CSE 311: Foundations of Computing

Topic 5: Number Theory

- Remainder of the course will use predicate logic to prove <u>important</u> properties of <u>interesting</u> objects
 - start with math objects that are widely used in CS
 - eventually more CS-specific objects
- Encode domain knowledge in predicate definitions
- Then apply predicate logic to infer useful results

Domain of Discourse Integers $\begin{tabular}{l} \hline Predicate Definitions \\ \hline Even(x) \equiv \exists y \ (x = 2 \cdot y) \\ Odd(x) \equiv \exists y \ (x = 2 \cdot y + 1) \end{tabular}$

Mechanical vs Creative Predicate Logic

- We've done examples with "meaningless" predicates such as $\forall x P(x) \rightarrow \exists x P(x)$
 - Saw how to (often) mechanically solve by looking at "shape" of the goal.
 - We'll need these skills in all domains!
- When we enter "interesting" domains of discourse, we will use domain knowledge.
 - We will see how to creatively solve goals, especially with rules like Intro ∨, Intro ∃, Elim ∧, Elim ∀.

Number Theory

- Direct relevance to computing
 - everything in a computer is a number

colors on the screen are encoded as numbers

• Many significant applications in CS...

• Memory is an array, so pixel positions must be mapped to array indexes

Pixels in Memory

stored at index 16 = 12 + 4= 2 \cdot 6 + 4

Pixels in Memory

Stored at index n. How do we calculate n from i and j? $n = i \cdot 6 + j$

Divisibility

Definition: "b divides a"

For *a*, *b* with $b \neq 0$:

$$b \mid a \leftrightarrow \exists q \ (a = qb)$$

Check Your Understanding. Which of the following are true?

Divisibility

Definition: "b divides a"

For a, b with $b \neq 0$:

$$b \mid a \leftrightarrow \exists q \ (a = qb)$$

Check Your Understanding. Which of the following are true?

For a, b with b > 0, we can divide b into a.

If $b \mid a$, then, by definition, we have a = qb for some q. The number q is called the quotient.

Dividing both sides by *b*, we can write this as

$$\frac{a}{b} = q$$

(We want to stick to integers, though, so we'll write a = qb.)

For a, b with b > 0, we can divide b into a.

If $b \nmid a$, then we end up with a *remainder* r with 0 < r < b. Now,

instead of
$$\frac{a}{b} = q$$
 we have $\frac{a}{b} = q + \frac{r}{b}$

Multiplying both sides by b gives us (A bit nicer since it has no fractions.)

a = qb + r

For a, b with b > 0, we can divide b into a.

If $b \mid a$, then we have a = qb for some q. If $b \nmid a$, then we have a = qb + r for some q, r with 0 < r < b.

In general, we have a = qb + r for some q, r with $0 \le r < b$, where r = 0 iff $b \mid a$.

Division Theorem

For a, b with b > 0there exist *unique* integers q, r with $0 \le r < b$ such that a = qb + r.

To put it another way, if we divide *b* into *a*, we get a unique quotient $q = a \operatorname{div} b$ and non-negative remainder $r = a \operatorname{mod} b$

Pixels in Memory

Stored at index n. How do we calculate n from i and j? $n = i \cdot 6 + j$

Pixels in Memory

Stored at index n.i = n div 6How do we calculate i and j from n? $j = n \mod 6$

- Direct relevance to computing
 - important toolkit for programmers
- Many significant applications
 - Cryptography & Security
 - Data Structures
 - Distributed Systems

Modular Arithmetic (and Its Applications)

- Arithmetic over a finite domain
- Almost all computation is over a finite domain

I'm ALIVE!

```
public class Test {
   final static int SEC IN YEAR = 365*24*60*60;
   public static void main(String args[]) {
       System.out.println(
          "I will be alive for at least " +
          SEC_IN_YEAR * 101 + " seconds."
       );
   }
}
          ----jGRASP exec: java Test
         I will be alive for at least -186619904 seconds.
          ----jGRASP: operation complete.
```


Arithmetic on a Clock

If a = 7q + r, then $r \ (= a \mod b)$ is where you stop after taking a steps on the clock

(a + b) mod 7 (a × b) mod 7

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

x	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Definition: "a is congruent to b modulo m"

For a, b, m with m > 0 $a \equiv_m b \leftrightarrow m \mid (a - b)$

New notion of "sameness" that will help us understand modular arithmetic

Definition: "a is congruent to b modulo m"

For
$$a, b, m$$
 with $m > 0$
 $a \equiv_m b \leftrightarrow m \mid (a - b)$

The standard math notation is

 $a \equiv b \pmod{m}$

A chain of equivalences is written

 $a \equiv b \equiv c \equiv d \pmod{m}$

Many students find this confusing, so we will use \equiv_m instead.

Definition: "a is congruent to b modulo m"

For a, b, m with m > 0

$$a \equiv_m b \leftrightarrow m \mid (a - b)$$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv_2 0$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

-1 ≡₅ 19

This statement is true. 19 - (-1) = 20 which is divisible by 5

y ≡₇ 2

This statement is true for y in $\{ ..., -12, -5, 2, 9, 16, ... \}$. In other words, all y of the form 2+7k for k an integer.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Goal: show $a \equiv_m b$, i.e., $m \mid (a - b)$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Then,
$$a - b = (mq + (a \mod m)) - (ms + (b \mod m))$$

= $m(q - s) + (a \mod m - b \mod m)$
= $m(q - s)$ since $a \mod m = b \mod m$

Goal: show $a \equiv_m b$, i.e., $m \mid (a - b)$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and $b = ms + (b \mod m)$ for some integers q,s.

Then,
$$a - b = (mq + (a \mod m)) - (ms + (b \mod m))$$

= $m(q - s) + (a \mod m - b \mod m)$
= $m(q - s)$ since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv_m b$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Let a, b, m be integers with m > 0. Then, $a \equiv_m b$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv_m b$.

Then, $m \mid (a - b)$ by definition of congruence. So, a - b = km for some integer k by definition of divides. Therefore, a = b + km.

By the Division Theorem, we have $a = qm + (a \mod m)$, where $0 \le (a \mod m) < m$.

Combining these, we have $qm + (a \mod m) = a = b + km$ or equiv., $b = qm - km + (a \mod m) = (q - k)m + (a \mod m)$. By the Division Theorem, we have $b \mod m = a \mod m$.

- What we have just shown
 - The mod *m* function maps any integer *a* to a remainder *a* mod $m \in \{0,1,..,m-1\}$.
 - Imagine grouping together all integers that have the same value of the mod m function That is, the same remainder in $\{0,1,..,m-1\}$.
 - The \equiv_m predicate compares integers a, b. It is true if and only if the mod m function has the same value on a and on b.

That is, a and b are in the same group.

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - since c = c is true, we can " $\times c$ " to both sides

These facts allow us to use algebra to solve problems

Recall: Properties of "=" Used in Algebra

If $a = b$ and $b = c$, then $a = c$.	"Transitivity"
If $a = b$, then $a + c = b + c$.	"Add Equations"
If $a = b$, then $ac = bc$.	"Multiply Equations"

These are **Theorems** that we can use in proofs

Example: given 5x + 4 = 2x + 25, prove that 3x = 21.

Let's see how to do this in **formal** logic...
If $a = b$ and $b = c$, then $a = c$.	"Transitivity"
If $a = b$, then $a + c = b + c$.	"Add Equations"
If $a = b$, then $ac = bc$.	"Multiply Equations"

1.
$$5x + 4 = 2x + 25$$
Given**2.** $-4 = -4$ Algebra**3.** $5x = 2x + 21$ Add Equations: **1**, **24.** $-2x = -2x$ Algebra**5.** $3x = 21$ Add Equations: **3**, **4**

Recall: Properties of "=" Used in Algebra

If
$$a = b$$
 and $b = c$, then $a = c$."Transitivity"If $a = b$, then $a + c = b + c$."Add Equations"If $a = b$, then $ac = bc$."Multiply Equations"

1.
$$5x + 4 = 2x + 25$$
 Given

...

5. 3x = 21 **Transitivity**

Careful: prove
$$5x + 4 = 2x + 25 \Rightarrow 3x = 21$$

not $3x = 21 \Rightarrow 5x + 4 = 2x + 25$
the second is a "backward" proof

Recall: Familiar Properties of "="

- If a = b and b = c, then a = c.
 - i.e., if a = b = c, then a = c
- If a = b and c = d, then a + c = b + d.
 - since c = c is true, we can "+ c" to both sides
- If a = b and c = d, then ac = bd.
 - since c = c is true, we can " $\times c$ " to both sides

Same facts apply to "≤" with non-negative numbers

What about " \equiv_m "?

Modular Arithmetic: Basic Property

Let *m* be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Modular Arithmetic: Basic Property

Let *m* be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$.

Let *m* be a positive integer. If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$.

Suppose that $a \equiv_m b$ and $b \equiv_m c$. Then, by the previous property, we have $a \mod m = b \mod m$ and $b \mod m = c \mod m$.

Putting these together, we have $a \mod m = c \mod m$, which says that $a \equiv_m c$, by the previous property.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some $k, j \in \mathbb{Z}$.

Adding the equations together gives us (a + c) - (b + d) = m(k + j).

By the definition of congruence, we have $a + c \equiv_m b + d$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some $k, j \in \mathbb{Z}$ or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$.

Let *m* be a positive integer. If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$.

Suppose that $a \equiv_m b$ and $c \equiv_m d$. Unrolling the definitions, we can see that a - b = km and c - d = jm for some $k, j \in \mathbb{Z}$ or equivalently, a = km + b and c = jm + d.

Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$. Re-arranging, this becomes ac - bd = m(kjm + kd + bj).

This says $ac \equiv_m bd$ by the definition of congruence.

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$.

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $a + c \equiv_m b + d$.

Corollary: If $a \equiv_m b$, then $a + c \equiv_m b + c$.

If
$$a \equiv_m b$$
 and $c \equiv_m d$, then $ac \equiv_m bd$.

Corollary: If $a \equiv_m b$, then $ac \equiv_m bc$.

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$.

If
$$a \equiv_m b$$
, then $a + c \equiv_m b + c$.

If
$$a \equiv_m b$$
, then $ac \equiv_m bc$.

" \equiv_m " allows us to solve problems in modular arithmetic, e.g.

- add / subtract numbers from both sides of equations
- chains of " \equiv_m " values shows first and last are " \equiv_m "
- substitute " \equiv_m " values in equations (not proven yet)

If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$	"Transitivity"
If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$	"Add Equations"
If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "M	ultiply Equations"

These are **Theorems** that we can use in proofs

Example: given that $3x \equiv_m 7$, prove that $5x + 3 \equiv_m 2x + 10$

If
$$a \equiv_m b$$
 and $b \equiv_m c$, then $a \equiv_m c$ "Transitivity"
If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$ "Add Equations"
If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Multiply Equations"

1.
$$3x \equiv_m 7$$
 Given

 2. $2x = 2x$
 Algebra

 3. $2x + 3x \equiv_m 2x + 7$
 Add Equations: **2**, **1**??

Line 2 says "=" not " \equiv_m "

But "=" implies " \equiv_m " ! (equality is a special case)

If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$	"Transitivity"
If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$	"Add Equations"
If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "M	ultiply Equations"

1. $3x \equiv_m 7$ Given2. 2x = 2xAlgebra3. $2x \equiv_m 2x$ To Mo4. $2x + 3x \equiv_m 2x + 7$ Add E5. 3 = 3Algebra6. $3 \equiv_m 3$ To Mo7. $2x + 3x + 3 \equiv_m 2x + 7 + 3$ Add E

Given Algebra To Modular: 2 Add Equations: 3, 1 Algebra To Modular Add Equations: 4, 6

If $a \equiv_m b$ and $b \equiv_m c$, then $a \equiv_m c$	"Transitivity"
If $a \equiv_m b$ and $c \equiv_m d$, then $a + c \equiv_m b + d$	"Add Equations"
If $a \equiv_m b$ and $c \equiv_m d$, then $ac \equiv_m bd$ "Mu	Itiply Equations"

7.
$$2x + 3x + 3 \equiv_m 2x + 7 + 3$$
Add Equations: 4, 68. $5x + 3 = 2x + 3x + 3$ Algebra9. $5x + 3 \equiv_m 2x + 3x + 3$ To Modular: 810. $2x + 7 + 3 = 2x + 10$ Algebra11. $2x + 7 + 3 \equiv_m 2x + 10$ To Modular: 1012. $5x + 3 \equiv_m 2x + 10$ Transitivity: 9, 7, 11

Good news! You'll only have to do this two times in your life...

These are **Theorems** that we can use in proofs

Example: given that $2(x - 3) \equiv_m 4$, prove that $2x \equiv_m 10$

1.
$$2(x-3) \equiv_m 4$$
 Given

?.
$$2x \equiv_{m} 10$$

6

1.
$$2(x - 3) \equiv_m 4$$

2. $6 = 6$
3. $6 \equiv_m 6$
4. $2(x - 3) + 6 \equiv_m 4 + 6$
5. $2x = 2(x - 3) + 6$
6. $2x \equiv_m 2(x - 3) + 6$
7. $4 + 6 \equiv_m 10$
8. $4 + 6 \equiv_m 10$
9. $2x \equiv_m 10$

Given Algebra To Modular: 2 Add Equations: 1, 3 Algebra To Modular: 5 Algebra To Modular: 7 Transitivity: 6, 4, 8

Another Property of "=" Used in Algebra

Can "plug in" (a.k.a. substitute) the known value of a variable

Example: given 2y + 3x = 25 and x = 7, prove that 2y + 21 = 25.

Substitution Follows From Other Properties

Given $2y + 3x \equiv_m 25$ and $x \equiv_m 7$, show that $2y + 21 \equiv_m 25$. (substituting 7 for x)

Start from $x \equiv_m 7$

Multiply both sides $3x \equiv_m 3 \cdot 7$ (= 21)

Add to both sides $2y + 3x \equiv_m 2y + 21$

Combine \equiv_m 's $2y + 21 \equiv_m 2y + 3x \equiv_m 25$

Basic Applications of mod

- Two's Complement
- Hashing
- Pseudo random number generation

n-bit Unsigned Integer Representation

• Represent integer *x* as sum of powers of 2:

99= 64 + 32 + 2 + 1 $= 2^6 + 2^5 + 2^1 + 2^0$ 18= 16 + 2 $= 2^4 + 2^1$

If $b_{n-1}2^{n-1} + \dots + b_12 + b_0$ with each $b_i \in \{0,1\}$ then binary representation is $b_{n-1}\dots b_2 b_1 b_0$

For n = 8:
99: 0110 0011
18: 0001 0010

Easy to implement arithmetic $mod 2^n$... just throw away bits n+1 and up

$$2^n \mid 2^{n+k}$$
 so $b_{n+k} 2^{n+k} \equiv_{2^n} 0$
for $k \ge 0$

n-bit Unsigned Integer Representation

• Largest representable number is $2^n - 1$

 $2^{n} = 100...000$ (n+1 bits) $2^{n} - 1 = 11...111$ (n bits)

THE WALL STREET JOURNAL.

32 bits 1 = \$0.0001 \$429,496.7295 max

Berkshire Hathaway Inc. (BRK-A) NYSE - Nasdaq Real Time Price. Currency in USD


```
      n-bit signed integers

      Suppose that -2^{n-1} < x < 2^{n-1}

      First bit as the sign, n - 1 bits for the value

      99 = 64 + 32 + 2 + 1

      18 = 16 + 2

      For n = 8:

      99:
      0110

      -18:

      1001
```

Problem: this has both +0 and -0 (annoying)

Two's Complement Representation

Suppose that $0 \le x < 2^{n-1}$ x is represented by the binary representation of xSuppose that $-2^{n-1} \le x < 0$ x is represented by the binary representation of $x + 2^n$ result is in the range $2^{n-1} \le x < 2^n$

Two's Complement Representation

Suppose that $0 \le x < 2^{n-1}$ x is represented by the binary representation of x Suppose that $-2^{n-1} \le x < 0$ x is represented by the binary representation of $x + 2^n$ result is in the range $2^{n-1} \le x < 2^n$ 7 -8 -7 0 1 2 3 4 5 6 -6 -5 -3 -4 -2 -1 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

For n = 8: 99: 0110 0011 -18: 1110 1110 (-18 + 256 = 238)

Two's Complement Representation

Suppose that $0 \le x < 2^{n-1}$ x is represented by the binary representation of xSuppose that $-2^{n-1} \le x < 0$ x is represented by the binary representation of $x + 2^n$ result is in the range $2^{n-1} \le x < 2^n$

0	1	2	3	4	5	6	7	-8	-7	-6	-5	-4	-3	-2	-1
0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Key property: First bit is still the sign bit!

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

$$y + 2^n \equiv_{2^n} y$$

- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $-x + 2^n$
 - How do we calculate –x from x?
 - E.g., what happens for "return -x;" in Java?

$$-x + 2^n = (2^n - 1) - x + 1$$

To compute this, flip the bits of x then add 1!

 All 1's string is 2ⁿ - 1, so
 Flip the bits of x means replace x by 2ⁿ - 1 - x
 Then add 1 to get -x + 2ⁿ

Primes (and Their Applications)

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

$$p > 1 \land \forall x ((x \mid p) \rightarrow ((x = 1) \lor (x = p)))$$

A positive integer that is greater than 1 and is not prime is called *composite*.

 $p > 1 \land \exists x ((x \mid p) \land (x \neq 1) \land (x \neq p))$

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a "unique" prime factorization

```
48 = 2 • 2 • 2 • 2 • 3

591 = 3 • 197

45,523 = 45,523

321,950 = 2 • 5 • 5 • 47 • 137

1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803
```

Algorithmic Problems

- Multiplication
 - Given primes $p_1, p_2, ..., p_k$, calculate their product $p_1p_2 ... p_k$
- Factoring
 - Given an integer n, determine the prime factorization of n
Factor the following 232 digit number [RSA768]:

Famous Algorithmic Problems

- Factoring
 - Given an integer n, determine the prime factorization of n
- Primality Testing
 - Given an integer n, determine if n is prime

- Factoring is hard
 - (on a classical computer)
- Primality Testing is easy

Greatest Common Divisor (and Its Applications)

GCD(a, b):

Largest integer *d* such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

d is GCD iff $(d \mid a) \land (d \mid b) \land \forall x (((x \mid a) \land (x \mid b)) \rightarrow (x \leq d))$

GCD and Factoring

- $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$
- $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

Factoring is hard! Can we compute GCD(a,b) without factoring?

Let *a* and *b* be positive integers. We have gcd(*a*, *b*) = gcd(*b*, *a* mod *b*)

Proof:

We will show that every number dividing a and b also divides b and $a \mod b$. I.e., d|a and d|b iff d|b and $d|(a \mod b)$.

Hence, their set of common divisors are the same, which means that their greatest common divisor is the same.

Let a and b be positive integers. We have $gcd(a, b) = gcd(b, a \mod b)$

Proof:

By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \operatorname{div} b$.

Suppose d|b and $d|(a \mod b)$. Then b = md and $(a \mod b) = nd$ for some integers m and n. Therefore $a = qb + (a \mod b) = qmd + nd = (qm + n)d$. So d|a.

Suppose d|a and d|b. Then a = kd and b = jd for some integers k and j. Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$. So, $d|(a \mod b)$ also.

Since they have the same common divisors, $gcd(a, b) = gcd(b, a \mod b)$.

Another simple GCD fact

Let a be a positive integer. We have gcd(a, 0) = a.

```
gcd(a, b) = gcd(b, a \mod b) gcd(a, 0) = a
```

```
int gcd(int a, int b){ /* Assumes: a >= b, b >= 0 */
    if (b == 0) {
        return a;
    } else {
        return gcd(b, a % b);
    }
}
```

Note: gcd(b, a) = gcd(a, b)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126) =

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

$$gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$$

= $gcd(30, 126 \mod 30) = gcd(30, 6)$
= $gcd(6, 30 \mod 6) = gcd(6, 0)$
= 6

If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.

 $\forall a \forall b ((a > 0 \land b > 0) \rightarrow \exists s \exists t (gcd(a,b) = sa + tb))$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

abamodbrbr $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ gcd(27, 8)a = q * b + r35 = 1 * 27 + 8

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

aba mod b = rbr $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ a = q * b + r35 = 1 * 27 + 8 $= gcd(8, 27 \mod 8)$ = gcd(8, 3)27 = 3 * 8 + 3 $= gcd(3, 8 \mod 3)$ = gcd(3, 2)8 = 2 * 3 + 2 $= gcd(2, 3 \mod 2)$ = gcd(2, 1)3 = 1 * 2 + 1 $= gcd(1, 2 \mod 1)$ = gcd(1, 0)

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

$$r = a - q * b$$

8 = 35 - 1 * 27

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 2 (Solve the equations for r):

a = q * b + r

$$35 = 1 * 27 + 8$$

 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$

$$r = a - q * b$$

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$(1) = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

$$8 = 35 - 1 * 27$$

$$1 = 3 - 1 * (8 - 2 * 3)$$

$$= 3 - 8 + 2 * 3$$

$$= (-1) * 8 + 3 * 3$$

$$3's \text{ and } 8's$$

$$1 = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

Multiplicative inverse mod *m*

Let $0 \le a, b < m$. Then, b is the multiplicative inverse of a (modulo m) iff $ab \equiv_m 1$.

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Х	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
8	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

mod 7

mod 10

Suppose gcd(a, m) = 1

By Bézout's Theorem, there exist integers s and tsuch that sa + tm = 1.

s is the multiplicative inverse of a (modulo m):

 $1 = sa + tm \equiv_m sa$

So... we can compute multiplicative inverses with the extended Euclidean algorithm

These inverses let us solve modular equations...

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26 gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1 26 = 3 * 7 + 5 7 = 1 * 5 + 25 = 2 * 2 + 1 Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26 gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1 26 = 3 * 7 + 5 5 = 26 - 3 * 7 7 = 1 * 5 + 2 2 = 7 - 1 * 55 = 2 * 2 + 1 1 = 5 - 2 * 2

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26 gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 126 = 3 * 7 + 5 5 = 26 - 3 * 77 = 1 * 5 + 2 2 = 7 - 1 * 55 = 2 * 2 + 1 1 = 5 - 2 * 21 = 5 - 2 * (7 - 1 * 5)= (-2) * 7 + 3 * 5= (-2) * 7 + 3 * (26 - 3 * 7)= (-11) * 7 + 3 * 26

Solve: $7x \equiv_{26} 3$ Find multiplicative inverse of 7 modulo 26 gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 126 = 3 * 7 + 5 5 = 26 - 3 * 77 = 1 * 5 + 2 2 = 7 - 1 * 55 = 2 * 2 + 1 1 = 5 - 2 * 21 = 5 - 2 * (7 - 1 * 5)= (-2) * 7 + 3 * 5= (-2) * 7 + 3 * (26 - 3 * 7)= (-11) * 7 + 3 * 26Now $(-11) \mod 26 = 15$. "<u>the</u>" multiplicative inverse (-11 is also "a" multiplicative inverse) Solve: $7x \equiv_{26} 3$

Find multiplicative inverse of 7 modulo 26... it's 15.

Multiplying both sides by 15 gives

 $15 \cdot 7x \equiv_{26} 15 \cdot 3$

Simplify on both sides to get

 $x \equiv_{26} 15 \cdot 7x \equiv_{26} 15 \cdot 3 \equiv_{26} 19$

So, <u>all</u> solutions of this congruence are numbers of the form x = 19 + 26k for some $k \in \mathbb{Z}$.

Solve: $7x \equiv_{26} 3$

Conversely, suppose that $x \equiv_{26} 19$.

Multiplying both sides by 7 gives

 $7x \equiv_{26} 7 \cdot 19$

Simplify on right to get

 $7x \equiv_{26} 7 \cdot 19 \equiv_{26} 3$

So, <u>all</u> numbers of form x = 19 + 26k for any $k \in \mathbb{Z}$ are solutions of this equation.

Solve: $7x \equiv_{26} 3$ (on HW or exams)

Step 1. Find multiplicative inverse of 7 modulo 26

 $1 = \dots = (-11) * 7 + 3 * 26$

Since $(-11) \mod 26 = 15$, the inverse of 7 is 15.

Step 2. Multiply both sides and simplify

Multiplying by 15, we get $x \equiv_{26} 15 \cdot 7x \equiv_{26} 15 \cdot 3 \equiv_{26} 19$.

Step 3. State the full set of solutions

So, the solutions are 19 + 26k for any $k \in \mathbb{Z}$ (must be of the form a + mk for all $k \in \mathbb{Z}$ with $0 \le a < m$) Solve: $7x \equiv_{26} 3$

Modular equation like $Ax \equiv_{26} B$ for some *A* and *B* is in "standard form".

solve by multiplying both sides by inverse of A

What about other equations like

 $7(x-3) \equiv_{26} 8$?

Previously saw how to <u>formally prove</u> this has the same solutions as equation above.

Solve: $7x \equiv_{26} 3$

Modular equation like $Ax \equiv_{26} B$ for some *A* and *B* is in "standard form".

solve by multiplying both sides by inverse of A

What about other equations like

 $7(x-3) \equiv_{26} 8$?

On HW4:

- apply algorithm when in standard form (English)
- transform non-standard to standard form (formal)

gcd(a, m) = 1 if *m* is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1
Adding to both sides is an equivalence:

$$x \equiv_{m} y$$

$$x + c \equiv_{m} y + c$$

The same is not true of multiplication...

unless we have a multiplicative inverse $cd \equiv_m 1$

$$\times d \bigwedge^{x} x \equiv_{m} y \xrightarrow{\times c} cx \equiv_{m} cy$$

х	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

а	a1	a ²	a ³	a ⁴	a ⁵	a ⁶
1	1	1	1	1	1	1
2	2	4	1	2	4	1
3	3	2	6	4	5	1
4	4	2	1	4	2	1
5	5	4	6	2	3	1
6	6	1	6	1	6	1

Exponentiation

• **Compute** 78365⁸¹⁴⁵³

• Compute 78365⁸¹⁴⁵³ mod 104729

• Output is small

need to keep intermediate results small

Since $b = qm + (b \mod m)$, we have $b \mod m \equiv_m b$.

And since $c = tm + (c \mod m)$, we have $c \mod m \equiv_m c$.

Multiplying these gives $(b \mod m)(c \mod m) \equiv_m bc$.

By the Lemma from a few lectures ago, this tells us $bc \mod m = (b \mod m)(c \mod m) \mod m$.

Okay to mod b and c by m before multiplying if we are planning to mod the result by m

Since $b \mod m \equiv_m b$ and $c \mod m \equiv_m c$ we have $bc \mod m = (b \mod m)(c \mod m) \mod m$

So $a^2 \mod m = (a \mod m)^2 \mod m$ and $a^4 \mod m = (a^2 \mod m)^2 \mod m$ and $a^8 \mod m = (a^4 \mod m)^2 \mod m$ and $a^{16} \mod m = (a^8 \mod m)^2 \mod m$ and $a^{32} \mod m = (a^{16} \mod m)^2 \mod m$

Can compute $a^k \mod m$ for $k = 2^i$ in only *i* steps What if *k* is not a power of 2?

Fast Exponentiation Algorithm

81453 in binary is 10011111000101101 $81453 = 2^{16} + 2^{13} + 2^{12} + 2^{11} + 2^{10} + 2^9 + 2^5 + 2^3 + 2^2 + 2^0$ $a^{81453} = a^{2^{16}} \cdot a^{2^{13}} \cdot a^{2^{12}} \cdot a^{2^{11}} \cdot a^{2^{10}} \cdot a^{2^9} \cdot a^{2^5} \cdot a^{2^3} \cdot a^{2^2} \cdot a^{2^0}$ a⁸¹⁴⁵³ mod m= $(...(((((a^{2^{16}} \mod m) a^{2^{13}} \mod m) \mod m) a^{2^{12}} \mod m) \mod m$ Uses only 16 + 9 = 25 $a^{2^{11}} \mod m$) mod m multiplications a²¹⁰ mod m) mod m a²⁹ mod m) mod m $a^{2^5} \mod m$) mod m $a^{2^3} \mod m$) mod m $a^{2^2} \mod m$) mod m · $a^{2^0} \mod m$) mod m The fast exponentiation algorithm computes $a^k \mod m$ using $\leq 2\log k$ multiplications mod m

Fast Exponentiation: $a^k \mod m$ for all k

Another way....

 $a^{2j} \mod m = (a^j \mod m)^2 \mod m$ $a^{2j+1} \mod m = ((a \mod m) \cdot (a^{2j} \mod m)) \mod m$

Fast Exponentiation

}

public static int FastModExp(int a, int k, int modulus) {

```
if (k == 0) {
    return 1;
} else if ((k % 2) == 0) {
    long temp = FastModExp(a,k/2,modulus);
    return (temp * temp) % modulus;
} else {
    long temp = FastModExp(a,k-1,modulus);
    return (a * temp) % modulus;
}
```

```
a^{2j} \mod m = (a^j \mod m)^2 \mod ma^{2j+1} \mod m = ((a \mod m) \cdot (a^{2j} \mod m)) \mod m
```

Using Fast Modular Exponentiation

- Your e-commerce web transactions use SSL (Secure Socket Layer) based on RSA encryption
- RSA
 - Vendor chooses random 512-bit or 1024-bit primes p, qand 512/1024-bit exponent e. Computes $m = p \cdot q$
 - Vendor broadcasts (*m*, *e*)
 - To send *a* to vendor, you compute $C = a^e \mod m$ using fast modular exponentiation and send *C* to the vendor.
 - Using secret p, q the vendor computes d that is the multiplicative inverse of $e \mod (p-1)(q-1)$.
 - Vendor computes $C^d \mod m$ using fast modular exponentiation.
 - Fact: $a = C^d \mod m$ for 0 < a < m unless p|a or q|a