CSE 311: Foundations of Computing

Topic 6: Set Theory

Sets

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

$$
\begin{aligned}
& \text { Some simple examples } \\
& A=\{1\} \\
& B=\{1,3,2\} \\
& C=\{\square, 1\} \\
& D=\{\{17\}, 17\} \\
& E=\{1,2,7, \text { cat, dog, } \varnothing, \alpha\}
\end{aligned}
$$

Some Common Sets

\mathbb{N} is the set of Natural Numbers; $\mathbb{N}=\{0,1,2, \ldots\}$
\mathbb{Z} is the set of Integers; $\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}$
\mathbb{Q} is the set of Rational Numbers; e.g. $1 / 2,-17,32 / 48$
\mathbb{R} is the set of Real Numbers; e.g. 1, $-17,32 / 48, \pi, \sqrt{2}$
[\mathbf{n}] is the set $\{\mathbf{1}, \mathbf{2}, \ldots, \mathrm{n}\}$ when \mathbf{n} is a natural number
$\varnothing=\{ \}$ is the empty set; the only set with no elements

Sets can be elements of other sets

$$
\begin{aligned}
& \text { For example } \\
& \begin{array}{l}
A=\{\{1\},\{2\},\{1,2\}, \varnothing\} \\
B=\{1,2\}
\end{array} \\
& \text { Then } B \in A \text {. }
\end{aligned}
$$

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}:=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Definitions

- A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}:=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

- A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

- Notes:

$$
(A=B) \equiv(A \subseteq B) \wedge(B \subseteq A)
$$

$A \supseteq B$ means $B \subseteq A \quad A \subset B$ means $A \subseteq B$

Definition: Equality

A and B are equal if they have the same elements

$$
\mathrm{A}=\mathrm{B}:=\forall x(x \in \mathrm{~A} \leftrightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\} \\
& D=\{4,3,3\} \\
& E=\{3,4,3\} \\
& F=\{4,\{3\}\}
\end{aligned}
$$

Which sets are equal?

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,4,5\} \\
& C=\{3,4\}
\end{aligned}
$$

$$
\begin{array}{ll}
& \text { QUESTIONS } \\
A \subseteq B ? & \\
C \subseteq B ? & \\
\varnothing \subseteq A ? &
\end{array}
$$

Definition: Subset

A is a subset of B if every element of A is also in B

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

Note the domain restriction!

We will use a shorthand restriction to a set

$$
\forall x \in A(P(x)) \quad \text { means } \quad \forall x(x \in A \rightarrow P(x))
$$

Restricting all quantified variables improves clarity

Sets \& Logic

Building Sets from Predicates

Every set S defines a predicate $P(x):=" x \in S "$

We can also define a set from a predicate P :

$$
S:=\{x: P(x)\}
$$

$S=$ the set of all x for which $P(x)$ is true

$$
S:=\{x \in U: P(x)\}=\{x:(x \in U) \wedge P(x)\}
$$

Inference Rules on Sets

$$
S:=\{x: P(x)\}
$$

When a set is defined this way, we can reason about it using its definition:

1. $x \in S$ Given
2. $\quad P(x)$ Def of S

This will be our only
inference rule for sets!
8. $P(y)$
9. $y \in S \quad$ Def of S

Proofs About Sets

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

Suppose we want to prove $A \subseteq B$.

We have a definition of subset:

$$
\mathrm{A} \subseteq \mathrm{~B}:=\forall x(x \in \mathrm{~A} \rightarrow x \in \mathrm{~B})
$$

We need to show that is definition holds

Proofs About Sets

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

8. $\forall x(x \in A \rightarrow x \in B)$
9. $\mathrm{A} \subseteq \mathrm{B}$
??
Def of Subset: 8

Proofs About Sets

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

Let x be arbitrary 1.1. $\mathrm{x} \in \mathrm{A}$

Assumption
1.9. $x \in B$

1. $x \in A \rightarrow x \in B$
2. $\forall x(x \in A \rightarrow x \in B)$
3. $\mathrm{A} \subseteq \mathrm{B}$
??
Direct Proof
Intro \forall : 1
Def of Subset: 2

Proofs About Sets

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

Let x be arbitrary
1.1. $\quad x \in A$
1.2. $P(x)$
1.8. $Q(x)$
1.9. $x \in B$

1. $x \in A \rightarrow x \in B$
2. $\forall x(x \in A \rightarrow x \in B)$
3. $\mathrm{A} \subseteq \mathrm{B}$

Assumption

Def of A

Def of B
Direct Proof
Intro \forall : 1
Def of Subset: 2

Proofs About Sets

$$
A:=\{x: P(x)\} \quad B:=\{x: Q(x)\}
$$

Prove that $\mathrm{A} \subseteq \mathrm{B}$.
Proof: Let x be an arbitrary object.
Suppose that $x \in A$. By definition of A, this means $P(x)$.

Thus, we have $Q(x)$. By definition of B, this means $x \in B$.
Since x was arbitrary, we have shown, by definition, that $\mathrm{A} \subseteq \mathrm{B}$.

Operations on Sets

Set Operations

$$
A \cup B:=\{x:(x \in A) \vee(x \in B)\} \quad \text { Union }
$$

$A \cap B:=\{x:(x \in A) \wedge(x \in B)\} \quad$ Intersection
$A \backslash B:=\{x:(x \in A) \wedge(x \notin B)\}$
Set Difference

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{3,5,6\} \\
& C=\{3,4\}
\end{aligned}
$$

QUESTIONS
Using A, B, C and set operations, make...
[6] =
$\{3\}=$
$\{1,2\}=$

More Set Operations

$$
A \oplus B:=\{x:(x \in A) \oplus(x \in B)\}
$$

Symmetric Difference

$$
\bar{A}=A^{C}:=\{x: x \in U \wedge x \notin A\}
$$ (with respect to universe U)

Complement

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{1,2,4,6\} \\
& \text { Universe: } \\
& U=\{1,2,3,4,5,6\}
\end{aligned}
$$

$$
\begin{aligned}
& A \bigoplus B=\{3,4,6\} \\
& \bar{A}=\{4,5,6\}
\end{aligned}
$$

De Morgan's Laws

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^{C}=A^{C} \cap B^{C}$.

Proof technique:
To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

1. Let x be arbitrary
2.1. $x \in(A \cup B)^{C}$

Assumption

2.3. $x \in A^{C} \cap B^{C}$
2. $x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}$
3.1. $x \in A^{C} \cap B^{C}$

Direct Proof
Assumption
3.3. $x \in(A \cup B)^{C}$
3. $x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}$

Direct Proof
4. $\left(x \in(A \cup B)^{C} \rightarrow x \in A^{C} \cap B^{C}\right) \wedge\left(x \in A^{C} \cap B^{C} \rightarrow x \in(A \cup B)^{C}\right)$
5. $x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}$
6. $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$

Intro ^: 2, 3
Biconditional: 4
Intro \forall : 1-5

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, we have $x \in A^{C} \cap B^{C}$.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $x \in A^{C}$ and $x \in B^{C}$, so we we have $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$.

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \vee x \in B)$, or equivalently $\neg(x \in A) \wedge \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in A^{C}$ and $x \in B^{C}$ by the definition of compliment, and we can see that $x \in A^{C} \cap B^{C}$ by the definition of intersection.

Proof technique:

To show $\mathrm{C}=\mathrm{D}$ show
$x \in \mathrm{C} \rightarrow x \in \mathrm{D}$ and
$x \in \mathrm{D} \rightarrow x \in \mathrm{C}$

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
Suppose $x \in(A \cup B)^{C} \ldots$. Then, $x \in A^{C} \cap B^{C}$.
Suppose $x \in A^{C} \cap B^{C}$. Then, by the definition of intersection, we have $x \in A^{C}$ and $x \in B^{C}$. That is, we have $\neg(x \in A) \wedge \neg(x \in B)$, which is equivalent to $\neg(x \in A \vee x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in(A \cup B)^{C}$, by the definition of complement.

Proofs About Set Equality

A lot of repetitive work to show \rightarrow and \leftarrow.

Do we have a way to prove \leftrightarrow directly?

$$
\text { Recall that } A \equiv B \text { and }(A \leftrightarrow B) \equiv T \text { are the same }
$$

We can use an equivalence chain to prove that a biconditional holds.

De Morgan's Laws

Prove that $(A \cup B)^{C}=A^{C} \cap B^{C}$
Formally, prove $\forall \mathrm{x}\left(x \in(A \cup B)^{C} \leftrightarrow x \in A^{C} \cap B^{C}\right)$
Proof: Let x be an arbitrary object.
The stated biconditional holds since:
$x \in(A \cup B)^{C} \equiv \neg(x \in A \cup B) \quad$ Def of Comp
$\equiv \neg(x \in A \vee x \in B) \quad$ Def of Union
$\begin{aligned} \substack{\text { Chains of equivalences } \\ \text { are often easier to read } \\ \text { like this rather than as } \\ \text { English text }} & \equiv x \in A^{C} \wedge x \in B^{C} \\ & \equiv x \in A^{C} \cap B^{C}\end{aligned}$
De Morgan
Def of Comp
Def of Union
Since x was arbitrary, we have shown the sets are equal. \quad -

Distributive Laws

$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
 $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$

It's Propositional Logic again!

The Meta Theorem Template

Meta-Theorem: Translate any Propositional Logic equivalence into " $=$ " relationship between sets by replacing U with \vee, \cap with \wedge, and ${ }^{C}$ with \neg.
"Proof": Let x be an arbitrary object.
The stated bi-condition holds since:
$x \in$ left side $\quad \equiv$ replace set ops with propositional logic
三 apply Propositional Logic equivalence
\equiv replace propositional logic with set ops
$\equiv x \in$ right side
Since x was arbitrary, we have shown the sets are equal. \square

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days $=\{M, W, F\}$ and consider all the possible sets of days in a week you could ask a question in class
\mathcal{P} (Days)=?
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class
$\mathcal{P}($ Days $)=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}$
$\mathcal{P}(\varnothing)=$?

Power Set

- Power Set of a set $A=$ set of all subsets of A

$$
\mathcal{P}(A):=\{B: B \subseteq A\}
$$

- e.g., let Days=\{M,W,F\} and consider all the possible sets of days in a week you could ask a question in class

$$
\mathcal{P}(\text { Days })=\{\{M, W, F\},\{M, W\},\{M, F\},\{W, F\},\{M\},\{W\},\{F\}, \varnothing\}
$$

$$
\mathcal{P}(\varnothing)=\{\varnothing\} \neq \varnothing
$$

Cartesian Product

$$
A \times B:=\{x: \exists a \in A \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
(2,a), (2,b), (2,c)\}.

Cartesian Product

$$
A \times B:=\{x: \exists a \in A \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"
If $A=\{1,2\}, B=\{a, b, c\}$, then $A \times B=\{(1, a),(1, b),(1, c)$,
$(2, a),(2, b),(2, c)\}$.
What is $A \times \emptyset ?$

Cartesian Product

$$
A \times B:=\{x: \exists a \in A \exists b \in B(x=(a, b))\}
$$

$\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
$\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

$$
\begin{aligned}
& \text { If } A=\{1,2\}, B=\{a, b, c\} \text {, then } A \times B=\{(1, a),(1, b),(1, c) \text {, } \\
& (2, a),(2, b),(2, c)\} \text {. }
\end{aligned}
$$

$\boldsymbol{A} \times \emptyset=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{b} \in \emptyset\}=\{(\boldsymbol{a}, \boldsymbol{b}): \boldsymbol{a} \in \boldsymbol{A} \wedge \boldsymbol{F}\}=\varnothing$

Russell's Paradox

$$
S:=\{x: x \notin x\}
$$

Suppose that $S \in S$...

Russell's Paradox

$S:=\{x: x \notin x\}$

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."

