CSE 311: Foundations of Computing

Topic 5: Number Theory

Applications of Predicate Logic

- Remainder of the course will use predicate logic to prove important properties of interesting objects
- start with math objects that are widely used in CS
- eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse

Predicate Definitions
$\operatorname{Even}(x) \equiv \exists y(x=2 \cdot y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 \cdot y+1)$

Mechanical vs Creative Predicate Logic

- We've done examples with "meaningless" predicates such as $\forall x P(x) \rightarrow \exists x P(x)$
- Saw how to (often) mechanically solve by looking at "shape" of the goal.
- We'll need these skills in all domains!
- When we enter "interesting" domains of discourse, we will use domain knowledge.
- We will see how to creatively solve goals, especially with rules like Intro \vee, Intro \exists, Elim \wedge, Elim \forall.

Number Theory

- Direct relevance to computing
- everything in a computer is a number
colors on the screen are encoded as numbers
- Many significant applications in CS...

Pixels in Memory

- Memory is an array, so pixel positions must be mapped to array indexes
6×4

$24=6 \times 4$

Pixels in Memory

stored at index $16=12+4$
$=2 \cdot 6+4$

Pixels in Memory

Stored at index n.
How do we calculate n from i and j ?
$n=i \cdot 6+j$

Divisibility

Definition: "b divides a"

For a, b with $b \neq 0$:

$$
b \mid a \leftrightarrow \exists q(a=q b)
$$

Check Your Understanding. Which of the following are true?
5 | 1
25 | 5
$5 \mid 0$
$3 \mid 2$
1 | 5
5|25
$0 \mid 5$
2 | 3

Divisibility

Definition: "b divides a"

For a, b with $b \neq 0$:

$$
b \mid a \leftrightarrow \exists q(a=q b)
$$

Check Your Understanding. Which of the following are true?
$5 \mid 1$
$5 \mid 1$ iff $1=5 k$
$1 \mid 5$

1 | 5 iff $5=1 k$

```
25 | 5
```

25 | 5 iff $5=25 k$
$5 \frac{5 \mid 25}{5 \mid 25 \text { iff } 25=5 k}$
0|5iff $5=0 k$
2 | 3 iff 3 = 2k

Recall: Elementary School Division

For a, b with $b>0$, we can divide b into a.

If $b \mid a$, then, by definition, we have $a=q b$ for some q.
The number q is called the quotient.

Dividing both sides by b, we can write this as

$$
\frac{a}{b}=q
$$

(We want to stick to integers, though, so we'll write $a=q b$.)

Recall: Elementary School Division

For a, b with $b>0$, we can divide b into a.

If $b \nmid a$, then we end up with a remainder r with $0<r<b$. Now,
instead of $\quad \frac{a}{b}=q \quad$ we have $\quad \frac{a}{b}=q+\frac{r}{b}$

Multiplying both sides by b gives us

$$
a=q b+r
$$

(A bit nicer since it has no fractions.)

Recall: Elementary School Division

For a, b with $b>0$, we can divide b into a.

If $b \mid a$, then we have $a=q b$ for some q.
If $b \nmid a$, then we have $a=q b+r$ for some q, r with $0<\mathrm{r}<\mathrm{b}$.

In general, we have $a=q b+r$ for some q, r with $0 \leq r<b$, where $r=0$ iff $b \mid a$.

Division Theorem

Division Theorem

For a, b with $b>0$
there exist unique integers q, r with $0 \leq r<b$ such that $a=q b+r$.

To put it another wav, if we divide b into a, we get a unique quotient $q=a \operatorname{div} b$ and non-negative remainder $r=a \bmod b$

Pixels in Memory

Stored at index n.
How do we calculate n from i and j ?
$n=i \cdot 6+j$

Pixels in Memory

Stored at index n.
How do we calculate i and j from n?
$\mathrm{i}=\mathrm{n} \operatorname{div} 6$
$j=n \bmod 6$

Number Theory

- Direct relevance to computing
- important toolkit for programmers
- Many significant applications
- Cryptography \& Security
- Data Structures
- Distributed Systems

Modular Arithmetic (and Its Applications)

Modular Arithmetic

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 365*24*60*60;
    public static void main(String args[]) {
            System.out.println(
                "I will be alive for at least " +
                SEC_IN_YEAR * 101 + " seconds."
            );
    }
}
```


I'm ALIVE!

```
public class Test {
    final static int SEC_IN_YEAR = 365*24*60*60;
    public static void main(String args[]) {
            System.out.println(
                "I will be alive for at least " +
                SEC_IN_YEAR * 101 + " seconds."
            );
    }
}
```

```
----jGRASP exec: java Test
```

----jGRASP exec: java Test
I will be alive for at least -186619904 seconds.
I will be alive for at least -186619904 seconds.
----jGRASP: operation complete.

```
    ----jGRASP: operation complete.
```


Ordinary arithmetic

$$
2+3=5
$$

Arithmetic on a Clock

$$
2+3=5
$$

$$
23=3 \cdot 7+2
$$

If $a=7 q+r$, then $r(=a \bmod b)$ is where you stop after taking a steps on the clock

Arithmetic, mod 7

$(a+b) \bmod 7$
 $(a \times b) \bmod 7$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For a, b, m with $m>0$

$$
a \equiv_{m} b \leftrightarrow m \mid(a-b)
$$

New notion of "sameness" that will help us understand modular arithmetic

Modular Arithmetic

Definition: "a is congruent to b modulo m"

For a, b, m with $m>0$

$$
a \equiv_{m} b \leftrightarrow m \mid(a-b)
$$

The standard math notation is

$$
a \equiv b(\bmod m)
$$

A chain of equivalences is written

$$
a \equiv b \equiv c \equiv d(\bmod m)
$$

Many students find this confusing, so we will use \equiv_{m} instead.

Modular Arithmetic

Definition: "a is congruent to b modulo m"

$$
\text { For } a, b, m \text { with } m>0
$$

$$
a \equiv_{m} b \leftrightarrow m \mid(a-b)
$$

Check Your Understanding. What do each of these mean? When are they true?
$x \equiv_{2} 0$
This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.
$-1 \equiv_{5} 19$
This statement is true. $19-(-1)=20$ which is divisible by 5
$y \equiv_{7} 2$
This statement is true for y in $\{\ldots,-12,-5,2,9,16, \ldots\}$. In other words, all y of the form $2+7 k$ for k an integer.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.

By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.

Goal: show $a \equiv_{m} b$, i.e., $m \mid(a-b)$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.
Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$
$=m(q-s)+(a \bmod m-b \bmod m)$
$=m(q-s)$ since $a \bmod m=b \bmod m$

Goal: show $a \equiv_{m} b$, i.e., $m \mid(a-b)$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \bmod m=b \bmod m$.
By the division theorem, $a=m q+(a \bmod m)$ and
$b=m s+(b \bmod m)$ for some integers q, s.
Then, $a-b=(m q+(a \bmod m))-(m s+(b \bmod m))$
$=m(q-s)+(a \bmod m-b \bmod m)$
$=m(q-s)$ since $a \bmod m=b \bmod m$
Therefore, $m \mid(a-b)$ and so $a \equiv_{m} b$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv_{m} b$.

Then, $m \mid(a-b)$ by definition of congruence. So, $a-b=k m$ for some integer k by definition of divides. Therefore, $a=b+k m$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv_{m} b$.

Then, $m \mid(a-b)$ by definition of congruence.
So, $a-b=k m$ for some integer k by definition of divides.
Therefore, $a=b+k m$.

By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Modular Arithmetic: A Property

Let $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{m}$ be integers with $\boldsymbol{m}>\mathbf{0}$.
Then, $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ if and only if $\boldsymbol{a} \bmod \boldsymbol{m}=\boldsymbol{b} \bmod \boldsymbol{m}$.
Suppose that $a \equiv_{m} b$.
Then, $m \mid(a-b)$ by definition of congruence. So, $a-b=k m$ for some integer k by definition of divides. Therefore, $a=b+k m$.

By the Division Theorem, we have $a=q m+(a \bmod m)$, where $0 \leq(a \bmod m)<m$.

Combining these, we have $q m+(a \bmod m)=a=b+k m$ or equiv., $\mathrm{b}=q m-k m+(a \bmod m)=(q-k) m+(a \bmod m)$. By the Division Theorem, we have $b \bmod m=a \bmod m$.

The mod m function vs the \equiv_{m} predicate

- What we have just shown
- The mod m function maps any integer a to a remainder $a \bmod m \in\{0,1, . ., m-1\}$.
- Imagine grouping together all integers that have the same value of the $\bmod m$ function
That is, the same remainder in $\{0,1, . ., m-1\}$.
- The \equiv_{m} predicate compares integers a, b. It is true if and only if the $\bmod m$ function has the same value on a and on b.
That is, a and b are in the same group.

Recall: Familiar Properties of "="

- If $a=b$ and $b=c$, then $a=c$.
- i.e., if $a=b=c$, then $a=c$
- If $a=b$ and $c=d$, then $a+c=b+d$.
- since $c=c$ is true, we can " $+c$ " to both sides
- If $a=b$ and $c=d$, then $a c=b d$.
- since $c=c$ is true, we can " $\times c$ " to both sides

These facts allow us to use algebra to solve problems

Recall: Properties of "=" Used in Algebra

$$
\begin{array}{|ll|}
\hline \text { If } \boldsymbol{a}=\boldsymbol{b} \text { and } \boldsymbol{b}=\boldsymbol{c}, \text { then } \boldsymbol{a}=\boldsymbol{c} . & \text { "Transitivity" } \\
\hline \text { If } \boldsymbol{a}=\boldsymbol{b}, \text { then } \boldsymbol{a}+\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{c} . & \text { "Add Equations" } \\
\hline \text { If } \boldsymbol{a}=\boldsymbol{b} \text {, then } \boldsymbol{a} \boldsymbol{c}=\boldsymbol{b} \boldsymbol{c} . & \text { "Multiply Equations" } \\
\hline
\end{array}
$$

These are Theorems that we can use in proofs

Example: given $5 x+4=2 x+25$, prove that $3 x=21$.

Recall: Properties of "=" Used in Algebra

$$
\begin{array}{|ll|}
\hline \text { If } \boldsymbol{a}=\boldsymbol{b} \text { and } \boldsymbol{b}=\boldsymbol{c} \text {, then } \boldsymbol{a}=\boldsymbol{c} . & \text { "Transitivity" } \\
\hline \text { If } \boldsymbol{a}=\boldsymbol{b}, \text { then } \boldsymbol{a}+\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{c} . & \text { "Add Equations" } \\
\hline \text { If } \boldsymbol{a}=\boldsymbol{b} \text {, then } \boldsymbol{a} \boldsymbol{c}=\boldsymbol{b} \boldsymbol{c} . & \text { "Multiply Equations" } \\
\hline
\end{array}
$$

1. $5 x+4=2 x+25$
2. $-4=-4$
3. $5 x=2 x+21$
4. $-2 x=-2 x$
5. $3 x=21$

Given
Algebra
Add Equations: 1, 2
Algebra
Add Equations: 3, 4

Recall: Properties of "=" Used in Algebra

$$
\begin{array}{|ll|}
\hline \text { If } \boldsymbol{a}=\boldsymbol{b} \text { and } \boldsymbol{b}=\boldsymbol{c}, \text { then } \boldsymbol{a}=\boldsymbol{c} . & \text { "Transitivity" } \\
\hline \text { If } \boldsymbol{a}=\boldsymbol{b}, \text { then } \boldsymbol{a}+\boldsymbol{c}=\boldsymbol{b}+\boldsymbol{c} . & \text { "Add Equations" } \\
\hline \text { If } \boldsymbol{a}=\boldsymbol{b}, \text { then } \boldsymbol{a} \boldsymbol{c}=\boldsymbol{b} \boldsymbol{c} . & \text { "Multiply Equations" } \\
\hline
\end{array}
$$

1. $5 x+4=2 x+25 \quad$ Given
2. $3 x=21$

Transitivity

Careful: prove $5 x+4=2 x+25 \Rightarrow 3 x=21$
not $3 x=21 \Rightarrow 5 x+4=2 x+25$
the second is a "backward" proof

Recall: Familiar Properties of "="

- If $a=b$ and $b=c$, then $a=c$.
- i.e., if $a=b=c$, then $a=c$
- If $a=b$ and $c=d$, then $a+c=b+d$.
- since $c=c$ is true, we can " $+c$ " to both sides
- If $a=b$ and $c=d$, then $a c=b d$.
- since $c=c$ is true, we can " $\times c$ " to both sides

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$.

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$.

Suppose that $a \equiv_{m} b$ and $b \equiv_{m} c$.

Modular Arithmetic: Basic Property

Let \boldsymbol{m} be a positive integer.
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$.

Suppose that $a \equiv_{m} b$ and $b \equiv_{m} c$. Then, by the previous property, we have $a \bmod m=b \bmod m$ and $b \bmod m=c \bmod m$.

Putting these together, we have $a \bmod m=c \bmod m$, which says that $a \equiv_{m} c$, by the previous property.

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$.

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$.

Modular Arithmetic: Addition Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some $k, j \in \mathbb{Z}$.

Adding the equations together gives us
$(a+c)-(b+d)=m(k+j)$.

By the definition of congruence, we have $a+c \equiv_{m} b+d$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some $k, j \in \mathbb{Z}$ or equivalently, $a=k m+b$ and $c=j m+d$.

Multiplying both together gives us $a c=(k m+b)(j m+d)=$ $k j m^{2}+k m d+b j m+b d$.

Modular Arithmetic: Multiplication Property

Let \boldsymbol{m} be a positive integer. If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.

Suppose that $a \equiv_{m} b$ and $c \equiv_{m} d$. Unrolling the definitions, we can see that $a-b=k m$ and $c-d=j m$ for some $k, j \in \mathbb{Z}$ or equivalently, $a=k m+b$ and $c=j m+d$.

Multiplying both together gives us $a c=(k m+b)(j m+d)=$ $k j m^{2}+k m d+b j m+b d$. Re-arranging, this becomes $a c-b d=m(k j m+k d+b j)$.

This says $a c \equiv_{m} b d$ by the definition of congruence.

Modular Arithmetic: Properties

$$
\text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} .
$$

$$
\text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d} \text {. }
$$

Corollary: If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{c}$.

If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b d}$.
Corollary: If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{c}$.

Modular Arithmetic: Properties

$$
\text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {. }
$$

$$
\text { If } a \equiv_{m} b, \text { then } a+c \equiv_{m} b+c .
$$

If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$, then $\boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{c}$.
" \equiv_{m} " allows us to solve problems in modular arithmetic, e.g.

- add / subtract numbers from both sides of equations
- chains of " \equiv_{m} " values shows first and last are " \equiv_{m} "
- substitute " \equiv_{m} " values in equations (not proven yet)

Properties of " \equiv_{m} " Used in Algebra

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} \quad \text { "Transitivity" } \\
& \text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d} \text { "Add Equations" } \\
& \text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{d} \\
& \text { "Multiply Equations" }
\end{aligned}
$$

These are Theorems that we can use in proofs

Example: given that $3 x \equiv_{\mathrm{m}} 7$, prove that $5 x+3 \equiv_{\mathrm{m}} 2 x+10$

Properties of " \equiv_{m} " Used in Algebra

If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} \quad$ "Transitivity"
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$ "Add Equations"
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{d} \quad$ "Multiply Equations"

1. $3 x \equiv_{\mathrm{m}} 7$
2. $2 x=2 x$
3. $2 x+3 x \equiv_{\mathrm{m}} 2 x+7$

Given
Algebra
Add Equations: 2, 1 ??

Line 2 says " $=$ " not " \equiv_{m} "
But "=" implies " \equiv_{m} "!
(equality is a special case)

Properties of " \equiv_{m} " Used in Algebra

$$
\begin{array}{|l}
\text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} \quad \text { "Transitivity" } \\
\hline \text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d} \text { "Add Equations" } \\
\hline \text { f } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{d} \\
\text { "Multiply Equations" }
\end{array}
$$

1. $3 x \equiv_{\mathrm{m}} 7$
2. $2 x=2 x$
3. $2 x \equiv_{\mathrm{m}} 2 x$
4. $2 x+3 x \equiv_{\mathrm{m}} 2 x+7$
5. $3=3$
6. $3 \equiv_{\mathrm{m}} 3$
7. $2 x+3 x+3 \equiv_{\mathrm{m}} 2 x+7+3$

Given
Algebra
To Modular: 2
Add Equations: 3, 1
Algebra
To Modular
Add Equations: 4, 6

Properties of " \equiv_{m} " Used in Algebra

$$
\begin{aligned}
& \text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c} \text {, then } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c} \quad \text { "Transitivity" } \\
& \text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d} \text { "Add Equations" } \\
& \hline \text { If } \boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b} \text { and } \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d} \text {, then } \boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{d} \quad \text { "Multiply Equations" }
\end{aligned}
$$

7. $2 x+3 x+3 \equiv_{\mathrm{m}} 2 x+7+3$ Add Equations: 4,6
8. $5 \mathrm{x}+3=2 x+3 x+3 \quad$ Algebra
9. $5 \mathrm{x}+3 \equiv_{\mathrm{m}} 2 x+3 x+3 \quad$ To Modular: 8 10. $2 \mathrm{x}+7+3=2 \mathrm{x}+10 \quad$ Algebra 11. $2 \mathrm{x}+7+3 \equiv_{\mathrm{m}} 2 \mathrm{x}+10 \quad$ To Modular: 10 12. $5 \mathrm{x}+3 \equiv_{\mathrm{m}} 2 x+10 \quad$ Transitivity: 9, 7, 11

Properties of " \equiv_{m} " Used in Algebra

If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$	"Transitivity"
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$ "Add Equations"	
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{d}$	"Multiply Equations"
If $\boldsymbol{a}=\boldsymbol{b}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$.	"To Modular"

These are Theorems that we can use in proofs

Example: given that $2(x-3) \equiv_{\mathrm{m}} 4$, prove that $2 x \equiv_{\mathrm{m}} 10$

Properties of " \equiv_{m} " Used in Algebra

1. $2(x-3) \equiv{ }_{m} 4$
?. $2 x \equiv_{\mathrm{m}} 10$
??

Properties of " \equiv_{m} " Used in Algebra

1. $2(x-3) \equiv{ }_{m} 4$
2. $6=6$
3. $6 \equiv_{\mathrm{m}} 6$
4. $2(x-3)+6 \equiv_{\mathrm{m}} 4+6$
5. $2 \mathrm{x}=2(x-3)+6$
6. $2 \mathrm{x} \equiv_{\mathrm{m}} 2(x-3)+6$
7. $4+6=10$
8. $4+6 \equiv_{\mathrm{m}} 10$
9. $2 x \equiv_{\mathrm{m}} 10$

Given
Algebra
To Modular: 2
Add Equations: 1, 3
Algebra
To Modular: 5
Algebra
To Modular: 7
Transitivity: 6, 4, 8

Another Property of "=" Used in Algebra

If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{b} \equiv_{\boldsymbol{m}} \boldsymbol{c}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{c}$	"Transitivity"
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a}+\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b}+\boldsymbol{d}$ "Add Equations"	
If $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$ and $\boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{d}$, then $\boldsymbol{a} \boldsymbol{c} \equiv_{\boldsymbol{m}} \boldsymbol{b} \boldsymbol{d}$	"Multiply Equations"
If $\boldsymbol{a}=\boldsymbol{b}$, then $\boldsymbol{a} \equiv_{\boldsymbol{m}} \boldsymbol{b}$.	"To Modular"

Can "plug in" (a.k.a. substitute) the known value of a variable

Example: given $2 y+3 x=25$ and $x=7$, prove that $2 y+21=25$.

Substitution Follows From Other Properties

Given $2 y+3 x \equiv_{m} 25$ and $x \equiv_{m} 7$, show that $2 y+21 \equiv_{m} 25$.
(substituting 7 for x)

Start from

$$
x \equiv_{m} 7
$$

Multiply both sides $3 x \equiv_{m} 3 \cdot 7 \quad(=21)$

Add to both sides

$$
2 y+3 x \equiv_{m} 2 y+21
$$

Combine \equiv_{m} 's
$2 y+21 \equiv_{m} 2 \mathrm{y}+3 x \equiv_{m} 25$

Basic Applications of mod

- Two's Complement
- Hashing
- Pseudo random number generation

n-bit Unsigned Integer Representation

- Represent integer x as sum of powers of 2 :
$99=64+32+2+1=2^{6}+2^{5}+2^{1}+2^{0}$
$18=16+2=2^{4}+2^{1}$
If $b_{n-1} 2^{n-1}+\cdots+b_{1} 2+b_{0}$ with each $b_{i} \in\{0,1\}$ then binary representation is $b_{n-1} \ldots b_{2} b_{1} b_{0}$
- For $\mathrm{n}=8$:

99: 01100011
18: 00010010

Easy to implement arithmetic $\bmod 2^{n}$
... just throw away bits $n+1$ and up

$$
\begin{aligned}
& 2^{n} \mid 2^{n+k} \quad \text { so } \quad b_{n+k} 2^{n+k} \equiv 2^{n} 0 \\
& \text { for } k \geq 0
\end{aligned}
$$

n-bit Unsigned Integer Representation

- Largest representable number is $2^{n}-1$

$$
\begin{aligned}
2^{n} & =100 \ldots 000 & & \text { (} n+1 \text { bits) } \\
2^{n}-1 & =11 \ldots 111 & & \text { (n bits) }
\end{aligned}
$$

THE WALL STREET JOURNAL.

32 bits
$1=\$ 0.0001$
\$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A)
NYSE - Nasdaq Real Time Price. Currency in USD
436,401.00 +679.50 (+0.16\%)
At close: 4:00PM EDT

Sign-Magnitude Integer Representation

n-bit signed integers
Suppose that $-2^{n-1}<x<2^{n-1}$
First bit as the sign, $n-1$ bits for the value
$99=64+32+2+1$
$18=16+2$

For $\mathrm{n}=8$:
99: 01100011
-18: 10010010

Problem: this has both +0 and -0 (annoying)

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$ result is in the range $2^{n-1} \leq x<2^{n}$

$+2^{n}$

0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$ result is in the range $2^{n-1} \leq x<2^{n}$

0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

$$
\begin{aligned}
& 99=64+32+2+1 \\
& 18=16+2
\end{aligned}
$$

For $\mathrm{n}=8$:
99: 01100011
-18: 11101110
$(-18+256=238)$

Two's Complement Representation

Suppose that $0 \leq x<2^{n-1}$
x is represented by the binary representation of x
Suppose that $-2^{n-1} \leq x<0$
x is represented by the binary representation of $x+2^{n}$
result is in the range $2^{n-1} \leq x<2^{n}$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | -8 | -7 | -6 | -5 | -4 | -3 | -2 | -1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |

Key property: First bit is still the sign bit!
Key property: Twos complement representation of any number \boldsymbol{y} is equivalent to $\boldsymbol{y} \boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$ so arithmetic works $\boldsymbol{\operatorname { m o d }} \mathbf{2}^{\boldsymbol{n}}$

$$
y+2^{n} \equiv_{2^{n}} y
$$

Two's Complement Representation

- For $0<x \leq 2^{n-1},-x$ is represented by the binary representation of $-x+2^{n}$
- How do we calculate $-x$ from x ?
- E.g., what happens for "return -x;" in Java?

$$
-x+2^{n}=\left(2^{n}-1\right)-x+1
$$

- To compute this, flip the bits of x then add 1 !
- All 1 's string is $2^{n}-1$, so

Flip the bits of x means replace x by $2^{n}-1-x$
Then add 1 to get $-x+2^{n}$

Primes
 (and Their Applications)

Primality

An integer p greater than 1 is called prime if the only positive factors of p are 1 and p.

$$
p>1 \wedge \forall \mathrm{x}((x \mid p) \rightarrow((x=1) \vee(x=p)))
$$

A positive integer that is greater than 1 and is not prime is called composite.

$$
p>1 \wedge \exists \mathrm{x}((x \mid p) \wedge(x \neq 1) \wedge(x \neq p))
$$

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a "unique" prime factorization

$$
\begin{aligned}
& 48=2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \\
& 591=3 \cdot 197 \\
& 45,523=45,523 \\
& 321,950=2 \cdot 5 \cdot 5 \cdot 47 \cdot 137 \\
& 1,234,567,890=2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
\end{aligned}
$$

Algorithmic Problems

- Multiplication
- Given primes $p_{1}, p_{2}, \ldots, p_{k}$, calculate their product $p_{1} p_{2} \ldots p_{k}$
- Factoring
- Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077 285356959533479219732245215172640050726 365751874520219978646938995647494277406 384592519255732630345373154826850791702 612214291346167042921431160222124047927 4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347 92197322452151726400507263657518745202199786469389956 47494277406384592519255732630345373154826850791702612 21429134616704292143116022212404792747377940806653514 19597459856902143413

334780716989568987860441698482126908177047949837 137685689124313889828837938780022876147116525317 43087737814467999489

367460436667995904282446337996279526322791581643 43087642676032283815739665112792333734171433968 10270092798736308917

Famous Algorithmic Problems

- Factoring
- Given an integer n, determine the prime factorization of n
- Primality Testing
- Given an integer n, determine if n is prime
- Factoring is hard
- (on a classical computer)
- Primality Testing is easy

Greatest Common Divisor (and Its Applications)

Greatest Common Divisor

GCD (a, b):
Largest integer d such that $d \mid a$ and $d \mid b$

- $\operatorname{GCD}(100,125)=$
- $\operatorname{GCD}(17,49)=$
- $\operatorname{GCD}(11,66)=$
- $\operatorname{GCD}(13,0)=$
- $\operatorname{GCD}(180,252)=$
d is GCD iff $(d \mid a) \wedge(d \mid b) \wedge \forall x(((x \mid a) \wedge(x \mid b)) \rightarrow(x \leq d))$

GCD and Factoring

$$
\begin{aligned}
& a=2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11=46,200 \\
& b=2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13=204,750
\end{aligned}
$$

$\operatorname{GCD}(\mathrm{a}, \mathrm{b})=2^{\min (3,1)} \cdot 3^{\min (1,2)} \cdot 5^{\min (2,3)} \cdot 7^{\min (1,1)} \cdot 11_{\min (1,0)} \cdot 13^{\min (0,1)}$

Factoring is hard!

Can we compute GCD(a,b) without factoring?

Useful GCD Fact

Let a and b be positive integers. We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Proof:
We will show that every number dividing a and b also divides b and $a \bmod b$. I.e., $d \mid a$ and $d \mid b$ iff $d \mid b$ and $d \mid(a \bmod b)$.

Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.

Useful GCD Fact

Let a and b be positive integers. We have $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$

Proof:

By definition of $\bmod , a=q b+(a \bmod b)$ for some integer $q=a \operatorname{div} b$.
Suppose $d \mid b$ and $d \mid(a \bmod b)$.
Then $b=m d$ and $(a \bmod b)=n d$ for some integers m and n.
Therefore $a=q b+(a \bmod b)=q m d+n d=(q m+n) d$.
So $d \mid a$.
Suppose $d \mid a$ and $d \mid b$.
Then $a=k d$ and $b=j d$ for some integers k and j.
Therefore $(a \bmod b)=a-q b=k d-q j d=(k-q j) d$.
So, $d \mid(a \bmod b)$ also.
Since they have the same common divisors, $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$.

Another simple GCD fact

Let a be a positive integer. We have $\operatorname{gcd}(a, 0)=a$.

Euclid's Algorithm

```
gcd(a, b) = gcd(b, a mod b) gcd(a, 0) = a
```

int gcd(int a, int b)\{ /* Assumes: a >= b, b >= 0 */
if (b == 0) \{
return a;
\} else \{
return $\operatorname{gcd}(b, a \% b)$;
\}
\}
Note: $\operatorname{gcd}(\mathrm{b}, \mathrm{a})=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=$

Euclid's Algorithm

Repeatedly use $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a \bmod b)$ to reduce numbers until you get $\operatorname{gcd}(g, 0)=g$.
$\operatorname{gcd}(660,126)=\operatorname{gcd}(126,660 \bmod 126)=\operatorname{gcd}(126,30)$

$$
\begin{array}{ll}
=\operatorname{gcd}(30,126 \bmod 30) & =\operatorname{gcd}(30,6) \\
=\operatorname{gcd}(6,30 \bmod 6) & =\operatorname{gcd}(6,0) \\
=6 &
\end{array}
$$

Bézout's theorem

If a and b are positive integers, then there exist integers \boldsymbol{s} and \boldsymbol{t} such that

$$
\operatorname{gcd}(a, b)=s a+t b .
$$

$\forall a \forall b((a>0 \wedge b>0) \rightarrow \exists s \exists t(g c d(a, b)=s a+t b))$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):
$\left.\begin{array}{ccc}a \quad b \\ \operatorname{gcd}(35,27)\end{array}\right)=\operatorname{gcd}(27,35 \bmod 27)=r \quad b \quad r \quad \operatorname{gcd}(27,8) \quad \begin{aligned} & a=q * b+r \\ & 35=1 * 27+8\end{aligned}$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 1 (Compute GCD \& Keep Tableau Information):

\[

\]

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\begin{array}{|ll}
\hline a=q * b+r & r=a-q * b \\
35=1 * 27+8 \\
27=3 * 8+3 \\
8=2 * 3+2 \\
3=1 * 2+1 & 8=35-1 * 27 \\
\hline
\end{array}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 2 (Solve the equations for r):

$$
\left.\begin{array}{ll}
a=q * b+r & r=a-q * b \\
35=1 * 27+8 & 8=35-1 * 27 \\
27=3 * 8+3 & 3=27-3 * 8 \\
8=2 * 3+2 & 2=8-2 * 3 \\
3=1 * 2+1 & 1
\end{array}\right)=3-1 * 2
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 3=27-3 * 8 \\
& 2=8-2 * 3
\end{aligned}
$$

$$
(1)=3-1 * 2
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 1=3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \quad \text { Re-arrange into } \\
& =(-1) * 8+3 * 3 \quad 3 \text { 's and } 8 \text { 's } \\
& \text { Plug in the def of } 3 \\
& =(-1) * 8+3 *(27-3 * 8) \\
& =(-1) * 8+3 * 27+(-9) * 8 \\
& =3 * 27+(-10) * 8
\end{aligned}
$$

Extended Euclidean algorithm

- Can use Euclid's Algorithm to find s, t such that

$$
\operatorname{gcd}(a, b)=s a+t b
$$

Step 3 (Backward Substitute Equations):
Plug in the def of 2

$$
\begin{aligned}
& 8=35-1 * 27 \\
& 1=3-1 *(8-2 * 3) \\
& =3-8+2 * 3 \quad \text { Re-arrange into } \\
& =(-1) * 8+3 * 3 \quad 3 \text { 's and } 8 \text { 's } \\
& \text { Plug in the def of } 3 \\
& =(-1) * 8+3 *(27-3 * 8) \\
& =(-1) * 8+3 * 27+(-9) * 8 \\
& =3 * 27+(-10) * 8 \text { Re-arrange into } \\
& \text { 8's and 27's } \\
& =3 * 27+(-10) *(35-1 * 27) \\
& \text { Re-arrange into } \\
& =3 * 27+(-10) * 35+10 * 27 \\
& 27 \text { 's and } 35 \text { 's }=13 * 27+(-10) * 35
\end{aligned}
$$

Multiplicative inverse mod m

Let $0 \leq a, b<m$. Then, b is the multiplicative

 inverse of a (modulo m) iff $a b \equiv_{m} 1$.| x | 0 | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mathbf{1}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| $\mathbf{2}$ | 0 | 2 | 4 | 6 | 1 | 3 | 5 |
| $\mathbf{3}$ | 0 | 3 | 6 | 2 | 5 | 1 | 4 |
| 4 | 0 | 4 | 1 | 5 | 2 | 6 | 3 |
| $\mathbf{5}$ | 0 | 5 | 3 | 1 | 6 | 4 | 2 |
| $\mathbf{6}$ | 0 | 6 | 5 | 4 | 3 | 2 | 1 |

$\bmod 7$

x	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

$\bmod 10$

Multiplicative inverse $\bmod m$

Suppose $\operatorname{gcd}(a, m)=1$
By Bézout's Theorem, there exist integers s and t such that $s a+t m=1$.
s is the multiplicative inverse of a (modulo m):

$$
1=s a+t m \equiv_{m} s a
$$

So... we can compute multiplicative inverses with the extended Euclidean algorithm

These inverses let us solve modular equations...

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

$$
\operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3 \quad$ Find multiplicative inverse of 7 modulo 26

$$
\operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1
$$

$$
\begin{gathered}
26=3 * 7+5 \\
7=1 * 5+2 \\
5=2 * 2+1
\end{gathered}
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=3 * 7+5 \quad 5=26-3 * 7 \\
& 7=1 * 5+2 \quad 2=7-1 * 5 \\
& 5=2 * 2+1 \quad 1=5-2 * 2
\end{aligned}
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=3 * 7+5 \quad 5=26-3 * 7 \\
& 7=1 * 5+2 \quad 2=7-1 * 5 \\
& 5=2 * 2+1 \quad 1=5-2 * 2
\end{aligned} \quad \begin{aligned}
& 1=\begin{array}{l}
5 \quad-2 *(7-1 * 5) \\
=(-2) * 7 \quad+3 * 5 \\
=(-2) * 7 \quad+3 *(26-3 * 7) \\
=(-11) * 7+3 * 26
\end{array}
\end{aligned}
$$

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

$$
\begin{aligned}
& \operatorname{gcd}(26,7)=\operatorname{gcd}(7,5)=\operatorname{gcd}(5,2)=\operatorname{gcd}(2,1)=1 \\
& 26=3 * 7+5 \quad 5=26-3 * 7 \\
& 7=1 * 5+2 \quad 2=7-1 * 5 \\
& 5=2 * 2+1 \quad 1=5-2 * 2 \\
& 1=5-2 *(7-1 * 5) \\
& =(-2) * 7+3 * 5 \\
& =(-2) * 7+3 *(26-3 * 7) \\
& =(-11) * 7+3 * 26
\end{aligned}
$$

Now $(-11) \bmod 26=15 . \quad$ (-11 is also "a" multiplicative inverse)

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$
Find multiplicative inverse of 7 modulo 26 ... it's 15 .
Multiplying both sides by 15 gives

$$
15 \cdot 7 x \equiv_{26} 15 \cdot 3
$$

Simplify on both sides to get

$$
x \equiv_{26} 15 \cdot 7 x \equiv_{26} 15 \cdot 3 \equiv_{26} 19
$$

So, all solutions of this congruence are numbers of the form $x=19+26 k$ for some $k \in \mathbb{Z}$.

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$
Conversely, suppose that $x \equiv_{26} 19$.
Multiplying both sides by 7 gives

$$
7 x \equiv_{26} 7 \cdot 19
$$

Simplify on right to get

$$
7 x \equiv_{26} 7 \cdot 19 \equiv_{26} 3
$$

So, all numbers of form $x=19+26 k$ for any $k \in \mathbb{Z}$ are solutions of this equation.

Example: Solve a Modular Equation

Solve: $7 x \equiv_{26} 3$

(on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26
$1=\ldots=(-11) * 7+3 * 26$
Since $(-11) \bmod 26=15$, the inverse of 7 is 15 .
Step 2. Multiply both sides and simplify
Multiplying by 15 , we get $x \equiv_{26} 15 \cdot 7 x \equiv_{26} 15 \cdot 3 \equiv_{26} 19$.
Step 3. State the full set of solutions
So, the solutions are $19+26 k$ for any $k \in \mathbb{Z}$
(must be of the form $a+m k$ for all $k \in \mathbb{Z}$ with $0 \leq a<m$)

Examples Not in "Standard Form"

Solve: $7 x \equiv_{26} 3$
Modular equation like $A x \equiv_{26} B$ for some A and B is in "standard form".

- solve by multiplying both sides by inverse of A

What about other equations like

$$
7(x-3) \equiv_{26} 8 ?
$$

Previously saw how to formally prove this has the same solutions as equation above.

Examples Not in "Standard Form"

Solve: $7 x \equiv_{26} 3$
Modular equation like $A x \equiv_{26} B$ for some A and B is in "standard form".

- solve by multiplying both sides by inverse of A

What about other equations like

$$
7(x-3) \equiv_{26} 8 ?
$$

On HW4:

- apply algorithm when in standard form (English)
- transform non-standard to standard form (formal)

Math mod a prime is especially nice

$$
\operatorname{gcd}(a, m)=1 \text { if } m \text { is prime and } 0<a<m \text { so }
$$ can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

$\bmod 7$

Multiplicative Inverses and Algebra

Adding to both sides is an equivalence:

The same is not true of multiplication... unless we have a multiplicative inverse $c d \equiv_{m} 1$

Modular Exponentiation mod 7

x	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

a	a^{1}	a^{2}	a^{3}	a^{4}	a^{5}	a^{6}
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

- Compute 78365^{81453}
- Compute $78365^{81453} \bmod 104729$
- Output is small
- need to keep intermediate results small

Small Multiplications

Since $b=q m+(b \bmod m)$, we have $b \bmod m \equiv_{m} b$.
And since $c=t m+(c \bmod m)$, we have $c \bmod m \equiv_{m} c$.

Multiplying these gives $(b \bmod m)(c \bmod m) \equiv_{m} b c$.

By the Lemma from a few lectures ago, this tells us $b c \bmod m=(b \bmod m)(c \bmod m) \bmod m$.

Okay to $\bmod b$ and c by m before multiplying if we are planning to mod the result by m

Repeated Squaring - small and fast

Since $b \bmod m \equiv_{m} b$ and $c \bmod m \equiv_{m} c$ we have $b c \bmod m=(b \bmod m)(c \bmod m) \bmod m$

$$
\begin{array}{ll}
\text { So } & a^{2} \bmod m=(a \bmod m)^{2} \bmod m \\
\text { and } & a^{4} \bmod m=\left(a^{2} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{8} \bmod m=\left(a^{4} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{16} \bmod m=\left(a^{8} \bmod m\right)^{2} \bmod m \\
\text { and } & a^{32} \bmod m=\left(a^{16} \bmod m\right)^{2} \bmod m
\end{array}
$$

Can compute $a^{k} \bmod m$ for $k=2^{i}$ in only i steps
What if k is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101
$81453=2^{16}+2^{13}+2^{12}+2^{11}+2^{10}+2^{9}+2^{5}+2^{3}+2^{2}+2^{0}$
$a^{81453}=a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^{9}} \cdot a^{2^{5}} \cdot a^{2^{3}} \cdot a^{2^{2}} \cdot a^{2^{0}}$
$\mathrm{a}^{81453} \bmod \mathrm{~m}=$
(...(()($\left(\mathrm{a}^{2^{16}} \mathrm{mod} m\right.$.
$\left.a^{2^{13}} \bmod m\right) \bmod m$.
$\left.\mathrm{a}^{2^{12}} \bmod \mathrm{~m}\right) \bmod \mathrm{m}$.
$\left.a^{2^{11}} \bmod m\right) \bmod m$.
Uses only $16+9=25$
multiplications $\left.a^{2^{10}} \bmod m\right) \bmod m$.
$\left.a^{2}{ }^{9} \bmod m\right) \bmod m$.
$\left.a^{2}{ }^{5} \bmod m\right) \bmod m$.
$\left.a^{2^{3}} \bmod m\right) \bmod m$.
$\left.a^{2^{2}} \bmod m\right) \bmod m \cdot$
$\left.a^{2^{0}} \bmod m\right) \bmod m$
The fast exponentiation algorithm computes
$a^{k} \bmod m$ using $\leq 2 \log k$ multiplications $\bmod m$

Fast Exponentiation: $a^{k} \bmod m$ for all k

Another way....

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Fast Exponentiation

```
public static int FastModExp(int a, int k, int modulus) {
    if (k == 0) {
        return 1;
    } else if ((k % 2) == 0) {
        long temp = FastModExp(a,k/2,modulus);
        return (temp * temp) % modulus;
    } else {
        long temp = FastModExp(a,k-1,modulus);
        return (a * temp) % modulus;
    }
}
```

$$
\begin{aligned}
& a^{2 j} \bmod m=\left(a^{j} \bmod m\right)^{2} \bmod m \\
& a^{2 j+1} \bmod m=\left((a \bmod m) \cdot\left(a^{2 j} \bmod m\right)\right) \bmod m
\end{aligned}
$$

Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA
- Vendor chooses random 512-bit or 1024-bit primes p, q and 512/1024-bit exponent e. Computes $m=p \cdot q$
- Vendor broadcasts (m, e)
- To send a to vendor, you compute $C=a^{e}$ mod m using fast modular exponentiation and send C to the vendor.
- Using secret p, q the vendor computes d that is the multiplicative inverse of $e \bmod (p-1)(q-1)$.
- Vendor computes $C^{d} \bmod m$ using fast modular exponentiation.
- Fact: $\quad a=C^{d} \bmod m$ for $0<a<m$ unless $p \mid a$ or $q \mid a$

