
CSE 311: Foundations of Computing

Topic 5:  Number Theory



Applications of Predicate Logic

• Remainder of the course will use predicate logic to 
prove important properties of interesting objects
– start with math objects that are widely used in CS
– eventually more CS-specific objects

• Encode domain knowledge in predicate definitions
• Then apply predicate logic to infer useful results

Even(x) º $y (x = 2⋅y)
Odd(x) º $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse



Mechanical vs Creative Predicate Logic

• We’ve done examples with “meaningless” 
predicates such as   "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙
– Saw how to (often) mechanically solve by looking at 

“shape” of the goal.
– We’ll need these skills in all domains!

• When we enter “interesting” domains of discourse, 
we will use domain knowledge.
– We will see how to creatively solve goals, especially 

with rules like Intro ∨, Intro $, Elim ∧, Elim ".



Number Theory

• Direct relevance to computing
– everything in a computer is a number

colors on the screen are encoded as numbers

• Many significant applications in CS…



Pixels in Memory

• Memory is an array, so
pixel positions must be mapped to array indexes

6 x 4

24 = 6 x 4



Pixels in Memory

pixel at (2, 4)6 x 4

stored at index 16
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= 12 + 4
= 2 · 6 + 4



Pixels in Memory

pixel at (i, j)6 x 4

Stored at index n.
How do we calculate n from i and j?

0     1    2    3     4    5     6    7    8    9    10  11  12  13  14  15  16  17   18  19  20  21  22  23
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n = i · 6 + j



Divisibility

Check Your Understanding.  Which of the following are true?

5 |	1    25 | 5    5 | 0   3 |	2

1 | 5    5 | 25        0 | 5   2 | 3

  For 𝑎, 𝑏 with 𝑏 ≠ 0:
𝑏	|	𝑎 ↔ ∃𝑞	(𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



Check Your Understanding.  Which of the following are true?

5 |	1    25 | 5    5 | 0   3 |	2

1 | 5    5 | 25        0 | 5   2 | 3

Divisibility

5 | 1 iff 1 = 5k

1 | 5 iff 5 = 1k

25 | 5 iff 5 = 25k

5 | 25 iff 25 = 5k

5 | 0 iff 0 = 5k

0 | 5 iff 5 = 0k

3 | 2 iff 2 = 3k

2 | 3 iff 3 = 2k

  For 𝑎, 𝑏 with 𝑏 ≠ 0:
𝑏	|	𝑎 ↔ ∃𝑞	(𝑎 = 𝑞𝑏)

Definition: “b divides a”

Integers
Domain of Discourse



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏	|	𝑎, then, by definition, we have 𝑎 = 𝑞𝑏 for some 𝑞.
The number 𝑞 is called the quotient.

Dividing both sides by 𝑏, we can write this as

𝑎
𝑏 = 𝑞

(We want to stick to integers, though, so we’ll write 𝑎 = 𝑞𝑏.)

Recall: Elementary School Division



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏 ∤ 𝑎, then we end up with a remainder 𝑟 with 0 < 𝑟 < 𝑏.
Now,

 instead of      we have 

Multiplying both sides by 𝑏 gives us   𝑎 = 𝑞𝑏 + 𝑟
(A bit nicer since it has no fractions.)

Recall: Elementary School Division

𝑎
𝑏 = 𝑞

𝑎
𝑏 = 𝑞 +

𝑟
𝑏



For 𝑎, 𝑏	with 𝑏 > 0, we can divide 𝑏 into 𝑎.

If 𝑏	|	𝑎, then we have 𝑎 = 𝑞𝑏 for some 𝑞.
If 𝑏 ∤ 𝑎, then we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 < r < b.

In general, we have 𝑎 = 𝑞𝑏 + 𝑟 for some 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑏,
where 𝑟 = 0 iff 𝑏	|	𝑎.

Recall: Elementary School Division



To put it another way, if we divide b into a, we get a 
unique quotient                                                                     
and non-negative remainder

Division Theorem

q = a div b

 For 𝑎, 𝑏 with 𝑏 > 0
      there exist unique integers q, r with 0 ≤ 𝑟 < 𝑏     

such that 𝑎 = 𝑞𝑏 + 𝑟.

Division Theorem

r = a mod b

Integers
Domain of Discourse



Pixels in Memory

pixel at (i, j)6 x 4

Stored at index n. 
How do we calculate n from i and j?

0     1    2    3     4    5     6    7    8    9    10  11  12  13  14  15  16  17   18  19  20  21  22  23

0
1

2

3

0     1    2    3     4    5

n = i · 6 + j



Pixels in Memory

pixel at (i, j)6 x 4

Stored at index n.
How do we calculate i and j from n?

0     1    2    3     4    5     6    7    8    9    10  11  12  13  14  15  16  17   18  19  20  21  22  23

0
1

2

3

0     1    2    3     4    5

i = n div 6
j = n mod 6



Number Theory

• Direct relevance to computing
– important toolkit for programmers

• Many significant applications
– Cryptography & Security
– Data Structures
– Distributed Systems



Modular Arithmetic
(and Its Applications)



Modular Arithmetic

• Arithmetic over a finite domain

• Almost all computation is over a finite domain



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}



I’m ALIVE!

public class Test {
 final static int SEC_IN_YEAR = 365*24*60*60;
 public static void main(String args[]) {
  System.out.println(
   “I will be alive for at least ” +
   SEC_IN_YEAR * 101 + “ seconds.”
  );
 }
}

Prints : “I will be alive for at least -186619904 seconds.”



Ordinary arithmetic

-3 -2 -1 0 1 2 3 4 5 6 7

+3

2 + 3 = 5

+2



Arithmetic on a Clock

0
1

2

34

5

6

2 + 3 = 5

23 = 3 · 7 + 2

0
1

2

34

5

6

If 𝑎 = 7𝑞 + 𝑟, then 𝑟	 (= 𝑎	mod	𝑏) is
where you stop after taking 𝑎 steps on the clock



Arithmetic, mod 7

(a + b) mod 7
(a ´ b) mod 7

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

0
1

2

34

5

6



Modular Arithmetic

New notion of “sameness” that will help us 
understand modular arithmetic

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ↔ 	𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

The standard math notation is

𝑎 ≡ 𝑏 mod	𝑚

A chain of equivalences is written

𝑎 ≡ 𝑏 ≡ 𝑐 ≡ 𝑑 mod	𝑚

Many students find this confusing,
so we will use ≡! instead.

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ↔ 	𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

Integers
Domain of Discourse



Modular Arithmetic

Check Your Understanding.  What do each of these mean?
When are they true?

x ≡2 0

-1 ≡5 19

 y ≡7 2

    For 𝑎, 𝑏,𝑚 with 𝑚 > 0
𝑎 ≡! 𝑏	 ↔ 	𝑚	|	(𝑎	 − 𝑏)

Definition: “a is congruent to b modulo m”

This statement is the same as saying “x is even”; so, any x that is 
even (including negative even numbers) will work.

This statement is true.  19 - (-1) = 20 which is divisible by 5

This statement is true for  y in { ..., -12, -5, 2, 9, 16, ...}.  In other 
words, all y of the form 2+7k for k an integer. 

Integers
Domain of Discourse



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

    By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎	mod	𝑚) and
        𝑏 = 𝑚𝑠 + (𝑏	mod	𝑚) for some integers 𝑞,𝑠.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Goal: show 𝑎 ≡! 𝑏, i.e., 𝑚	|	(𝑎 − 𝑏).



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

    By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎	mod	𝑚) and
        𝑏 = 𝑚𝑠 + (𝑏	mod	𝑚) for some integers 𝑞,𝑠.

    Then, 𝑎	– 𝑏 = (𝑚𝑞 + (𝑎	mod	𝑚))	–	(𝑚𝑠	 + (𝑏	mod	𝑚))
             = 	𝑚(𝑞	– 𝑠) 	+	(𝑎	mod	𝑚	– 	𝑏	mod	𝑚)
                       = 	𝑚(𝑞	– 𝑠)	since 𝑎	mod	𝑚	 = 	𝑏	mod	𝑚

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Goal: show 𝑎 ≡! 𝑏, i.e., 𝑚	|	(𝑎 − 𝑏).



Modular Arithmetic: A Property

Suppose that 𝑎	mod	𝑚 = 𝑏	mod	𝑚.

    By the division theorem, 𝑎 = 𝑚𝑞 + (𝑎	mod	𝑚) and
        𝑏 = 𝑚𝑠 + (𝑏	mod	𝑚) for some integers 𝑞,𝑠.

    Then, 𝑎	– 𝑏 = (𝑚𝑞 + (𝑎	mod	𝑚))	–	(𝑚𝑠	 + (𝑏	mod	𝑚))
             = 	𝑚(𝑞	– 𝑠) 	+	(𝑎	mod	𝑚	– 	𝑏	mod	𝑚)
                       = 	𝑚(𝑞	– 𝑠)	since 𝑎	mod	𝑚	 = 	𝑏	mod	𝑚

    Therefore, 𝑚	|	(𝑎 − 𝑏)	 and so  𝑎 ≡! 𝑏.

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Suppose that 𝑎 ≡! 𝑏.

  Then, 𝑚	|	(𝑎	– 𝑏) by definition of congruence.
   So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
   Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Suppose that 𝑎 ≡! 𝑏.

  Then, 𝑚	|	(𝑎	– 𝑏) by definition of congruence.
   So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
   Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

   By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎	mod	𝑚 ,
   where 0 ≤ (𝑎	mod	𝑚) < 𝑚.



Modular Arithmetic: A Property

Let 𝒂, 𝒃,𝒎	be integers with 𝒎 > 𝟎.                              
Then, 𝒂 ≡𝒎 𝒃 if and only if 𝒂	𝐦𝐨𝐝	𝒎	 = 	𝒃	𝐦𝐨𝐝	𝒎.

Suppose that 𝑎 ≡! 𝑏.

  Then, 𝑚	|	(𝑎	– 𝑏) by definition of congruence.
   So, 𝑎	– 𝑏 = 𝑘𝑚 for some integer 𝑘 by definition of divides.
   Therefore, 𝑎 = 𝑏 + 𝑘𝑚. 

   By the Division Theorem, we have 𝑎 = 𝑞𝑚 + 𝑎	mod	𝑚 ,
   where 0 ≤ (𝑎	mod	𝑚) < 𝑚.

   Combining these, we have 𝑞𝑚 + 𝑎	mod	𝑚 = 𝑎 = 𝑏 + 𝑘𝑚
   or equiv., b = 𝑞𝑚 − 𝑘𝑚 + 𝑎	mod	𝑚 = 𝑞 − 𝑘 𝑚 + 𝑎	mod	𝑚 .
   By the Division Theorem, we have 𝑏	mod	𝑚 = 𝑎	mod	𝑚.



The mod	𝑚 function vs the	≡! predicate

• What we have just shown
– The mod	𝑚 function maps any integer 𝑎 to a 

remainder 𝑎	mod	𝑚 ∈ {0,1, . . , 𝑚 − 1}.
    

– Imagine grouping together all integers that have 
the same value of the mod	𝑚	function

That is, the same remainder in 0,1, . . , 𝑚 − 1 .
 

– The ≡% predicate compares integers 𝑎, 𝑏.   It is 
true if and only if the mod	𝑚 function has the 
same value on 𝑎 and on 𝑏. 

That is, 𝑎 and 𝑏 are in the same group.



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

These facts allow us to use
algebra to solve problems



Recall: Properties of “=” Used in Algebra

Example: given 5𝑥 + 4 = 2𝑥 + 25,
    prove that 3𝑥 = 21.

These are Theorems that
we can use in proofs

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄.  “Transitivity”
If 𝒂 = 𝒃, then 𝒂 + 𝒄 = 𝒃 + 𝒄.  “Add Equations”
If 𝒂 = 𝒃, then 𝒂𝒄 = 𝒃𝒄.    “Multiply Equations”

Let’s see how to do this in formal logic…



Recall: Properties of “=” Used in Algebra

1. 5𝑥 + 4 = 2𝑥 + 25   Given
2. −4 = −4      Algebra
3. 5𝑥 = 2𝑥 + 21    Add Equations: 1, 2
4. −2𝑥 = −2𝑥     Algebra
5. 3𝑥 = 21      Add Equations: 3, 4

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄.  “Transitivity”
If 𝒂 = 𝒃, then 𝒂 + 𝒄 = 𝒃 + 𝒄.  “Add Equations”
If 𝒂 = 𝒃, then 𝒂𝒄 = 𝒃𝒄.    “Multiply Equations”



Recall: Properties of “=” Used in Algebra

1. 5𝑥 + 4 = 2𝑥 + 25   Given
…
5. 3𝑥 = 21      Transitivity

Careful: prove 5𝑥 + 4 = 2𝑥 + 25	 ⇒ 	3𝑥 = 21
                    not  3𝑥 = 21	 ⇒ 	5𝑥 + 4 = 2𝑥 + 25

the second is a “backward” proof

If 𝒂 = 𝒃 and 𝒃 = 𝒄, then 𝒂 = 𝒄.  “Transitivity”
If 𝒂 = 𝒃, then 𝒂 + 𝒄 = 𝒃 + 𝒄.  “Add Equations”
If 𝒂 = 𝒃, then 𝒂𝒄 = 𝒃𝒄.    “Multiply Equations”



• If 𝑎 = 𝑏 and 𝑏 = 𝑐, then 𝑎 = 𝑐.
− i.e., if 𝑎 = 𝑏 = 𝑐, then 𝑎 = 𝑐

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎 + 𝑐 = 𝑏 + 𝑑.
− since 𝑐 = 𝑐 is true, we can “+	𝑐” to both sides

• If 𝑎 = 𝑏 and 𝑐 = 𝑑, then 𝑎𝑐 = 𝑏𝑑.
− since 𝑐 = 𝑐 is true, we can “×	𝑐” to both sides

Recall: Familiar Properties of “=”

Same facts apply to “≤”
with non-negative numbers What about “≡𝒎”?



Modular Arithmetic: Basic Property

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡! 𝑏 and	𝑏 ≡! 𝑐. 

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Basic Property

Suppose that 𝑎 ≡! 𝑏 and	𝑏 ≡! 𝑐. Then, by the 
previous property, we have 𝑎	mod	𝑚 = 𝑏	mod	𝑚 
and 𝑏	mod	𝑚 = 𝑐	mod	𝑚. 

Putting these together, we have 𝑎	mod	𝑚 = 𝑐	mod	𝑚, 
which says that 𝑎 ≡! 𝑐, by the previous property.

Let 𝒎 be a positive integer.
If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Addition Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Addition Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.  Unrolling the definitions, we 
can see that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚	for some 𝑘, 𝑗 ∈ ℤ.

Adding the equations together gives us 
(𝑎 + 𝑐)	–	(𝑏 + 𝑑) 	= 	𝑚(𝑘 + 𝑗).

By the definition of congruence, we have 𝑎 + 𝑐 ≡! 𝑏 + 𝑑. 

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.



Modular Arithmetic: Multiplication Property

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑. 

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.  Unrolling the definitions, we 
can see that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚	for some 𝑘, 𝑗 ∈ ℤ or 
equivalently, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 	𝑏𝑑. 

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Multiplication Property

Suppose that 𝑎 ≡! 𝑏 and 𝑐 ≡! 𝑑.  Unrolling the definitions, we 
can see that 𝑎	– 𝑏 = 𝑘𝑚 and 𝑐	– 𝑑 = 𝑗𝑚	for some 𝑘, 𝑗 ∈ ℤ or 
equivalently, 𝑎 = 𝑘𝑚 + 𝑏 and 𝑐 = 𝑗𝑚 + 𝑑.

Multiplying both together gives us  𝑎𝑐 = (𝑘𝑚 + 𝑏)(𝑗𝑚 + 𝑑) =
𝑘𝑗𝑚2+ 𝑘𝑚𝑑 + 𝑏𝑗𝑚 + 	𝑏𝑑. Re-arranging, this becomes 
𝑎𝑐	– 𝑏𝑑 = 𝑚(𝑘𝑗𝑚 + 𝑘𝑑 + 𝑏𝑗).

This says 𝑎𝑐 ≡! 𝑏𝑑 by the definition of congruence.

Let 𝒎 be a positive integer.  If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, 
then 𝒂𝒄 ≡𝒎 𝒃𝒅.



Modular Arithmetic: Properties

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.Corollary:

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅.

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.



Modular Arithmetic: Properties

“≡𝒎” allows us to solve problems in modular arithmetic, e.g.
• add / subtract numbers from both sides of equations
• chains of “≡𝒎” values shows first and last are “≡𝒎”
• substitute “≡𝒎” values in equations (not proven yet)

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒄.

If 𝒂 ≡𝒎 𝒃, then 𝒂𝒄 ≡𝒎 𝒃𝒄.



Properties of “≡𝒎” Used in Algebra

Example: given that 3𝑥 ≡- 7,
    prove that 5𝑥 + 3 ≡- 2𝑥 + 10

These are Theorems that
we can use in proofs

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Properties of “≡𝒎” Used in Algebra

1. 3𝑥 ≡- 7       Given
2. 2𝑥 = 2𝑥	       Algebra
3. 2𝑥 + 3𝑥 ≡- 2𝑥 + 7   Add Equations: 2, 1 ??

Line 2 says “=” not “≡#”

But “=” implies “≡#” !
(equality is a special case)

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Properties of “≡𝒎” Used in Algebra

1. 3𝑥 ≡- 7        Given
2. 2𝑥 = 2𝑥	        Algebra
3. 2𝑥 ≡- 2𝑥       To Modular: 2
4. 2𝑥 + 3𝑥 ≡- 2𝑥 + 7    Add Equations: 3, 1
5. 3 = 3	         Algebra
6. 3 ≡- 3	        To Modular
7. 2𝑥 + 3𝑥 + 3 ≡- 2𝑥 + 7 + 3	 Add Equations: 4, 6

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Properties of “≡𝒎” Used in Algebra

7. 2𝑥 + 3𝑥 + 3 ≡- 2𝑥 + 7 + 3	 Add Equations: 4, 6
8. 5x + 3 = 2𝑥 + 3𝑥 + 3   Algebra
9. 5x + 3 ≡- 2𝑥 + 3𝑥 + 3   To Modular: 8
10. 2x + 7 + 3 = 2x + 10   Algebra
11. 2x + 7 + 3 ≡- 2x + 10   To Modular: 10
12. 5x + 3 ≡- 2𝑥 + 10	    Transitivity: 9, 7, 11

Good news! You’ll only have to do this two times in your life...

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Properties of “≡𝒎” Used in Algebra

Example: given that 2(𝑥 − 3) ≡- 4,
    prove that 2𝑥 ≡- 10

These are Theorems that
we can use in proofs

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.        “To Modular”

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Properties of “≡𝒎” Used in Algebra

1. 2(𝑥 − 3) ≡- 4      Given

?. 2𝑥 ≡- 10	       ??



Properties of “≡𝒎” Used in Algebra

1. 2(𝑥 − 3) ≡- 4      Given
2. 6 = 6         Algebra
3. 6 ≡- 6        To Modular: 2
4. 2 𝑥 − 3 + 6 ≡- 4 + 6   Add Equations: 1, 3
5. 2x = 2 𝑥 − 3 + 6     Algebra
6. 2x ≡- 2 𝑥 − 3 + 6    To Modular: 5
7. 4 + 6 = 10       Algebra
8. 4 + 6 ≡- 10      To Modular: 7
9. 2𝑥 ≡- 10	       Transitivity: 6, 4, 8



Another Property of “=” Used in Algebra

Example: given 2𝑦 + 3𝑥 = 25 and 𝑥 = 7,
    prove that 2𝑦 + 21 = 25.

Can “plug in” (a.k.a. substitute)
the known value of a variable

If 𝒂 = 𝒃, then 𝒂 ≡𝒎 𝒃.        “To Modular”

If 𝒂 ≡𝒎 𝒃 and 𝒃 ≡𝒎 𝒄, then 𝒂 ≡𝒎 𝒄    “Transitivity”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂 + 𝒄 ≡𝒎 𝒃 + 𝒅 “Add Equations”
If 𝒂 ≡𝒎 𝒃 and 𝒄 ≡𝒎 𝒅, then 𝒂𝒄 ≡𝒎 𝒃𝒅	 “Multiply Equations”



Substitution Follows From Other Properties

Given 2𝑦 + 3𝑥 ≡% 25 and 𝑥 ≡% 7,
show that 2𝑦 + 21 ≡% 25.   (substituting 7 for 𝑥)

Start from     𝑥 ≡% 7

Multiply both sides  3𝑥 ≡% 3 @ 7	 (= 21)

Add to both sides   2y + 3𝑥 ≡% 2𝑦 + 21

Combine ≡%’s    2𝑦 + 21 ≡% 2y + 3𝑥 ≡% 25



Basic Applications of mod

• Two’s Complement
• Hashing 
• Pseudo random number generation



• Represent integer 𝑥 as sum of powers of 2:

    99  = 64 + 32 + 2 + 1  = 26 + 25 + 21 + 20

     18  = 16 + 2    = 24 + 21

   If 𝑏)*+2)*+ +⋯+ 𝑏+2 + 𝑏, with each 𝑏𝑖 ∈ 0,1
  then binary representation is bn-1...b2 b1 b0

• For n = 8:
       99:    0110 0011
       18:    0001  0010

n-bit Unsigned Integer Representation

Easy to implement arithmetic 𝐦𝐨𝐝	𝟐𝒏
... just throw away bits n+1 and up

2%	|	2%&'	 so    𝑏%&'2%&' ≡(! 0
for 𝑘 ≥ 0



n-bit Unsigned Integer Representation

• Largest representable number is 2) − 1

        2n = 100…000   (n+1 bits)
  2n – 1 =   11…111   (n bits)

32 bits
1 = $0.0001
$429,496.7295 max



Sign-Magnitude Integer Representation

𝑛-bit signed integers
Suppose that −2234 < 𝑥 < 2234
First bit as the sign, 𝑛 − 1 bits for the value

99 = 64 + 32 + 2 + 1
18 = 16 + 2

For n = 8:
   99:    0110 0011
   -18:   1001  0010

Problem: this has both +0 and -0 (annoying)



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2#$%                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2#$%≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2#
 result is in the range 2!"# ≤ 𝑥 < 2!

2!"#0−1−2!"# 2!

+2%

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2#$%                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2#$%≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2#
 result is in the range 2!"# ≤ 𝑥 < 2!
 

   99 = 64 + 32 + 2 + 1
   18 = 16 + 2

For n = 8:
    99:    0110 0011
   -18:    1110 1110   (-18 + 256 = 238)

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111



Two’s Complement Representation

Suppose that 0 ≤ 𝑥 < 2#$%                    
 𝑥 is represented by the binary representation of 𝑥
Suppose that −2#$%≤ 𝑥 < 0
 𝑥 is represented by the binary representation of 𝑥 + 2#
 result is in the range 2!"# ≤ 𝑥 < 2!
 

Key property: Twos complement representation of any number 𝒚 
                         is equivalent to 𝒚	𝐦𝐨𝐝	𝟐𝒏 so arithmetic works 𝐦𝐨𝐝	𝟐𝒏

Key property: First bit is still the sign bit!

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

𝑦 + 2% ≡(! 𝑦



Two’s Complement Representation

• For                         ,  −𝑥 is represented by the 
binary representation of −𝑥 + 2#
– How do we calculate –x from x?
– E.g., what happens for “return –x;” in Java?

• To compute this, flip the bits of 𝑥 then add 1!
– All 1’s string is  22 − 1, so

Flip the bits of 𝑥 means replace 𝑥 by 22 − 1 − 𝑥
Then add 1 to get −𝑥 + 22

−𝑥 + 2% = 2% − 1 − x + 1



Primes
(and Their Applications)



Primality

An integer p greater than 1 is called prime if the 
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not 
prime is called composite.

𝑝	>	1	 Ù	 ∀x	((𝑥	|	𝑝)	®	((𝑥 = 1) ∨ (𝑥 = 𝑝)))

𝑝	>	1	 Ù	 ∃x	((𝑥	|	𝑝)	Ù	(𝑥 ≠ 1)	Ù	(𝑥 ≠ 𝑝))



Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a 
“unique” prime factorization

48 =  2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803



Algorithmic Problems

• Multiplication
– Given primes 𝑝4, 𝑝;, …, 𝑝<, calculate their 

product 𝑝4𝑝;…𝑝<
• Factoring

– Given an integer 𝑛, determine the prime 
factorization of 𝑛



Factoring

Factor the following 232 digit number [RSA768]:

 123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413



12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917



Famous Algorithmic Problems

• Factoring
– Given an integer 𝑛, determine the prime 

factorization of 𝑛
• Primality Testing

– Given an integer 𝑛, determine if 𝑛 is prime

• Factoring is hard
– (on a classical computer)

• Primality Testing is easy



Greatest Common Divisor
(and Its Applications)



Greatest Common Divisor

GCD(a, b): 
 Largest integer 𝑑 such that 𝑑 ∣ 𝑎 and 𝑑 ∣ 𝑏

•   GCD(100, 125) = 
•   GCD(17, 49)  = 
•   GCD(11, 66)  =
•   GCD(13, 0)  = 
•   GCD(180, 252) =

𝑑 is GCD  iff  (𝑑 ∣ 𝑎) Ù (𝑑 ∣ 𝑏) Ù ∀𝑥 (((𝑥 ∣ 𝑎)	Ù	(𝑥 ∣ 𝑏))	®	(𝑥 ≤ 𝑑))



GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is hard!    
     Can we compute GCD(a,b) without factoring?



Useful GCD Fact

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)

Proof:
 We will show that every number dividing 𝑎 and 𝑏 also divides 𝑏 and 𝑎	mod	𝑏.
 I.e., 𝑑|𝑎 and 𝑑|𝑏 iff 𝑑|𝑏 and 𝑑|(𝑎	mod	𝑏).

 Hence, their set of common divisors are the same,
 which means that their greatest common divisor is the same.



Useful GCD Fact

Proof:
 By definition of mod, 𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏)  for some integer 𝑞 = 𝑎	div	𝑏.  

 Suppose 𝑑|𝑏 and 𝑑|(𝑎	mod	𝑏).
 Then 𝑏 = 𝑚𝑑 and (𝑎	mod	𝑏) = 𝑛𝑑 for some integers 𝑚 and 𝑛.    
 Therefore  𝑎 = 𝑞𝑏 + (𝑎	mod	𝑏) 	= 𝑞𝑚𝑑 + 	𝑛𝑑 = 𝑞𝑚 + 𝑛 𝑑.
 So 𝑑|𝑎.

        Suppose 𝑑|𝑎 and 𝑑|𝑏.
 Then 𝑎 = 𝑘𝑑 and 𝑏 = 𝑗𝑑 for some integers 𝑘 and 𝑗.
        Therefore (𝑎	mod	𝑏) = 𝑎	– 𝑞𝑏 = 𝑘𝑑	– 𝑞𝑗𝑑 = (𝑘	– 𝑞𝑗)𝑑. 
 So, 𝑑|(𝑎	mod	𝑏) also.

 Since they have the same common divisors, gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎	mod	𝑏).

Let a and b be positive integers.
We have gcd(a, b) = gcd(b, a mod b)



Another simple GCD fact

Let a be a positive integer.
We have gcd(a, 0) = a.



Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b)    gcd(a, 0) = a

int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
 if (b == 0) {
  return a;
 } else {
  return gcd(b, a % b);
 }
}

Note: gcd(b, a) = gcd(a, b)



Euclid’s Algorithm

gcd(660,126) =

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.

gcd(660,126) 



Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
        = gcd(30, 126 mod 30)     = gcd(30, 6)
        = gcd(6, 30 mod 6)      = gcd(6, 0)
        = 6

gcd(660,126) 

Repeatedly use gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎	mod	𝑏  to reduce 
numbers until you get gcd(𝑔, 0) = 𝑔.



Bézout’s theorem

If a and b are positive integers, then there exist 
integers s and t such that 

gcd(a,b) = sa + tb.

∀a	∀b	((a	>	0	∧	b	>	0)	→	∃s	∃t	(gcd(a,b)	=	sa	+	tb))



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                         gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8	
a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
                                        gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏
Step 1 (Compute GCD & Keep Tableau Information):

gcd(35,	27)	=	gcd(27,	35	mod	27)	=	gcd(27,	8)						35	=	1	*	27	+	8
=	gcd(8,	27	mod	8)						=	gcd(8,	3)									27	=	3	*	8			+	3
=	gcd(3,	8	mod	3)								=	gcd(3,	2)										8		=	2	*	3			+	2
=	gcd(2,	3	mod	2)									=	gcd(2,	1)										3		=	1	*	2			+	1
=	gcd(1,	2	mod	1)	 =	gcd(1,	0)

a b b a  mod b = r b r a  = q * b  + r



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 2 (Solve the equations for r):

a   =  q * b  + r
35	=	1	*	27	+	8
27	=	3	*	8			+	3
8			=	2	*	3			+	2
3 =	1	*	2			+	1

r  =  a  --  q * b
8	=	35	– 1	*	27
3	=	27	– 3	*	8
2	=		8		– 2	*	3
1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

Plug in the def of 2

Re-arrange into
3’s and 8’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s



Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find 𝑠, 𝑡 such that
     gcd 𝑎, 𝑏 = 𝑠𝑎 + 𝑡𝑏

Step 3 (Backward Substitute Equations):

8	=	35	– 1	*	27

3	=	27	– 3	*	8

2	=		8		– 2	*	3

1	=		3		– 1	*	2

1	=			3	–	1	*	(8	–	2	*	3)
				=			3	–	8	+	2	*	3
				=	(–1)	*	8	+	3	*	3

				=	(–1)	*	8	+	3	*	(27	–	3	*	8)
				=	(–1)	*	8	+	3	*	27	+	(–9)	*	8
				=			3	*	27		+	(–10)	*	8

				=			3	*	27		+	(–10)	*	(35	–	1	*	27)
				=			3	*	27			+	(–10)	*	35	+	10	*	27
				=			13	*	27	+	(–10)	*	35

Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s



Let 0 ≤ 𝑎, 𝑏 < 𝑚. Then, 𝑏 is the multiplicative 
inverse of 𝑎 (modulo 𝑚)  iff  𝑎𝑏 ≡! 1.   

Multiplicative inverse mod	𝑚

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

mod 7

X 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7
4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4
7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

mod 10



Multiplicative inverse mod	𝑚

Suppose gcd 𝑎,𝑚 = 1

By Bézout’s Theorem, there exist integers 𝑠 and 𝑡
such that 𝑠𝑎 + 𝑡𝑚 = 1.

𝑠 is the multiplicative inverse of 𝑎 (modulo 𝑚):
 1 = 𝑠𝑎 + 𝑡𝑚 ≡% 𝑠𝑎

So… we can compute multiplicative inverses with the 
extended Euclidean algorithm

These inverses let us solve modular equations…



Example: Solve a Modular Equation

Solve:  7𝑥 ≡$% 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

Solve:  7𝑥 ≡$% 3

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve:  7𝑥 ≡$% 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

Solve:  7𝑥 ≡$% 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Solve:  7𝑥 ≡$% 3 Find multiplicative inverse of 7 modulo 26



Example: Solve a Modular Equation

gcd(26, 7) 	= 	gcd(7, 5) 	= 	gcd(5, 2) 	= 	gcd(2, 1) 	= 	1

26 = 3 ∗ 7	 + 	5	 		 5 = 	26	– 	3 ∗ 7
7	 = 1 ∗ 5	 + 	2	 		2 = 	7	– 	1 ∗ 5	
5	 = 	2 ∗ 2	 + 	1	 		1 = 	5	– 	 2 ∗ 2	

1	 = 	 	 5	 	 – 	 	2 ∗ (7	– 1 ∗ 5)
 =	(– 2) ∗ 7		 + 	3 ∗ 5
 = –2 ∗ 7		 + 	3 ∗ (26	– 3 ∗ 7)
 =	 −11 ∗ 7	 + 	3 ∗ 26

Now (−11)	mod	26	 = 15.   
“the” multiplicative inverse

Solve:  7𝑥 ≡$% 3 Find multiplicative inverse of 7 modulo 26

(−11 is also “a” multiplicative inverse)



Example: Solve a Modular Equation

Find multiplicative inverse of 7 modulo 26… it’s 15.

Multiplying both sides by 15 gives

  15 @ 7x ≡;O 15 @ 3

Simplify on both sides to get
  x ≡;O 15 @ 7x ≡;O 15 @ 3 ≡;O 19

So, all solutions of this congruence are
numbers of the form 𝑥 = 19 + 26𝑘 for some 𝑘 ∈ ℤ.

Solve:  7𝑥 ≡$% 3



Example: Solve a Modular Equation

Conversely, suppose that 𝑥 ≡;O 19.

Multiplying both sides by 7 gives

   7x ≡;O 7 @ 19

Simplify on right to get
   7x ≡;O 7 @ 19 ≡;O 3

So, all numbers of form 𝑥 = 19 + 26𝑘 for any 𝑘 ∈ ℤ 
are solutions of this equation.

Solve:  7𝑥 ≡$% 3



Example: Solve a Modular Equation

1	 = 	… 	= 	 −11 ∗ 7	 + 	3 ∗ 26

Since (−11)	mod	26	 = 15, the inverse of 7 is 15.

Solve:  7𝑥 ≡$% 3     (on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26

(must be of the form 𝑎 +𝑚𝑘 for all 𝑘 ∈ ℤ	with 0 ≤ 𝑎 < 𝑚)

Multiplying by 15, we get 𝑥 ≡() 15 j 7𝑥 ≡() 15 j 3 ≡() 19.

Step 2. Multiply both sides and simplify

Step 3. State the full set of solutions
So, the solutions are 19 + 26𝑘	for any 𝑘 ∈ ℤ



Examples Not in “Standard Form”

Modular equation like A𝑥 ≡;O 𝐵 for some 𝐴 and 𝐵	
is in “standard form”.

– solve by multiplying both sides by inverse of A

What about other equations like

7(𝑥 − 3) ≡;O 8 ?

Previously saw how to formally prove this has the 
same solutions as equation above.

Solve:  7𝑥 ≡$% 3



Examples Not in “Standard Form”

Modular equation like A𝑥 ≡;O 𝐵 for some 𝐴 and 𝐵	
is in “standard form”.

– solve by multiplying both sides by inverse of A

What about other equations like

7(𝑥 − 3) ≡;O 8 ?

On HW4:
– apply algorithm when in standard form (English)
– transform non-standard to standard form (formal)

Solve:  7𝑥 ≡$% 3



Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

gcd(𝑎,𝑚) = 1 if 𝑚 is prime and 0 < 𝑎 < 𝑚	 so 
can always solve these equations mod a prime.

mod 7



Adding to both sides is an equivalence:

𝑥 ≡% 𝑦

𝑥 + 𝑐 ≡% 𝑦 + 𝑐

The same is not true of multiplication…
unless we have a multiplicative inverse 𝑐𝑑 ≡% 1

𝑥 ≡% 𝑦

𝑐𝑥 ≡% 𝑐𝑦

Multiplicative Inverses and Algebra

+𝑐−𝑐

×𝑐×𝑑



Modular Exponentiation mod 7

X 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 4 6 1 3 5

3 3 6 2 5 1 4

4 4 1 5 2 6 3

5 5 3 1 6 4 2

6 6 5 4 3 2 1

a a1 a2 a3 a4 a5 a6

1 1 1 1 1 1 1

2 2 4 1 2 4 1

3 3 2 6 4 5 1

4 4 2 1 4 2 1

5 5 4 6 2 3 1

6 6 1 6 1 6 1



Exponentiation

• Compute 7836581453

• Compute 7836581453 mod 104729

• Output is small
– need to keep intermediate results small



Small Multiplications

Since 𝑏 = 𝑞𝑚 + (𝑏	mod	𝑚), we have 𝑏	mod	𝑚 ≡% 𝑏.

And since 𝑐 = 𝑡𝑚 + (𝑐	mod	𝑚), we have 𝑐	mod	𝑚 ≡% 𝑐.

Multiplying these gives (𝑏	mod	𝑚)(𝑐	mod	𝑚) ≡% 𝑏𝑐.

By the Lemma from a few lectures ago, this tells us 
𝑏𝑐	mod	𝑚 = 𝑏	mod	𝑚 𝑐	mod	𝑚 	mod	𝑚.

Okay to mod 𝑏 and 𝑐 by 𝑚	before multiplying if we are 
planning to mod the result by 𝑚



Repeated Squaring – small and fast

Since 𝑏	mod	𝑚 ≡% 𝑏	and 𝑐	mod	𝑚 ≡% 𝑐
we have 𝑏𝑐	mod	𝑚 = 𝑏	mod	𝑚 𝑐	mod	𝑚 	mod	𝑚

So            𝑎2	mod	𝑚	 = 	 𝑎	mod	𝑚 ;	mod	𝑚
and          𝑎4	mod	𝑚	 = 𝑎2	mod	𝑚 ;	mod	𝑚
and          𝑎8	mod	𝑚	 = 𝑎4	mod	𝑚 ;	mod	𝑚
and          𝑎16	mod	𝑚	 = 𝑎8	mod	𝑚 ;	mod	𝑚
and          𝑎32	mod	𝑚	 = 𝑎16	mod	𝑚 ;	mod	𝑚

Can compute 𝑎𝑘	mod	𝑚 for 𝑘 = 2𝑖 in only 𝑖 steps
What if 𝑘 is not a power of 2?



Fast Exponentiation Algorithm 
81453 in binary is 10011111000101101
81453 = 216 + 213 + 212 + 211 + 210 + 29 + 25 + 23 + 22 + 20

The fast exponentiation algorithm computes 
𝑎< 	mod	𝑚	using ≤ 2log 𝑘 multiplications mod	𝑚	

a81453 = a216 · a213 · a212 · a211 · a210 · a29 · a25 · a23 · a22 · a20

a81453 mod m= 
(…(((((a216 mod m ·
       a213 mod m ) mod m · 
    a212 mod m) mod m · 
       a211 mod m) mod m · 
          a210 mod m) mod m · 
        a29 mod m) mod m · 
            a25 mod m) mod m · 
           a23 mod m) mod m · 
          a22 mod m) mod m · 
              a20 mod m)  mod m 

Uses only 16 + 9 = 25 
multiplications



Fast Exponentiation:  𝑎𝑘	mod	𝑚 for all 𝑘

𝑎"#mod	𝑚 = 𝑎#	mod	𝑚 "mod	𝑚

𝑎"#$%mod𝑚 = (𝑎	mod	𝑚) F 𝑎2𝑗mod𝑚 	mod𝑚

Another way....



Fast Exponentiation

public static int FastModExp(int a, int k, int modulus) {
 
     if (k == 0) {
   return 1;

        } else if ((k % 2) == 0) {
   long temp = FastModExp(a,k/2,modulus);
   return (temp * temp) % modulus;

  } else {
   long temp = FastModExp(a,k-1,modulus);
   return (a * temp) % modulus;
  }
}

𝑎"#mod	𝑚 = 𝑎#	mod	𝑚 "mod	𝑚
𝑎"#$%mod𝑚 = (𝑎	mod	𝑚) F 𝑎2𝑗mod𝑚 	mod𝑚



Using Fast Modular Exponentiation

• Your e-commerce web transactions use SSL 
(Secure Socket Layer) based on RSA encryption

• RSA
– Vendor chooses random 512-bit or 1024-bit primes 𝒑, 𝒒 

and 512/1024-bit exponent 𝒆.  Computes 𝒎 = 𝒑 ⋅ 𝒒
– Vendor broadcasts (𝒎, 𝒆)
– To send 𝒂 to vendor, you compute 𝑪 = 𝒂𝒆	mod	𝒎 using 

fast modular exponentiation and send 𝑪 to the vendor.
– Using secret 𝒑, 𝒒 the vendor computes 𝒅 that is the 

multiplicative inverse of 𝒆 mod (𝒑 − 𝟏)(𝒒 − 𝟏).
– Vendor computes 𝑪𝒅	mod	𝒎 using fast modular 

exponentiation.
– Fact:   𝒂 = 𝑪𝒅	mod	𝒎 for 𝟎 < 𝒂 < 𝒎 unless 𝒑|𝒂 or 𝒒|𝒂


