CSE 311: Foundations of Computing

Topic 6: Set Theory

Sets

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

Some simple examples $A = \{1\}$ $B = \{1, 3, 2\}$ $C = \{\Box, 1\}$ $D = \{\{17\}, 17\}$ $E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}$

Some Common Sets

```
N is the set of Natural Numbers; N = {0, 1, 2, ...}

Z is the set of Integers; Z = {..., -2, -1, 0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. ½, -17, 32/48

R is the set of Real Numbers; e.g. 1, -17, 32/48, \pi, \sqrt{2}

[n] is the set {1, 2, ..., n} when n is a natural number \varnothing = {} is the empty set; the only set with no elements
```

Sets can be elements of other sets

For example

$$A = \{\{1\},\{2\},\{1,2\},\varnothing\}$$

$$B = \{1,2\}$$

Then $B \in A$.

Definitions

A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

Definitions

A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

 $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$ Notes:

 $A \supseteq B$ means $B \subseteq A$ $A \subseteq B$ means $A \subseteq B$

Definition: Equality

A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

Which sets are equal?

Definition: Subset

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

$$A = \{1, 2, 3\}$$

 $B = \{3, 4, 5\}$
 $C = \{3, 4\}$

$\begin{array}{c} \underline{\mathsf{QUESTIONS}} \\ \mathsf{A} \subseteq \mathsf{B?} \\ \mathsf{C} \subseteq \mathsf{B?} \\ \varnothing \subseteq \mathsf{A?} \end{array}$

Definition: Subset

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

Note the domain restriction!

We will use a shorthand restriction to a set

$$\forall x \in A (P(x))$$
 means $\forall x (x \in A \rightarrow P(x))$

Restricting all quantified variables improves clarity

Sets & Logic

Building Sets from Predicates

Every set S defines a predicate $P(x) := "x \in S"$

We can also define a set from a predicate P:

$$S := \{x : P(x)\}$$

S =the set of all x for which P(x) is true

$$S := \{x \in U : P(x)\} = \{x : (x \in U) \land P(x)\}$$

Inference Rules on Sets

$$S := \{x : P(x)\}$$

When a set is defined this way, we can reason about it using its definition:

- 1. $x \in S$ Given
- 2. P(x) Def of S

8. P(y)

9. $y \in S$ Def of S

This will be our **only** inference rule for sets!

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Suppose we want to prove $A \subseteq B$.

We have a definition of subset:

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

We need to show that is definition holds

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

- **8.** $\forall x (x \in A \rightarrow x \in B)$
- **9.** A ⊆ B

??

Def of Subset: 8

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Let x be arbitrary $1.1. x \in A$

Assumption

1.9. $x \in B$

1. $x \in A \rightarrow x \in B$

2. $\forall x (x \in A \rightarrow x \in B)$

3. $A \subseteq B$

??

Direct Proof

Intro ∀: **1**

Def of Subset: 2

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Let x be arbitrary

1.1.
$$x \in A$$

1.2.
$$P(x)$$

Assumption

Def of A

1.8.
$$Q(x)$$

1.9.
$$x \in B$$

1.
$$x \in A \rightarrow x \in B$$

2.
$$\forall x (x \in A \rightarrow x \in B)$$

3.
$$A \subseteq B$$

Def of B

Direct Proof

Intro \forall : 1

Def of Subset: 2

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Prove that $A \subseteq B$.

Proof: Let x be an arbitrary object.

Suppose that $x \in A$. By definition of A, this means P(x).

• • •

Thus, we have Q(x). By definition of B, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that $A \subset B$.

Operations on Sets

Set Operations

$$A \cup B := \{ x : (x \in A) \lor (x \in B) \}$$

$$A \cap B := \{ x : (x \in A) \land (x \in B) \}$$

$$A \setminus B := \{ x : (x \in A) \land (x \notin B) \}$$

Union

Intersection

Set Difference

$$A = \{1, 2, 3\}$$

 $B = \{3, 5, 6\}$
 $C = \{3, 4\}$

QUESTIONS

Using A, B, C and set operations, make...

$$[6] =$$

More Set Operations

$$A \oplus B := \{ x : (x \in A) \oplus (x \in B) \}$$

Symmetric Difference

$$\overline{A} = A^C := \{ x : x \in U \land x \notin A \}$$
 (with respect to universe U)

Complement

$$A \oplus B = \{3, 4, 6\}$$

 $\overline{A} = \{4,5,6\}$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^C = A^C \cap B^C$.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Formally, prove $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

1. Let x be arbitrary

2.1.
$$x \in (A \cup B)^C$$

...

2.3.
$$x \in A^{C} \cap B^{C}$$

2.
$$x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C$$

3.1.
$$x \in A^{C} \cap B^{C}$$

...

3.3.
$$x \in (A \cup B)^C$$

3.
$$x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C$$

4.
$$(x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C) \land (x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C)$$

5.
$$x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C$$

6.
$$\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$$

Assumption

Direct Proof

Assumption

Direct Proof

Intro ∧: 2, 3

Biconditional: 4

Intro ∀: 1-5

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$.

...

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$.

...

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

• • •

Thus, we have $x \in A^C \cap B^C$.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

...

Thus, $x \in A^C$ and $x \in B^C$, so we we have $x \in A^C \cap B^C$ by the definition of intersection.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

• • •

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^C$ and $x \in B^C$ by the definition of compliment, and we can see that $x \in A^C \cap B^C$ by the definition of intersection.

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^{\mathcal{C}}$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$, or equivalently $\neg(x \in A) \land \neg(x \in B)$ by De Morgan's law. Thus, we have $x \in A^{\mathcal{C}}$ and $x \in B^{\mathcal{C}}$ by the definition of compliment, and we can see that $x \in A^{\mathcal{C}} \cap B^{\mathcal{C}}$ by the definition of intersection.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$.

Suppose $x \in A^C \cap B^C$. Then, by the definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement.

Proofs About Set Equality

A lot of *repetitive* work to show \rightarrow and \leftarrow .

Do we have a way to prove ←→ directly?

Recall that $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

Prove that
$$(A \cup B)^C = A^C \cap B^C$$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

The stated biconditional holds since:

$$x \in (A \cup B)^C$$
 $\equiv \neg(x \in A \cup B)$ Def of Comp
 $\equiv \neg(x \in A \lor x \in B)$ Def of Union
Chains of equivalences
are often easier to read
like this rather than as
English text $\equiv x \in A^C \cap B^C$ Def of Union

Since x was arbitrary, we have shown the sets are equal. ■

Distributive Laws

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

It's Propositional Logic again!

The Meta Theorem Template

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing \cup with \vee , \cap with \wedge , and \cdot ^C with \neg .

"Proof": Let x be an arbitrary object.

The stated bi-condition holds since:

 $x \in \text{left side} \equiv \text{replace set ops with propositional logic}$

≡ apply Propositional Logic equivalence

≡ replace propositional logic with set ops

 $\equiv x \in \text{right side}$

Since x was arbitrary, we have shown the sets are equal. ■

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A \}$$

• e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(\mathsf{Days})=?$$

$$\mathcal{P}(\emptyset)$$
=?

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$$

$$\mathcal{P}(\varnothing)$$
=?

Power Set

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A \}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

$$\mathcal{P}(Days) = \{ \{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset \} \}$$

$$\mathcal{P}(\emptyset) = \{\emptyset\} \neq \emptyset$$

Cartesian Product

$$A \times B := \{x : \exists a \in A \exists b \in B \ (x = (a, b)) \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If
$$A = \{1, 2\}$$
, $B = \{a, b, c\}$, then $A \times B = \{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

Cartesian Product

$$A \times B := \{x : \exists a \in A \exists b \in B \ (x = (a, b)) \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A
$$\times$$
 B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset$?

Cartesian Product

$$A \times B := \{x : \exists a \in A \ \exists b \in B \ (x = (a, b)) \}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A =
$$\{1, 2\}$$
, B = $\{a, b, c\}$, then A × B = $\{(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)\}$.

$$A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$$

Russell's Paradox

$$S := \{x : x \notin x \}$$

Suppose that $S \in S$...

Russell's Paradox

$$S := \{x : x \notin x\}$$

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."