1,c),
                 (2,a), (2,b), (2,c)}.
 
What is 𝑨×∅?

𝐴×𝐵	:=	{𝑥 ∶ ∃𝑎 ∈ 𝐴	∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))	}



Cartesian Product

ℝ	×	ℝ is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

ℤ	×	ℤ is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A ×	B = {(1,a), (1,b), (1,c),
                 (2,a), (2,b), (2,c)}.
 
𝑨×∅	={(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨	 ∧ 	𝒃 ∈ ∅} = {(𝒂, 𝒃) ∶ 𝒂 ∈ 𝑨	 ∧ 	𝗙} 	= 	∅

𝐴×𝐵	:=	{𝑥 ∶ ∃𝑎 ∈ 𝐴	∃𝑏 ∈ 𝐵	(𝑥 = (𝑎, 𝑏))	}



Russell’s Paradox

𝑆	:=	{𝑥 ∶ 𝑥 ∉ 𝑥	}
Suppose that 𝑆 ∈ 𝑆…



Russell’s Paradox

Suppose that 𝑆 ∈ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∉ 𝑆, but 
that’s a contradiction.

Suppose that 𝑆 ∉ 𝑆.  Then, by the definition of 𝑆, 𝑆 ∈ 𝑆, but 
that’s a contradiction too.

This is reminiscent of the truth value of the statement “This 
statement is false.”

𝑆	:=	{𝑥 ∶ 𝑥 ∉ 𝑥	}


