CSE 311: Foundations of Computing

Topic 5: Number Theory

Jooe 2.0t

Fro

A

... 1,306... 1,307...

BAAA

D
4@'—@

=

.. 32,767...-32,78...

A7

<4

. ..—325767000 -321766 e

=

Applications of Predicate Logic

 Remainder of the course will use predicate logic to
prove important properties of interesting objects
— start with math objects that are widely used in CS
— eventually more CS-specific objects

 Encode domain knowledge in predicate definitions
* Then apply predicate logic to infer useful results

Domain of Discourse Predicate Definitions
Integers Even(x) =3y (x = 2-y)
pdd(x) =dy (x=2-y + 1))

Mechanical vs Creative Predicate Logic

* We've done examples with “meaningless”
predicates such as Vx P(x)— Jx P(x)

— Saw how to (often) mechanically solve by looking at
“shape” of the goal.

— We’'ll need these skills in all domains!

* When we enter “interesting” domains of discourse,
we will use domain knowledge.

— We will see how to creatively solve goals, especially
with rules like Intro Vv, Intro 4, Elim A, Elim V.

Number Theory

* Direct relevance to computing

— everything in a computer is a number
colors on the screen are encoded as numbers

* Many significant applications in CS...

Pixels in Memory

 Memotry is an array, so
pixel positions must be mapped to array indexes

6x4

24=6x4

Pixels in Memory

O 1 2 3 45

6x4 pixel at (2, 4)

w N - O

|

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

stored atindex 16 =12 + 4
=2-6+4

Pixels in Memory

O 1 2 3 45

6x4 pixel at (i,)

w N - O

|

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Stored at index n.
How do we calculate n from i and j? nN=i-6+j

Domain of Discourse

Divisibility Integers

Definition: “b divides a”

For a, b with b # 0:

b|a < 3q(a=qb)
N y

Check Your Understanding. Which of the following are true?

51 25 | 5 5|0 3|2

1|5 5| 25 0|5 2|3

Domain of Discourse

Divisibility Integers

Definition: “b divides a”

For a, b with b # 0:

b|a < 3q(a=qb)
N y

Check Your Understanding. Which of the following are true?

51 25| 5 3|2

5] 1iff 1 =5k 25 | 5iff 5 =25k 5|]0iff0=5k 3]2iff2=3k

@D T o5 2

1]|5iff5=1k 5| 25iff 25 = 5k O]5iff5=0k 2| 3iff3=2k

Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If b | a, then, by definition, we have a = gb for some q.
The number g is called the quotient.

Dividing both sides by b, we can write this as
a —
b _ q

(We want to stick to integers, though, so we’ll write a = gb.)

Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If b } a, then we end up with a remainder r with 0 < r < b.
Now,

i d of g h t + il
instead o D= q we have > = q >
Multiplying both sides by b gives us a=gqgb+r

(A bit nicer since it has no fractions.)

Recall: Elementary School Division

For a, b with b > 0, we can divide b into a.

If b | a, then we have a = gb for some q.
If b t a, then we have a = gb + r for some g, with 0 <r <b.

In general, we have a = gb + r for some g, with 0 < r < b,
where r = 0 iff b | a.

Domain of Discourse

Division Theorem __Integers

Division Theorem

Fora,b withb > 0
there exist unique integers g, rwith0 <r <b»b
such thata = gb + r.

_

To put it another way, if we divide b into a, we get a
unique quotient | g = a div b
and non-negative remainder [r=amod b

Pixels in Memory

O 1 2 3 45

6x4 pixel at (i,)

w N - O

|

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Stored at index n.
How do we calculate n from i and j? nN=i-6+j

Pixels in Memory

O 1 2 3 45

6x4 pixel at (i,)

w N - O

|

0 1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Stored at index n. i=ndive
How do we calculate i and j from n? j=nmod6

Number Theory

* Direct relevance to computing
— important toolkit for programmers

* Many significant applications
— Cryptography & Security
— Data Structures
— Distributed Systems

Modular Arithmetic
(and Its Applications)

Modular Arithmetic

 Arithmetic over a finite domain

 Almost all computation is over a finite domain

I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)5

I’'m ALIVE!

public class Test {
final static int SEC_IN YEAR = 365*24*60*60;
public static void main(String args[]) {
System.out.println(
“I will be alive for at least ” +
SEC_IN YEAR * 101 + “ seconds.”

)s

----JjGRASP exec: java Test
I will be alive for at least -186619904 seconds.

----JGRASP: operation complete.

Ordinary arithmetic

2+3=95

+2 +3

32101 2 3 45 6 7

Arithmetic on a Clock

2+3=05

23=3-7+2

Ifa =7q+r,thenr (=amodb)is
where you stop after taking a steps on the clock

Arithmetic, mod 7

(@a+ b)mod 7
(@ x b) mod 7

0 |0 (O

0

O J0 [0 |O

Domain of Discourse

Modular Arithmetic __Integers

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0
a=,b o m|(a —b)

New notion of “sameness” that will help us
understand modular arithmetic

Domain of Discourse

Modular Arithmetic __Integers

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0

a=,b o m|(a —b)
. J

The standard math notation is

a = b (mod m)

A chain of equivalences is written

a=b=c=d(modm)

Many students find this confusing,
so we will use =,,, instead.

Domain of Discourse

Modular Arithmetic ___Integers

\

Definition: “a is congruent to b modulo m”

Fora,b,m withm > 0

a=,b o m|(a —b)
- J

Check Your Understanding. What do each of these mean?
When are they true?

X=,0
This statement is the same as saying “x is even”; so, any x that is
even (including negative even numbers) will work.

1219
This statement is true. 19 - (-1) = 20 which is divisible by 5
y =72

This statement is true for yin{...,-12,-5, 2, 9, 16, ...}. In other
words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, bifand only if amod m = b mod m.

Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Goal: showa =, b, i.e.,, m | (a — b).

Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a-b = (mqg + (a mod m)) - (ms + (b mod m))

= m(q-s) + (a modm- b modm)
= m(q-s)sinceamodm = bmodm

Goal: showa =, b, i.e.,, m | (a — b).

Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a mod m = b mod m.

By the division theorem, a = mq + (a mod m) and
b = ms + (b mod m) for some integers g,s.

Then,a-b = (mqg + (a mod m)) - (ms + (b mod m))
= m(q-s) + (a modm- b modm)
= m(q-s)sinceamodm = bmodm

Therefore, m | (a — b) andso a =,,, b.

Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Modular Arithmetic: A Property

Let a, b, m be integers withm > 0.
Then, a =, b if and only if a mod m = b mod m.

Suppose that a =,,, b.

Then, m | (a - b) by definition of congruence.
So, a - b = km for some integer k by definition of divides.
Therefore, a = b + km.

By the Division Theorem, we have a = gm + (a mod m),
where 0 < (a mod m) < m.

Combining these, we have gm + (amodm) =a =b + km
orequiv, b=gm — km + (amodm) = (g — k)m + (a mod m).
By the Division Theorem, we have b mod m = a mod m.

The mod m function vs the =.,, predicate

* What we have just shown

— The mod m function maps any integer a to a
remainder a mod m € {0,1,..,m — 1}.

— Imagine grouping together all integers that have
the same value of the mod m function

That is, the same remainder in {0,1,..,m — 1}.

— The =,,, predicate compares integers a,b. Itis
true if and only if the mod m function has the
same value on a and on b.

That is, a and b are in the same group.

Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.
- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=bandc =d,then ac = bd.

— since ¢ = c is true, we can “X ¢” to both sides

These facts allow us to use
algebra to solve problems

Recall: Properties of “=" Used in Algebra

fa=band b =c,thena=c. “Transitivity”

Ifa=b,thena+c=>b + c. “Add Equations”

If a = b, then ac = bc. “Multiply Equations”

These are Theorems that
we can use in proofs

Example: given 5x +4 = 2x + 25,
prove that 3x = 21.

Let’s see how to do this in formal logic...

Recall: Properties of “=" Used in Algebra

fa=band b =c,thena=c. “Transitivity”

Ifa=b,thena+c=>b + c. “Add Equations”
If a = b, then ac = bc. “Multiply Equations”
1.5x+4 =2x+ 25 Given
2. —4 = —4 Algebra
3.5x =2x+ 21 Add Equations: 1, 2
4, —2x = —2x Algebra
b.3x =21 Add Equations: 3, 4

Recall: Properties of “=" Used in Algebra

fa=band b =c,thena=c. “Transitivity”

Ifa=b,thena+c=>b + c. “Add Equations”

If a = b, then ac = bc. “Multiply Equations”
1.5x +4 =2x + 25 Given
5.3x =21 Transitivity

Careful: prove 5x +4 =2x+ 25 = 3x =21
not 3x =21 = 5x+4=2x+25
the second is a “backward” proof

Recall: Familiar Properties of “="

e Ifa=bandb =c,then a = c.

- j.e.,ifa=b=c,thena=c

e fa=bandc=d,thena+c=b+d.

— since ¢ = c is true, we can “+ c¢” to both sides

e Ifa=bandc =d,then ac = bd.

— since ¢ = c is true, we can “X ¢” to both sides

Same facts apply to “<”

with non-negative numbers

What about “=,,,”?

Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.

Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.

Suppose thata =,,, band b =,,, c.

Modular Arithmetic: Basic Property

Let m be a positive integer.
Ifa=,, band b =, c, then a =,, c.

Suppose that a =,,, b and b =,,, c. Then, by the

previous property, we have a mod m = b mod m
and b mod m = ¢ mod m.

Putting these together, we have a mod m = ¢ mod m,
which says that a =,,, ¢, by the previous property.

Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose thata =,,, band c =,,, d.

Modular Arithmetic: Addition Property

Let m be a positive integer. Ifa=,, band c =,, d,
thena+c=,, b +d.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b = kmandc-d = jmforsomek,j € Z.

Adding the equations together gives us
(a+c)- (b+d) = m(k+)).

By the definition of congruence, we havea + ¢ =,,, b + d.

Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose thata =,,, band c =,,, d.

Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b =kmandc-d = jmforsomek,j € Z or
equivalently, a = km + b and ¢ = jm + d.

Multiplying both together givesus ac = (km + b)(jm + d) =
kjm? + kmd + bjm + bd.

Modular Arithmetic: Multiplication Property

Let m be a positive integer. Ifa=,, band c =,, d,
then ac =,,, bd.

Suppose that a =,,, b and ¢ =,,, d. Unrolling the definitions, we
canseethata-b =kmandc-d = jmforsomek,j € Z or
equivalently, a = km + b and ¢ = jm + d.

Multiplying both together givesus ac = (km + b)(jm + d) =
kjm? + kmd + bjm + bd. Re-arranging, this becomes
ac -bd = m(kjm + kd + bj).

This says ac =,,, bd by the definition of congruence.

Modular Arithmetic: Properties

Corollary:

Corollary:

Ifa=,, band b =, c, then a =,, c.

fa=,bandc=,,d,thena+c=,, b +d.

Ifa=,,b,thena+c=,, b+c.

Ifa=,, bandc =, d, then ac =,,, bd.

If a =,,, b, then ac =,,, bc.

Modular Arithmetic: Properties

Ifa=,, band b =, c, then a =,, c.

Ifa=,,b,thena+c=,, b+c.

If a =,,, b, then ac =,,, bc.

“=,,” allows us to solve problems in modular arithmetic, e.g.
 add / subtract numbers from both sides of equations
* chains of “=,,,” values shows first and last are “=,,,”
* substitute “=,,,” values in equations (not proven yet)

Properties of “=,,” Used in Algebra

Ifa=,,band b =,, c,thena =, c “Transitivity”

fa=,bandc=,d,thena+c=, b+d “Add Equations”

Ifa=,bandc=,d,then ac =,, bd “Multiply Equations”

These are Theorems that
we can use in proofs

Example: giventhat 3x =, 7,
prove that 5x + 3 =, 2x + 10

Properties of “=,,” Used in Algebra

fa=,,band b =,, c,thena =, c “Transitivity”
fa=,bandc=,d,thena+c=, b+d “Add Equations”
Ifa=,bandc=,d,then ac =,, bd “Multiply Equations”

1.3x =, 7 Given
2.2x = 2x Algebra
3.2x+3x =, 2x+ 7 Add Equations: 2, 1 ??

o__»n ((— ’”

Line 2 says “=" not "=,

((— ” l

But “=” implies “=," !
(equality is a special case)

Properties of “=,,” Used in Algebra

fa=,,band b =,, c,thena =, c “Transitivity”
fa=,bandc=,d,thena+c=, b+d “Add Equations”
Ifa=,bandc=,d,then ac =,, bd “Multiply Equations”

1.3x =, 7 Given

2.2x = 2x Algebra

3.2x = 2x To Modular: 2

4. 2x +3x =, 2x + 7 Add Equations: 3, 1
5.3 =3 Algebra

6.3=,3 To Modular

1.2x+3x+3=,2x+7+3 AddEquations: 4, 6

Properties of “=,,” Used in Algebra

fa=,,band b =,, c,thena =, c “Transitivity”
fa=,bandc=,d,thena+c=, b+d “Add Equations”
Ifa=,bandc=,d,then ac =,, bd “Multiply Equations”

1.2x+3x+3=,2x+7+3 AddEquations: 4, 6

8.5x4+3=2x+3x+3 Algebra
9.5x+3=,2x+3x+3 To Modular: 8
10.2x+ 7+ 3 =2x+ 10 Algebra

11.2x+ 7+ 3 =, 2x+ 10 To Modular: 10
12.5x+ 3 =, 2x + 10 Transitivity: 9, 7, 11

Good news! You’ll only have to do this two times in your life...

Properties of “=,,” Used in Algebra

Ifa=,,band b =,, c,thena =, c “Transitivity”

fa=,bandc=,d,thena+c=, b+d “Add Equations”

Ifa=,bandc=,d,then ac =,, bd “Multiply Equations”

If a = b, then a =, b. “To Modular”

These are Theorems that
we can use in proofs

Example: giventhat 2(x — 3) =, 4,
prove that 2x =, 10

Properties of “=,,” Used in Algebra

1.2(x—-3)=,4 Given

2.2x =, 10 ??

Properties of “=,,” Used in Algebra

1.2(x—-3)=,4 Given

2.6 =6 Algebra

3.6 =, 6 To Modular: 2
4.2(x—3)+6=,4+6 Add Equations: 1, 3
5.2x=2(x—3)+6 Algebra
6.2x=,2(x—3)+6 To Modular: 5
7.44+6=10 Algebra
8.4+6=,10 To Modular: 7

9.2x =, 10 Transitivity: 6, 4, 8

Another Property of “=" Used in Algebra

fa=,band b =,, c,thena =, c “Transitivity”

fa=,bandc=,d,thena+c=, b+d “Add Equations”

Ifa=,bandc=,d,then ac =,, bd “Multiply Equations”

If a = b, then a =, b. “To Modular”

Can “plug in” (a.k.a. substitute)
the known value of a variable

Example: given 2y + 3x =25andx =7,
prove that 2y + 21 = 25.

Substitution Follows From Other Properties

Given 2y +3x =,, 25and x =,,, 7,
show that 2y + 21 =,,, 25. (substituting 7 for x)

Start from X =7

Multiply both sides 3x=,, 3-7 (=21)

Add to both sides 2y + 3x =, 2y + 21

Combine =,,,’s 2y + 21 =, 2y + 3x =,,, 25

Basic Applications of mod

 Two’s Complement
* Hashing
* Pseudo random number generation

n-bit Unsighed Integer Representation

* Represent integer x as sum of powers of 2:

99 =64+32+2+1 =26425421420
18 =16+ 2 =24+ 21

If b,,_12" 1 + -+ b2 + by with each b, € {0,1}
then binary representationis b,b, b, b,

* Forn=38:
99: 0110 0011 Easy to implement arithmetic mod 2"
18: 0001 0010 ... Just throw away bits n+1 and up

2n | 2tk 5o b k2K =50 0
fork =0

n-bit Unsighed Integer Representation

* Largest representable numberis 2™ — 1

2" =100...000 (n+1 bits)
2"—-1= 11..111 (n bits)

THE WAL STREET JOURNAL
Berkshire Hathaway’s Stock Price Is Too

Much for Computers

32 bits Berkshire Hathaway Inc. (BRK-A)

1 =%$0.0001 436,401.00 :679.50 (+0.16%)

$429,496.7295 max ~ sccion

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that —2""1 < x < 2n1
First bit as the sign, n — 1 bits for the value

99=64+32+2+1
18=16+2

Forn = 8:

99: 0110 0011
-18: 1001 0010

Problem: this has both +0 and -0 (annoying)

Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

—2n-1 -1 0 2n-1 2"

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2

0000 0001 o0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110

9=64+32+2+1
18 =16 +2

Forn = 8:
99: 0110 0011
-18: 1110 1110 (-18 + 256 = 238)

1111

Two’s Complement Representation

Suppose that 0 < x < 2"1
x is represented by the binary representation of x
Suppose that —2"" 1< x < 0
x is represented by the binary representation of x + 2"
result is in the range 2" 1 < x < 2™

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y
IS equivalent to y mod 2™ so arithmetic works mod 2™

y+2t =,y

Two’s Complement Representation

e For 0 <x <2™1, —xisrepresented by the
binary representation of —x + 2"

— How do we calculate —x from x?
— E.g., what happens for “return -x;” in Java?

—x+2"=(2"—1)—x+1

* To compute this, flip the bits of x then add 1!
— All 1’s string is 2™ — 1, so
Flip the bits of x means replace x by 2™ — 1 — x
Then add 1 to get —x + 2™

Primes
(and Their Applications)

Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

p>1AVx((x|p)>((x=1)V(x=p)))

A positive integer that is greater than 1 and is not
prime is called composite.

p>1 AAx((x|p)A(x#1)A(x #Dp))

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
“‘unique” prime factorization

48 = 2¢222+3

591 =3« 197

45,523 = 45,523

321,950 =25+5°47 137
1,234,567,890 =233+ 5+ 3,607 « 3,803

Algorithmic Problems

* Multiplication

— Given primes p4, p,, ..., Pi, calculate their
product p;p, ... px
* Factoring

— Given an integer n, determine the prime
factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514

19597459856902143413

| I
——

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317

43087737814467999489

A4

N

3674604366679959042824463379962795263227/91581643
430876426760322838157396665112792333734171433968

10270092798736308917

Famous Algorithmic Problems

* Factoring

— Given an integer n, determine the prime
factorization of n

* Primality Testing
— Given an integer n, determine if n is prime

* Factoring is hard
— (on a classical computer)

* Primality Testing is easy

Greatest Common Divisor
(and Its Applications)

Greatest Common Divisor

GCD(a, b):
Largest integer d suchthatd | aand d | b

. GCD(100, 125)
« GCD(17, 49)
 GCD(11, 66)
. GCD(13, 0)

. GCD(180, 252)

disGCD iff (dla)Aa(dIb)AVx((xla)A(x]|b))—>(x <d))

GCD and Factoring

a=2%+352+7+11=46,200
b=2¢32+537+13=204,750

GCD(a, b) = 2min(3,1) ¢ 3min(1,2) ¢ §MIin(2,3) ¢ 7min(1,1) ¢ 14 Min(1,0) ¢ 4 3min(0,1)

Factoring is hard!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof:
We will show that every number dividing a and b also divides b and a mod b.

l.e., d|a and d|b iff d|b and d|(a mod b).

Hence, their set of common divisors are the same,
which means that their greatest common divisor is the same.

Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof:
By definition of mod, a = gb + (a mod b) for some integer ¢ = a div b.

Suppose d|b and d|(a mod b).

Then b = md and (a mod b) = nd for some integers m and n.
Therefore a = gb + (a mod b) = gmd + nd = (gm + n)d.
Sod|a.

Suppose d|a and d|b.
Then a = kd and b = jd for some integers k and j.

Therefore (a mod b) = a-qb = kd -qjd = (k -qj)d.
So, d|(a mod b) also.

Since they have the same common divisors, gcd(a, b) = gcd(b,a mod b). B

Another simple GCD fact

Let a be a positive integer.
We have gcd(a, 0) = a.

Euclid’s Algorithm

gcd(a, b) = ged(b, a mod b) gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
if (b == 0) {
return a,;
} else {
return gcd(b, a % b);
}
}

Note: gcd(b, a) = gcd(a, b)

Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) =

Euclid’s Algorithm

Repeatedly use gcd(a, b) = gcd(b, a mod b) to reduce
numbers until you get gcd(g,0) = g.

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) =gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that
gcd(a,b) = sa + tb.

VavVb((a>0Ab>0)—-3s3t(gcd(ab) =sa+ th))

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) = gcd(27,8) |35=1*27+8

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 1 (Compute GCD & Keep Tableau Information):

a b b a modb=r b r a=q*b +r
gcd(35,27) =gcd(27,35mod 27) = gcd(27,8) |35=1*27+8
=gcd(8,27mod 8) =gcd(8,3) 27=3*8 +3

= gcd(3, 8 mod 3) =gcd(3, 2) 8 =2*3 +2
=gcd(2,3mod2) =gcd(2,1) 3=1*2 {1
=gcd(1, 2 mod 1) =gcd(1, 0)

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-q*b
35=1*27+38 8=35-1%27
27=3*8 +3

8 =2*3 +2

3 =1*2 +1

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 2 (Solve the equations for r):

a =q*b +r r=a-qg*b
35=1%27+8 8=35-1%27
27=3*8 +3 3=27-3%8
8 =2*3 +2 2=8-27%3

3 =1*2 +D D=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb
Step 3 (Backward Substitute Equations):

8=35-1%*27
3=27-3*8
2=8-2%*3

D=3 -1*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)

= 3-8+2*3 Re-arrange into
3=27-3%*8 :(_1)*8+3*3 3’sand 8's
2=8 -2%3

1=3 -1%*2

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2*3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

27—8 _2%*3 =(-1)*8+3*(27-3*8)

=(-1)*8+3*27+(-9)*8

= 3%27 +(-10)*8

1=3 -1%*2 Re-arrange into
8’s and 27’s

Extended Euclidean algorithm

 Can use Euclid’s Algorithm to find s, ¢ such that
gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):
Plug in the def of 2

8=35-1%*27 1= 3-1*(8-2%3)
= 3-8+2*3 Re-arrange into

3=27-3%*8 :(_1)*8+3*3 3’sand 8's
Plug in the def of 3

(-1)*8+4+3*27+(-9)*8
3*27 + (-10) * 8 Re-arrange into
1=3-1%*2 () 8's and 27’s
3*27 +(-10)*(35-1*27)
3*27 +(-10)*35+10*27
13*27 4+ (-10) * 35

Re-arrange into
27’s and 35’s

Multiplicative inverse mod m

Let 0 < a,b < m. Then, b is the multiplicative

inverse of a (modulo m) iff ab

7

1

4

2

1

6 (7 [8 |9

6 (7 |8 |9

2 |9 (6 (3

5

e

=m A1

8

1

2 |3 (4 |5

2 |3 (4 |5

6 (9 (2 |5 |8

1

1

3

0
0j0 O |O0O|O0O|O |0 (O[O |O O

0

0

1

210 (2 (4 |6 |8 |0 (2 (4 |6 |8

3

4101|418 |2 |6 |0 |4 8|2]6
510 |5 |0 |5 |0 |5 (0 (5|0 |5
6|10 (6 |2 |8 |4 |0 |6 |2 |8 |4

710 |7 |4

810 |8 |6 |4 |2 |0 (8 (6 |4]2

910 |9 |8 |7 |6 |5 (4 |3

O |0 |0 |0 |O

0

0

mod 7

mod 10

Multiplicative inverse mod m

Suppose gcd(a,m) =1

By Bézout's Theorem, there exist integers s and t
such that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):
1l =sa+tm =, sa

So... we can compute multiplicative inverses with the
extended Euclidean algorithm

These inverses let us solve modular equations...

Example: Solve a Modular Equation

SOlve: 7X EZ6 3 Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

SOlve: 7X EZ6 3 Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5
7 =1%5 4+ 2
5 =2%2 4+ 1

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3%7
7 =1x5 + 2 2=7-1%5
5 =2%x2+1 1=5- 2%2

= 5 - 2x(7-1%5)
(-2)«*7 4+ 3%*5
(-2)*x7 4+ 3%x(26-3%7)
(—=11)*7 + 3 %26

Example: Solve a Modular Equation

SOlve: 7x EZ6 3 Find multiplicative inverse of 7 modulo 26
gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26=3x7 + 5 5= 26-3x%7
7 =1%5 4+ 2 2=7-1%x5
5 =2%x2 4+ 1 1=5- 2%2

1 = 5 - 2% (7-1%05)
(-2)x7 + 3x%5
(-2)*7 + 3%(26-3x%7)
(—11)*7 + 326
/ “the” multiplicative inverse
Now (—11) mod 26 = 15. (—11 is also “a” multiplicative inverse)

Example: Solve a Modular Equation

Solve: 7x =, 3

Find multiplicative inverse of 7 modulo 26... it’s 15.
Multiplying both sides by 15 gives

Simplify on both sides to get

So, all solutions of this congruence are
humbers of the form x = 19 4+ 26k for some k € Z.

Example: Solve a Modular Equation

Solve: 7x =, 3

Conversely, suppose that x =, 109.
Multiplying both sides by 7 gives

Simplify on right to get

So, all numbers of form x = 19 + 26k forany k € Z
are solutions of this equation.

Example: Solve a Modular Equation

Solve: 7x =, 3 (on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26
1 =..= (=11)%7 + 3%26
Since (—11) mod 26 = 15, the inverse of 7 is 15.
Step 2. Multiply both sides and simplify
Multiplying by 15, we get x =, 15 7x =545 153 =54 19.

Step 3. State the full set of solutions

So, the solutions are 19 + 26k forany k € Z
(must be of the form a + mk for all k € Z with 0 < a < m)

Examples Not in “Standard Form”

Solve: 7x =, 3

Modular equation like Ax =,. B for some A and B
is in “standard form”.

— solve by multiplying both sides by inverse of A
What about other equations like
7(x —3) =5, 87

Previously saw how to formally prove this has the
same solutions as equation above.

Examples Not in “Standard Form”

Solve: 7x =, 3

Modular equation like Ax =,. B for some A and B
is in “standard form”.

— solve by multiplying both sides by inverse of A

What about other equations like
7(x —3) =5, 87

On HW4:

— apply algorithm when in standard form (English)
— transform non-standard to standard form (formal)

0 |0 (O

0

O J0 [0 |O

gcd(a,m) =1ifmisprimeand 0 <a <m so
can always solve these equations mod a prime.

Math mod a prime is especially nice

mod 7

Multiplicative Inverses and Algebra

Adding to both sides is an equivalence:

X=nYy

X+c=,y+C

The same is not true of multiplication...
unless we have a multiplicative inverse cd =,,, 1

X=nYy

X =,, CY

Modular Exponentiation mod 7

ab

a°

a4

a3

a2

Exponentiation

* Compute 783658143

 Compute 78365814>3 mod 104729

* Qutput is small
— need to keep intermediate results small

Small Multiplications

Since b = gm + (b mod m), we have b mod m =,,, b.

And since ¢ = tm + (¢ mod m), we have c mod m =,,, c.
Multiplying these gives (b mod m)(c mod m) =,,, bc.

By the Lemma from a few lectures ago, this tells us
bc mod m = (b mod m)(c mod m) mod m.

Okay to mod b and ¢ by m before multiplying if we are
planning to mod the result by m

Repeated Squaring - small and fast

Sincebmodm =,, bandcmodm =,,, ¢

we have bc mod m = (b mod m)(c mod m) mod m

So

and
and
and
and

a?modm = (a modm)? modm
a*modm = (a2 mod m)? mod m
a8 modm = (a* mod m)? modm
at®* mod m = (a® mod m)? mod m

a32mod m = (a'®* mod m)? mod m

Can compute a* mod m for k = 2t in only i steps
What if k is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
81453 =210 + 213 + 212 + 211 + 210 + 29+ 25+ 23 + 22 + 20

16 13 12 11 10 9 5 3 2 0
a81453 - a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2 . a2

gs814s3 mod m=
(--((((2%"> mod m -

13
a2 Jnod m) mod m -
a2"’ 1r1n0d m) mod m - Uses only 16 + 9 = 25
a2’ mod m) mod m - multiplications

a2" mod m) mod m -
a2’ mod m) mod m -
a2’ mod m) mod m -
a2’ mod m) mod m -
a2 mod m) mod m -
a2’ mod m) mod m

The fast exponentiation algorithm computes
a® mod m using < 2log k multiplications mod m

Fast Exponentiation: a* mod m for all k

Another way....

. . 2
a’modm = (af mod m) mod m

a*’*Imodm = ((a mod m) - (a¥ mod m)) mod m

Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {

if (k == 0) {
return 1;

} else if ((k % 2) == 0) {
long temp = FastModExp(a,k/2,modulus);
return (temp * temp) % modulus;

} else {

long temp = FastModExp(a,k-1,modulus);
return (a * temp) % modulus;

a*’mod m = (a’ mod m)zmod m
a**Imodm = ((a modm) - (a¥ mod m)) mod m

Using Fast Modular Exponentiation

* Your e-commerce web transactions use SSL
(Secure Socket Layer) based on RSA encryption

 RSA

— Vendor chooses random 512-bit or 1024-bit primes p, q
and 512/1024-bit exponent e. Computes m = p - q

— Vendor broadcasts (m, e)

— To send a to vendor, you compute C = a® mod m using
fast modular exponentiation and send C to the vendor.

— Using secret p, q the vendor computes d that is the
multiplicative inverse of e mod (p — 1)(q — 1).

— Vendor computes €% mod m using fast modular
exponentiation.

— Fact: a = C%modm for0 < a < munless p|aor g|a

