CSE 311: Foundations of Computing

Sets are collections of objects called elements.

Write $a \in B$ to say that a is an element of set B, and $a \notin B$ to say that it is not.

```
Some simple examples

A = \{1\}

B = \{1, 3, 2\}

C = \{\Box, 1\}

D = \{\{17\}, 17\}

E = \{1, 2, 7, cat, dog, \emptyset, \alpha\}
```

N is the set of Natural Numbers; $\mathbb{N} = \{0, 1, 2, ...\}$ Z is the set of Integers; $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ Q is the set of Rational Numbers; e.g. ½, -17, 32/48 R is the set of Real Numbers; e.g. 1, -17, 32/48, π , $\sqrt{2}$ [n] is the set {1, 2, ..., n} when n is a natural number $\emptyset = \{\}$ is the empty set; the *only* set with no elements For example A = {{1},{2},{1,2}, \emptyset } B = {1,2}

Then $B \in A$.

• A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

• A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

• A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

• Notes: $(A = B) \equiv (A \subseteq B) \land (B \subseteq A)$ A \supseteq B means B \subseteq A A \subset B means A \subseteq B A and B are equal if they have the same elements

$$A = B := \forall x (x \in A \leftrightarrow x \in B)$$

$$A = \{1, 2, 3\}$$
$$B = \{3, 4, 5\}$$
$$C = \{3, 4\}$$
$$D = \{4, 3, 3\}$$
$$E = \{3, 4, 3\}$$
$$F = \{4, \{3\}\}$$

Which sets are equal?

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

	QUESTIONS	
$A \subseteq B$?		
$C \subseteq B$?		
$\varnothing \subseteq A$?		

A is a subset of B if every element of A is also in B

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

Note the domain restriction!

We will use a shorthand restriction to a set

$$\forall x \in A(P(x))$$
 means $\forall x (x \in A \rightarrow P(x))$

Restricting all quantified variables improves clarity

Sets & Logic

Every set S defines a predicate $P(x) := "x \in S"$

We can also define a set from a predicate P:

S := $\{x : P(x)\}$

S = the set of all x for which P(x) is true

 $S := \{x \in U : P(x)\} = \{x : (x \in U) \land P(x)\}$

$$S := \{x : P(x)\}$$

When a set is defined this way, we can reason about it using its definition:

1. $x \in S$ Given2.P(x)Def of S

This will be our **only** inference rule for sets!

8. P(y)9. $y \in S$ Def of S

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Suppose we want to prove $A \subseteq B$.

We have a definition of subset:

$$A \subseteq B := \forall x (x \in A \rightarrow x \in B)$$

We need to show that is definition holds

$$A := \{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

8. $\forall x (x \in A \rightarrow x \in B)$ **9.** $A \subseteq B$

?? Def of Subset: 8

A :=
$$\{x : P(x)\}$$

$$B := \{x : Q(x)\}$$

Let x be arbitrary

1. $x \in A \rightarrow x \in B$ **2.** $\forall x (x \in A \rightarrow x \in B)$ **3.** $A \subseteq B$

?? Intro ∀: 1 Def of Subset: 2

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Let x be arbitrary 1.1. $x \in A$

1.9. $x \in B$ 1. $x \in A \rightarrow x \in B$ 2. $\forall x (x \in A \rightarrow x \in B)$ 3. $A \subseteq B$

Direct Proof Intro ∀: 1 Def of Subset: 2

??

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Let x be arbitrary 1.1. $x \in A$ 1.2. P(x)1.8. Q(x)

Assumption Def of A

1.8. Q(X)1.9. $x \in B$ 1. $x \in A \rightarrow x \in B$ 2. $\forall x (x \in A \rightarrow x \in B)$ 3. $A \subseteq B$

Def of B Direct Proof Intro ∀: 1 Def of Subset: 2

A :=
$$\{x : P(x)\}$$
 B := $\{x : Q(x)\}$

Prove that $A \subseteq B$.

. . .

Proof: Let x be an arbitrary object.

Suppose that $x \in A$. By definition of A, this means P(x).

Thus, we have Q(x). By definition of B, this means $x \in B$. Since x was arbitrary, we have shown, by definition, that $A \subseteq B$.

Operations on Sets

$$A \cup B := \{ x : (x \in A) \lor (x \in B) \}$$

$$A \cap B := \{ x : (x \in A) \land (x \in B) \}$$

Union

$$A \setminus B := \{ x : (x \in A) \land (x \notin B) \}$$

A = {1, 2, 3} B = {3, 5, 6}	<u>QUESTIONS</u> Using A, B, C and set operations, make
$C = \{3, 4\}$	[6] =
	{3} = {1,2} =

More Set Operations

$$A \oplus B := \{ x : (x \in A) \oplus (x \in B) \}$$

$$\overline{A} = A^{C} := \{ x : x \in U \land x \notin A \}$$
(with respect to universe U)

Symmetric Difference

 $A \bigoplus B = \{3, 4, 6\}$ $\overline{A} = \{4, 5, 6\}$ **De Morgan's Laws**

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

$\overline{A\cap B}=\bar{A}\cup\bar{B}$

Proof: Let x be an arbitrary object.

Since x was arbitrary, we have shown, by definition, that $(A \cup B)^C = A^C \cap B^C$.

Proof technique: To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

1. Let x be arbitrary	
2.1. $x \in (A \cup B)^C$	Assumption
2.3. $x \in A^C \cap B^C$	
2. $x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C$	Direct Proof
3.1. $x \in A^C \cap B^C$	Assumption
•••	
3.3. $x \in (A \cup B)^C$	
3. $x \in A^C \cap B^C \to x \in (A \cup B)^C$	Direct Proof
4. $(x \in (A \cup B)^C \rightarrow x \in A^C \cap B^C) \land (x \in A^C \cap B^C \rightarrow x \in (A \cup B)^C)$	Intro ∧: 2, 3
5. $x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C$	Biconditional: 4
6. $\forall x (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$	Intro ∀: 1-5

De Morgan's Laws

Prove that $(A \cup B)^C = A^C \cap B^C$ Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object. Suppose $x \in (A \cup B)^C$.

Thus, we have $x \in A^C \cap B^C$.

. . .

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg (x \in A \cup B)$.

Thus, we have $x \in A^C \cap B^C$.

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, we have $x \in A^C \cap B^C$.

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, $x \in A^C$ and $x \in B^C$, so we we have $x \in A^C \cap B^C$ by the definition of intersection.

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg(x \in A \cup B)$. The latter says, by the definition of union, that $\neg(x \in A \lor x \in B)$.

Thus, $\neg(x \in A)$ and $\neg(x \in B)$, so $x \in A^C$ and $x \in B^C$ by the definition of compliment, and we can see that $x \in A^C \cap B^C$ by the definition of intersection. Prove that $(A \cup B)^C = A^C \cap B^C$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$. Then, by the definition of complement, we have $\neg (x \in A \cup B)$. The latter says, by the definition of union, that $\neg (x \in A \lor x \in B)$, or equivalently $\neg (x \in A) \land \neg (x \in B)$ by De Morgan's law. Thus, we have $x \in A^C$ and $x \in B^C$ by the definition of compliment, and we can see that $x \in A^C \cap B^C$ by the definition of intersection. Proof technique:

To show C = D show $x \in C \rightarrow x \in D$ and $x \in D \rightarrow x \in C$ Prove that $(A \cup B)^C = A^C \cap B^C$

Formally, prove $\forall x \ (x \in (A \cup B)^C \leftrightarrow x \in A^C \cap B^C)$

Proof: Let x be an arbitrary object.

Suppose $x \in (A \cup B)^C$ Then, $x \in A^C \cap B^C$. Suppose $x \in A^C \cap B^C$. Then, by the definition of intersection, we have $x \in A^C$ and $x \in B^C$. That is, we have $\neg(x \in A) \land \neg(x \in B)$, which is equivalent to $\neg(x \in A \lor x \in B)$ by De Morgan's law. The last is equivalent to $\neg(x \in A \cup B)$, by the definition of union, so we have shown $x \in (A \cup B)^C$, by the definition of complement. A lot of *repetitive* work to show \rightarrow and \leftarrow .

Do we have a way to prove \leftrightarrow directly?

Recall that $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

We can use an equivalence chain to prove that a biconditional holds.

Proof: Let x be an arbitrary object. The stated biconditional holds since: $x \in (A \cup B)^C \equiv \neg (x \in A \cup B)$ Def of Comp $\equiv \neg (x \in A \lor x \in B)$ Def of Union $\equiv \neg (x \in A) \land \neg (x \in B)$ De Morgan Chains of equivalences $\equiv x \in A^C \land x \in B^C$ are often easier to read Def of Comp like this rather than as $\equiv x \in A^C \cap B^C$ Def of Intersection English text

Since x was arbitrary, we have shown the sets are equal.

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

It's Propositional Logic again!

Meta-Theorem: Translate any Propositional Logic equivalence into "=" relationship between sets by replacing U with V, \cap with Λ , and \cdot^{C} with \neg .

"**Proof**": Let x be an arbitrary object.

The stated bi-condition holds since:

- $x \in \text{left side} \equiv \text{replace set ops with propositional logic}$
 - \equiv apply Propositional Logic equivalence
 - \equiv replace propositional logic with set ops

 $\equiv x \in right side$

Since x was arbitrary, we have shown the sets are equal. ■

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(\mathsf{Days})=?$

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\emptyset)$ =?

Power Set of a set A = set of all subsets of A

$$\mathcal{P}(A) := \{B : B \subseteq A\}$$

 e.g., let Days={M,W,F} and consider all the possible sets of days in a week you could ask a question in class

 $\mathcal{P}(Days) = \{\{M, W, F\}, \{M, W\}, \{M, F\}, \{W, F\}, \{M\}, \{W\}, \{F\}, \emptyset\}\}$

 $\mathcal{P}(\varnothing) = \{\emptyset\} \neq \emptyset$

$$A \times B := \{x : \exists a \in A \exists b \in B (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

$$A \times B := \{x : \exists a \in A \exists b \in B (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

What is $A \times \emptyset$?

$$A \times B := \{x : \exists a \in A \exists b \in B (x = (a, b))\}$$

 $\mathbb{R} \times \mathbb{R}$ is the real plane. You've seen ordered pairs before.

These are just for arbitrary sets.

 $\mathbb{Z} \times \mathbb{Z}$ is "the set of all pairs of integers"

If A = {1, 2}, B = {a, b, c}, then A \times B = {(1,a), (1,b), (1,c), (2,a), (2,b), (2,c)}.

 $A \times \emptyset = \{(a, b) : a \in A \land b \in \emptyset\} = \{(a, b) : a \in A \land F\} = \emptyset$

Russell's Paradox

$$S := \{x : x \notin x\}$$

Suppose that $S \in S$...

$$S := \{x : x \notin x\}$$

Suppose that $S \in S$. Then, by the definition of $S, S \notin S$, but that's a contradiction.

Suppose that $S \notin S$. Then, by the definition of $S, S \in S$, but that's a contradiction too.

This is reminiscent of the truth value of the statement "This statement is false."