
CSE 311: Foundations of Computing
Topic 4: Proofs



Logical Inference

• So far, we’ve considered:
– how to understand and express things using 

propositional and predicate logic
– how to compute using Boolean (propositional) logic
– how to show that different ways of expressing or 

computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know
– equivalence is a small part of this



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

p q A(p,q) B(p,q) 
T T T

T F T

F T F

F F F



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A(p,q) B(p,q) 
T T T T

T F T T

F T F

F F F

A ⇒ B



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

When we zoom out, what have we proven?

p q A(p,q) B(p,q) 
T T T T

T F T T

F T F ?

F F F ?



New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

When we zoom out, what have we proven?

p q A(p,q) B(p,q) A ® B
T T T T T

T F T T T

F T F T T

F F F F T

(A ® B) º T



New Perspective

Equivalences
 A º B and (A « B) º T are the same

Inference
 A ⇒ B and (A ® B) º T are the same

Can do the inference by  zooming in 
to the rows where A is true
– that is, we assume that A is true



Applications of Logical Inference

• Software Engineering
– Express desired properties of program as set of logical 

constraints
– Use inference rules to show that program implies that 

those constraints are satisfied
• Artificial Intelligence
– Automated reasoning 

• Algorithm design and analysis
– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog
– Express desired outcome as set of constraints
– Automatically apply logic inference to derive solution



Proofs

• Start with given facts (hypotheses)
• Use rules of inference to extend set of facts
• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If A and A ® B are both true, then B must be true

• Write this rule as

• Given: 
– If it is Wednesday, then you have a 311 class today. 
– It is Wednesday.

• Therefore, by Modus Ponens:  
– You have a 311 class today.

A ; A ® B
∴  B



My First Proof!

Show that r follows from p, p ® q, and q ® r

 
1.  𝒑	 Given
2.  𝒑 → 𝒒     Given
3.  𝒒	®	𝒓 Given
4.  
5.  

Modus Ponens



My First Proof!

Show that r follows from p, p ® q, and q ® r

 
1.  𝒑            Given
2.  𝒑 → 𝒒     Given
3.  𝒒	®	𝒓 Given
4.  𝒒  MP: 1, 2
5.  𝒓 MP: 3, 4

Modus Ponens



1.  𝒑 → 𝒒              Given
2.  ¬𝒒                 Given
3.  ¬𝒒	®	¬𝒑     Contrapositive: 1
4.  ¬𝒑                 MP: 2, 3

Proofs can use equivalences too

Show that ¬p follows from p ® q and ¬q

Modus Ponens



Inference Rules

A  ;  B 
∴ C  ,  D

A  ;  A ® B   
∴        B   

Requirements:
Conclusions:

If A is true and B is true ….

Then, C must 
be true

Then D must 
be true

Example (Modus Ponens):

If I have A and A ® B both true,
Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴  A Ú¬A 

Requirements:
Conclusions:

If I have nothing…

Example (Excluded Middle):

A Ú¬A must be true.

Then D must 
be true

Then, C must 
be true



Simple Propositional Inference Rules

Two inference rules per binary connective,
one to eliminate it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Proofs

Show that r follows from p, p ® q and (p ∧	q) ® r

A ; A ® B
∴  B

How To Start:
 We have givens, find the ones that go 
 together and use them.  Now, treat new
 things as givens, and repeat.

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 



Proofs

Show that 𝒓 follows from	𝒑, 𝒑 → 𝒒, and 𝒑 ∧ 𝒒 → 𝒓

 
1. 𝒑 Given
2. 𝒑 → 𝒒 Given
3. 𝒒 MP: 1, 2
4. 𝒑 ∧ 𝒒 Intro Ù: 1, 3
5. 𝒑 ∧ 𝒒 → 𝒓 Given
6. 𝒓 MP: 4, 5

𝒒𝒑   ;
𝒑 ∧ 𝒒	 ; 𝒑 ∧ 𝒒 → 𝒓

𝒓

MP
Intro Ù

MP

Two visuals of the same proof.
We will use the top one, but if 
the bottom one helps you 
think about it, that’s great!

𝒑	 ; 	 𝒑 → 𝒒



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 Idea: Work 
backwards!

First: Write down givens 
and goal



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

20. ¬𝒓 MP: 2, 

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• We can use 𝒒 → ¬𝒓 to get there.
• The justification between 2 and 20 

looks like “elim →” which is MP.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

Idea: Work backwards!

We want to eventually get ¬𝒓.  How?
• Now, we have a new “hole”
• We need to prove 𝒒…

• Notice that at this point, if we 
prove 𝒒, we’ve proven ¬𝒓…



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

19. 𝒒
20. ¬𝒓 MP: 2, 19

This looks like or-elimination.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

18. ¬¬𝒔
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19

¬¬𝒔 doesn’t show up in the givens but
𝒔	does and we can use equivalences



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔
18. ¬¬𝒔 Double Negation: 17
19. 𝒒 ∨ Elim: 3, 18
20. ¬𝒓 MP: 2, 19 



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given

2. 𝒒 → ¬𝒓 Given

3. ¬𝒔 ∨ 𝒒 Given

17. 𝒔 ∧ Elim: 1

18. ¬¬𝒔 Double Negation: 17

19. 𝒒 ∨ Elim: 3, 18

20. ¬𝒓 MP: 2, 19 

No holes left!  We just 
need to clean up a bit.



Prove that ¬r follows from p Ù s, q ® ¬r, and ¬s Ú q.

 

Proofs

1. 𝒑 ∧ 𝒔 Given
2. 𝒒 → ¬𝒓 Given
3. ¬𝒔 ∨ 𝒒 Given
4. 𝒔 ∧ Elim: 1
5. ¬¬𝒔 Double Negation: 4
6. 𝒒 ∨ Elim: 3, 5
7. ¬𝒓 MP: 2, 6 



• You can use equivalences to make substitutions
    of any sub-formula.
     e.g.  𝒑®	𝒓 	Ú	𝒒 ≡ ¬𝒑	Ú	𝒓 	Ú	𝒒

• Inference rules only can be applied to whole 
formulas (not correct otherwise).

     e.g. 1.  𝒑 → 𝒓                 given
             2.  (𝒑	Ú	𝒒)	®	𝒓	 intro Ú from 1.

 

Important: Applications of Inference Rules

Does not follow!  e.g . p=F, q=T, r=F



Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 
it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Recall: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A B 
T T T T

T F T T

F T F

F F F

A ⇒ B



Recall: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where B is true:

When we zoom out, what have we proven?

p q A B A ® B
T T T T T

T F T T T

F T F T T

F F F F T

(A ® B) º T



Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate 
it and one to introduce it

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Not like other rules

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof



To Prove An Implication: 𝐴 → 𝐵

• We use the direct proof rule
• The “pre-requisite” A Þ B for the direct proof rule 

is a proof that “Assuming A, we can prove B.”
• The direct proof rule:

  If you have such a proof, then you can conclude        
  that A ® B is true

A Þ B  
∴ A ® B



Proofs using the direct proof rule

Show that p ® r follows from q and (p Ù q) ® r

1.   𝒒                      Given
2.  (𝒑	Ù	𝒒)	®	𝒓    Given
         3.1.   𝒑 Assumption
        3.2.   
        3.3.   𝒓            ??
3.    𝒑 → 𝒓             Direct Proof

This is a 
proof

of 𝒑 → 𝒓

If we know 𝒑 is true…
Then, we’ve shown     
           r is true



Proofs using the direct proof rule

Show that p ® r follows from q and (p Ù q) ® r

1.   𝒒                      Given
2.  (𝒑	Ù	𝒒)	®	𝒓    Given
         3.1.   𝒑 Assumption
        3.2.   𝒑	Ù	𝒒     Intro Ù: 1, 3.1
        3.3.   𝒓            MP: 2, 3.2
3.    𝒑 → 𝒓             Direct Proof



Prove:  (p Ù q) ® (p Ú q)

Example

There MUST be an application of the
Direct Proof Rule (or an equivalence)

to prove this implication.

Where do we start?  We have no givens…



Example

Prove:  (p Ù q) ® (p Ú q)

1.1.   𝒑	Ù	𝒒                      Assumption

    
    1.9.   𝒑	Ú	𝒒      ??
1.   (𝒑 ∧ 𝒒)	®	(𝒑	Ú	𝒒)     Direct Proof



Example

Prove:  (p Ù q) ® (p Ú q)

1.1.   𝒑	Ù	𝒒                      Assumption
    1.2.   𝒑           Elim Ù: 1.1
    1.3.   𝒑	Ú	𝒒      Intro Ú: 1.2
1.   (𝒑 ∧ 𝒒)	®	(𝒑	Ú	𝒒)     Direct Proof



One General Proof Strategy

1. Look at the rules for introducing connectives to 
see how you would build up the formula you want 
to prove from pieces of what is given

2. Use the rules for eliminating connectives to break 
down the given formulas so that you get the 
pieces you need to do 1.

3. Write the proof beginning with what you figured 
out for 2 followed by 1.



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof
1.? 𝒑 → 𝒓



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 ∧ Elim: 1.1
1.3. 𝒒 → 𝒓 ∧ Elim: 1.1

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof
1.? 𝒑 → 𝒓



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 ∧ Elim: 1.1
1.3. 𝒒 → 𝒓 ∧ Elim: 1.1

1.4.1. 𝒑 Assumption

1.4.? 𝒓
1.4. 𝒑 → 𝒓 Direct Proof

1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof



Example

Prove:    ((p ® q) Ù (q ® r)) ® (p ® r)

1.1. 𝒑 → 𝒒 ∧ (𝒒 → 𝒓) Assumption
1.2. 𝒑 → 𝒒 ∧ Elim: 1.1
1.3. 𝒒 → 𝒓 ∧ Elim: 1.1

1.4.1. 𝒑 Assumption
1.4.2. 𝒒 MP: 1.2, 1.4.1
1.4.3. 𝒓 MP: 1.3, 1.4.2

1.4. 𝒑 → 𝒓 Direct Proof
1. 𝒑 → 𝒒 ∧ 𝒒 → 𝒓 → (𝒑 → 𝒓) Direct Proof



Minimal Rules for Propositional Logic

Can get away with just these:

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof

∴ A Ú ¬A
Excluded
Middle not non-contradiction



More Rules for Propositional Logic

More rules makes proofs easier

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof

  A ≡ T
∴ A

Tautology includes Excluded Middle as a special case
but gives you every tautology



More Rules for Propositional Logic

More rules makes proofs easier

¬A ; A 
∴ F

A Þ F  
∴ ¬A 

x   
∴ T

Principium
Contradictionis

Reductio Ad 
Absurdum

F    
∴ A

Ex Falso
Quodlibet

Ad Litteram
Verum

useful for proving things
without the Tautology rule

remember that Tautology takes 2n time!
(for CS reasons, Tautology is different)



More Rules for Propositional Logic

More rules makes proofs easier

A Ù B 
∴ A, B

A ; B   
∴ A Ù B 

A              x   
∴ A Ú B, B Ú A

A ; A ® B
∴  B

A Þ B  
∴ A ® B

Elim ∧ Intro  ∧

A Ú B ; ¬A
∴ B

Elim ∨ Intro  ∨

Modus Ponens Direct Proof

  A ≡ T
∴ A

Tautology   A ≡ B ; B
∴ A

Equivalent



Alternative Rules

Equivalent seems more general (take B = T)

How do we use Equivalent to do the work of Tautology?

  A ≡ T
∴ A

Tautology   A ≡ B ; B
∴ A

Equivalent

1. 𝑨 Equivalent (A ≡ T) ?



Alternative Rules

Equivalent seems more general (take B = T)

How do we use Equivalent to do the work of Tautology?

  A ≡ T
∴ A

Tautology   A ≡ B ; B
∴ A

Equivalent

1. T Ad Litteram Verum
2. 𝑨 Equivalent (A ≡ T) 1



Alternative Rules

Actually, Equivalent is not more general!

How do we use Tautology to do the work of Equivalent?

  A ≡ B  holds iff  (A ⟷ B) ≡ T  holds

  A ≡ T
∴ A

Tautology   A ≡ B ; B
∴ A

Equivalent



Other Rules for Propositional Logic

Some rules can be written in different ways
– e.g., two different elimination rules for “∨”

A Ú B ; A ® C ; B ® C
∴ C

Cases

A Ú B ; ¬A
∴ B

Elim ∨

will see in HW3 that these
rules are equally capable



Rules for Propositional Logic w/o Tautology

Elim ∧ Intro  ∧

Intro  ∨

Modus Ponens Direct Proof

Cases

∧

∨

®

why no introduction rule for F?

Principium
Contradictionis

Reductio Ad 
Absurdum

Ex Falso
Quodlibet

Ad Litteram
Verum

¬

F

Elimination Introduction

T



Rules for Propositional Logic

Elim ∧ Intro  ∧

Intro  ∨

Modus Ponens Direct Proof

∧

∨

®

Principium
Contradictionis

Reductio Ad 
Absurdum

Ex Falso
Quodlibet

Ad Litteram
Verum

¬

F / T

Elimination Introduction

• These exact rules also show up in CS!
– as typing rules for a functional programming language
– “Curry-Howard” isomorphism says Proofs = Programs

See HW3 EC!

Cases



Inference Rules for Quantifiers: First look

** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c must be a NEW name!

"x P(x)        
∴          P(a)  (for any a)

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

Intro "$x P(x)
∴ P(c) for some special** c

Elim $



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

5.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙 	
The main connective is implication
so Direct Proof seems good 

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙  Direct Proof

1.1. "𝒙	𝑷 𝒙   Assumption

1.5.	 $𝒙	𝑷 𝒙   

We need an $ we don’t have 
so “intro	$” rule makes sense 

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙  Direct Proof

1.1. "𝒙	𝑷 𝒙   Assumption

1.5.	 $𝒙	𝑷 𝒙   Intro $:	

We need an $ we don’t have 
so “intro	$” rule makes sense 

That requires P(c) 
for some c.  

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption
      

1.4 . 𝑷(𝟓)
1.5.	 $𝒙	𝑷 𝒙     Intro $: 1.4

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption

      

1.4 . 𝑷(𝟓)     Elim ": 1.1
1.5.	 $𝒙	𝑷 𝒙     Intro $: 1.4

Integers
Domain of Discourse



My First Predicate Logic Proof

Prove "x P(x) ® $x P(x)

1.	 "𝒙	𝑷 𝒙 ®	$𝒙	𝑷 𝒙            Direct Proof

1.1. "𝒙	𝑷 𝒙     Assumption
1.2. 𝑷(𝟓)     Elim ": 1.1 
1.3.	 $𝒙	𝑷 𝒙     Intro $: 1.2

Working forwards as well as backwards: 
In applying “Intro $” rule we didn’t know what expression
we might be able to prove P(c) for, so we worked forwards
to figure out what might work.

Integers
Domain of Discourse



Predicate Logic Proofs

• Can use
– Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan’s)
even on subformulas

– Propositional logic inference rules
 whole formulas only

– Propositional logic equivalences
even on subformulas



Predicate Logic Proofs with more content

• In propositional logic we could just write down 
other propositional logic statements as “givens”

   

• Here, we also want to be able to use domain 
knowledge so proofs are about something specific

• Example:

• Given the basic properties of arithmetic on integers, 
define:

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions

Integers
Domain of Discourse



A Not so Odd Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse

Formally: prove  $x Even(x) 
Prove  “There is an even number”



A Not so Odd Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)

Predicate Definitions
Integers

Domain of Discourse

Formally: prove  $x Even(x) 
Prove  “There is an even number”

1. 	 2 = 2⋅1   Algebra
2.    $y (2 = 2⋅y) Intro $: 1
3.  Even(2)  Definition of Even: 2
4.	 	 $x Even(x)  Intro $: 3



A Prime Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)
Prime(x) := “x > 1 and x≠a⋅b for   
     all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x)) 



A Prime Example

Even(x) := $y (x = 2⋅y)
Odd(x) := $y (x = 2⋅y + 1)
Prime(x) := “x > 1 and x≠a⋅b for   
     all integers a, b with 1<a<x”

Predicate Definitions
Integers

Domain of Discourse

1. 	 2 = 2⋅1      Algebra
2.  $y (2 = 2⋅y)    Intro $: 1
3.  Even(2)     Def of Even: 3
4.  Prime(2)     Property of integers
5.  Even(2) Ù Prime(2)  Intro Ù: 2, 4
6.	 	 $x (Even(x) Ù Prime(x)) Intro $: 5

Prove  “There is an even prime number”
Formally: prove  $x (Even(x) Ù Prime(x)) 

* Later we will further break down “Prime” using quantifiers to prove statements like this

*



Inference Rules for Quantifiers: First look

* in the domain of P 
** By special, we mean that c is a 
name for a value where P(c) is true. 
We can’t use anything else about that 
value, so c has to be a NEW name!

"x P(x)        
∴          P(a)  (for any a)

“Let a be arbitrary*”...P(a)
      ∴        "x P(x)

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

Intro "$x P(x)
∴ P(c) for some special** c

Elim $



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 

 

 
 
 

  
3.   "x (Even(x)®Even(x2))



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

1.  Let a be an arbitrary integer

 
 
 

 
2.   Even(a)®Even(a2) 
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

1.  Let a be an arbitrary integer
2.1   Even(a)                  Assumption
    

 
 
2.6  Even(a2)             

2.   Even(a)®Even(a2)                  Direct proof
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

1.  Let a be an arbitrary integer
2.1   Even(a)                  Assumption
2.2    ∃y (a = 2y)        Definition of Even
 

2.5	 ∃y (a2 = 2y)           
2.6  Even(a2)            Definition of Even

2.   Even(a)®Even(a2)                  Direct Proof
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

1.  Let a be an arbitrary integer
2.1   Even(a)                  Assumption
2.2    ∃y (a = 2y)        Definition of Even
 
 
2.5	 ∃y (a2 = 2y)           Intro $: 
2.6  Even(a2)            Definition of Even

2.   Even(a)®Even(a2)                  Direct proof
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Need a2 = 2c 
for some c

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

1.  Let a be an arbitrary integer
2.1   Even(a)                  Assumption
2.2    ∃y (a = 2y)        Definition of Even
2.3   a = 2b            Elim $: b
 
2.5	 ∃y (a2 = 2y)           Intro $: 
2.6  Even(a2)            Definition of Even

2.   Even(a)®Even(a2)                  Direct proof
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Need a2 = 2c 
for some c

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Even and Odd

Prove: “The square of any even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

1.  Let a be an arbitrary integer
2.1   Even(a)                  Assumption
2.2    ∃y (a = 2y)        Definition of Even
2.3   a = 2b            Elim $: b
2.4   a2 = 4b2 = 2(2b2)     Algebra
2.5	 ∃y (a2 = 2y)           Intro $
2.6  Even(a2)            Definition of Even

2.   Even(a)®Even(a2)                  Direct Proof
3.   "x (Even(x)®Even(x2))         Intro ": 1,2

Used a2 = 2c for c=2b2

Even(x) := $y  (x=2y)     
Odd(x)  := $y  (x=2y+1)
Domain: Integers 



Inference Rules for Quantifiers: Full version

"x P(x)        
∴  P(a) for any a

P(c) for some c
     ∴     $x P(x)

Intro $ Elim "

* in the domain of P.  No other   
name in P depends on a 

** c is a NEW name. 
List all dependencies for c.

“Let a be arbitrary*”...P(a)
      ∴        "x P(x)

Intro "
$x P(x)

∴ P(c) for some special** c
Elim $



Formal Proofs

• In principle, formal proofs are the standard for 
what it means to be “proven” in mathematics
– almost all math (and theory CS) done in Predicate Logic

• But they can be tedious and impractical
– e.g., applications of commutativity and associativity
– Russell & Whitehead’s formal proof that 1+1 = 2 is 

several hundred pages long
we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

• Historically, rarely used for “real mathematics”...



Formal vs English Proofs

• Formal proofs follow simple well-defined rules
– “assembly language” (like byte code) for proofs
– easy for a machine to check

• English proofs are easier for humans to read
– “high level language” (like Java) for proofs
– also easy to check with practice

(almost all actual math and theory CS is done this way)

– English proof is correct if the reader believes they could 
translate it into a formal proof

(the reader is the “compiler” for English proofs)



Formal vs English Proofs

• Current math practice is changing
– computer tools for writing formal proofs are improving
– more mathematicians are writing them (e.g., Terry Tao)

• English proofs require an understanding of rules
– English proof follows the structure of a formal proof
– we will learn English proofs by translating from formal

eventually, we will write English directly



Recall: Even and Odd

Prove: “The square of every even number is even.”
      Formal proof of:  "x (Even(x) ® Even(x2))

1.  Let a be an arbitrary integer
2.1   Even(a)                  Assumption
2.2    ∃y (a = 2y)        Definition of Even
2.3   a = 2b            Elim $
2.4   a2 = 4b2 = 2(2b2)     Algebra
2.5	 ∃y (a2 = 2y)           Intro $
2.6  Even(a2)            Definition of Even

2.   Even(a)®Even(a2)                  Direct Proof
3.   "x (Even(x)®Even(x2))         Intro "

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1.  Let a be an arbitrary integer

   2.1   Even(a)          Assumption

   2.2   ∃y (a = 2y)   Definition
   2.3   a = 2b    Elim ∃
   

   2.4   a2 = 4b2 = 2(2b2)  Algebra

   2.5	 ∃y (a2 = 2y)     Intro ∃
   2.6  Even(a2)      Definition

2.   Even(a)®Even(a2)         Direct Proof
3.   "x (Even(x)®Even(x2))     Intro "

Let a be an arbitrary integer. 

Suppose a is even.

Then, by definition, a = 2b for 
some integer b.

Squaring both sides, we get 
a2 = 4b2 = 2(2b2). 

So a2 is, by definition, even.

Since a was arbitrary, we have 
shown that the square of every 
even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some 
integer b. Squaring both sides, we get a2 = 4b2 = 2(2b2). 
So a2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.



English Proof: Even and Odd

Prove “The square of every even integer is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

Proof: Let a be an arbitrary even integer.

Then, by definition, a = 2b for some integer b. Squaring 
both sides, we get a2 = 4b2 = 2(2b2). So a2 is, by 
definition, is even.

Since a was arbitrary, we have shown that the square of 
every even number is even.

"x (Even(x) ® Even(x2))



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

Let x and y be arbitrary integers.

Since x and y were arbitrary, the 
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

  

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) 
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

   3.1   Odd(x) ∧	Odd(y)        Assumption

   3.9  Even(x+y)  

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

Formally, prove  "x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

   3.1   Odd(x) ∧	Odd(y)        Assumption
   3.2   Odd(x)          Elim ∧: 2.1
   3.3   Odd(y)          Elim ∧: 2.1

   3.9  Even(x+y)  

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y) DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

   3.1   Odd(x) ∧	Odd(y)        Assumption
   3.2   Odd(x)          Elim ∧: 2.1
   3.3   Odd(y)          Elim ∧: 2.1

   3.4   ∃z (x = 2z+1)        Def of Odd: 2.2
   3.5   x = 2a+1         Elim ∃: 2.4

   3.6   ∃z (y = 2z+1)        Def of Odd: 2.3
   3.7   y = 2b+1         Elim ∃: 2.5

   

   3.9	 ∃z (x+y = 2z)         Intro ∃: 2.4
   3.10 Even(x+y)         Def of Even

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for 
some integer b.

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

      

Even(x) º $y  (x=2y)     
Odd(x)  º $y  (x=2y+1)
Domain: Integers 

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

   3.1   Odd(x) ∧	Odd(y)        Assumption
   3.2   Odd(x)          Elim ∧: 2.1
   3.3   Odd(y)          Elim ∧: 2.1

   3.4   ∃z (x = 2z+1)        Def of Odd: 2.2
   3.5   x = 2a+1         Elim ∃: 2.4

   3.6   ∃z (y = 2z+1)        Def of Odd: 2.3
   3.7   y = 2b+1         Elim ∃: 2.5

   3.8   x+y = 2(a+b+1)           Algebra

   3.9	 ∃z (x+y = 2z)         Intro ∃: 2.4
   3.10 Even(x+y)         Def of Even

3.   (Odd(x) ∧	Odd(y)) ® Even(x+y)  DPR
4.   "x "y ((Odd(x) ∧	Odd(y)) ® Even(x+y)) Intro "

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for 
some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the 
sum of any odd integers is even.



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof:   Let x and y be arbitrary integers.
Suppose that both are odd. Then, we have x = 2a+1 for 
some integer a and y = 2b+1 for some integer b. Their 
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so 
x+y is, by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove “The sum of two odd numbers is even.”

Proof:   Let x and y be arbitrary odd integers.
Then, x = 2a+1 for some integer a and y = 2b+1 for some 
integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 
2(a+b+1), so x+y is, by definition, even.
Since x and y were arbitrary, the sum of any two odd 
integers is even.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Integers
Domain of Discourse

"x "y ((Odd(x) ∧ Odd(y))®Even(x+y)) 



Rational Numbers

• A real number x is rational iff there exist integers a 
and b with b¹0  such that x=a/b.

Rational(x) := $a $b (((Integer(a) Ù Integer(b)) Ù (x=a/b)) Ù b¹0)    

Real Numbers
Domain of Discourse



Rationality

Prove: “The product of two rationals is rational.”
Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

Real Numbers
Domain of Discourse

Formally, prove "x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “The product of two rationals is rational.”
 

Proof: Let x and y be arbitrary rationals.

Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”
 

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 

By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”
 

Proof: Let x and y be arbitrary rationals.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Since b and d are both non-zero, so is bd. Furthermore, 
ac and bd are integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “The product of two rationals is rational.”
 OR “If x and y are rational, then xy is rational.”

Recall that unquantified variables (not constants) 
are implicitly for-all quantified.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions

"x "y ((Rational(x) ∧ Rational(y)) ® Rational(xy))



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Proof: Let x and y be arbitrary rationals.
Suppose x and y are rational.
Then, x = a/b for some integers a, b, where b¹0, and
y = c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). 
Since b and d are both non-zero, so is bd. Furthermore, 
ac and bd are integers. By definition, then, xy is rational.
Since x and y were arbitrary, we have shown that the 
product of any two rationals is rational.

Real Numbers
Domain of Discourse

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption

  

1.4 ∃𝑝	∃𝑞	( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 ) 
             Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
         Elim ∃: 1.4
1.6 ∃𝑝	∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

        Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
         Elim ∃: 1.4

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption

  ??

1.4 ∃𝑝	∃𝑞	( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 ) 
             Def Rational: 1.2

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
         Elim ∃: 1.4
1.6 ∃𝑝	∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

        Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
         Elim ∃: 1.4

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Then, x = a/b for some integers
a, b, where b¹0 and y = c/d for
some integers c,d, where d¹0. 

...

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption
1.2 Rational 𝑥         Elim ∧: 1.1
1.3 Rational 𝑦         Elim ∧: 1.1
1.4 ∃𝑝	∃𝑞	( 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0 ) 

             Def Rational: 1.2
1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
         Elim ∃: 1.4
1.6 ∃𝑝	∃𝑞 𝑥 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

        Def Rational: 1.3
1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
         Elim ∃: 1.4

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
        Algebra

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0

    ??

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
        Algebra

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Multiplying, we get xy = (ac)/(bd).  

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
1.8  𝑥 = 𝑎/𝑏    Elim ∧: 1.5
1.9  𝑦 = 𝑐/𝑑    Elim ∧: 1.7
1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
        Algebra

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.11  𝑏 ≠ 0	    Elim ∧: 1.5*
1.12  𝑑 ≠ 0    Elim ∧: 1.7
1.13  𝑏𝑑 ≠ 0    Prop of Integer Mult

* Oops, I skipped steps here...

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

...

1.5 𝑥 = 𝑎/𝑏 ∧ (Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0 )
...

1.7 𝑦 = 𝑐/𝑑 ∧ (Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0 )
...

1.11 Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
        Elim ∧: 1.5
1.12  Integer 𝑏 ∧ 𝑏 ≠ 0    Elim ∧: 1.11
1.13  𝑏 ≠ 0	      Elim ∧: 1.12

We left out the parentheses...

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”

Real Numbers
Domain of Discourse

Since b and d are non-zero, so is bd.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.13  𝑏 ≠ 0	    Elim ∧: 1.5
...

1.16  𝑑 ≠ 0    Elim ∧: 1.7
1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Furthermore, ac and bd are integers.

...

1.5 𝑥 = 𝑎/𝑏 ∧ Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑏 ≠ 0
...

1.7 𝑦 = 𝑐/𝑑 ∧ Integer 𝑐 ∧ Integer 𝑑 ∧ 𝑑 ≠ 0
...

1.19 Integer 𝑎    Elim ∧: 1.5*
...

1.22 Integer 𝑏    Elim ∧: 1.5*
...

1.24 Integer 𝑐    Elim ∧: 1.7*
...

1.27 Integer 𝑑    Elim ∧: 1.7*
1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

By definition, then, xy is rational.

...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult
...

1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult
1.30 Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0  Intro ∧: 1.29, 1.17
1.31 Integer 𝑎𝑐 ∧ Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0
       Intro ∧: 1.28, 1.30
1.32 𝑥𝑦 = (𝑎/𝑏)/(𝑐/𝑑) ∧ Integer 𝑎𝑐 ∧
Integer 𝑏𝑑 ∧ 𝑏𝑑 ≠ 0    Intro ∧: 1.10, 1.31
1.33	∃𝑝	∃𝑞 𝑥𝑦 = 𝑝/𝑞 ∧ Integer 𝑝 ∧ Integer 𝑞 ∧ 𝑞 ≠ 0

      Intro ∃: 1.32
1.34 Rational 𝑥𝑦    Def of Rational: 1.3

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult
...

1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult
...

1.34 Rational 𝑥𝑦    Def of Rational: 1.32

And finally...

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Real Numbers
Domain of Discourse

Suppose x and y are rational.

Furthermore, ac and bd are integers.

By definition, then, xy is rational.

1.1 Rational 𝑥 ∧ Rational 𝑦   Assumption
...

1.10 𝑥𝑦 = 𝑎/𝑏 𝑐/𝑑 = 𝑎𝑐/𝑏𝑑 = (𝑎𝑐)/(𝑏𝑑)
...

1.17  𝑏𝑑 ≠ 0    Prop of Integer Mult
...

1.28 Integer 𝑎𝑐    Prop of Integer Mult
1.29 Integer 𝑏𝑑    Prop of Integer Mult
...

1.34 Rational 𝑥𝑦    Def of Rational: 1.32

1. Rational 𝑥 ∧ Rational 𝑦 → Rational 𝑥𝑦
             Direct Proof

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



Rationality

Prove: “If x and y are rational, then xy is rational.”
 

Proof: Suppose x and y are rational.
Then, x = a/b for some integers a, b, where b¹0, and y = 
c/d for some integers c,d, where d¹0. 
Multiplying, we get that xy = (ac)/(bd). Since b and d are 
both non-zero, so is bd. Furthermore, ac and bd are 
integers. By definition, then, xy is rational.

Real Numbers
Domain of Discourse

vs more than 35 lines of formal proof

Rational(x) := ∃𝑎	∃𝑏	(Integer 𝑎 ∧ Integer 𝑏 ∧ 𝑥 = 𝑎/𝑏 ∧ 𝑏 ≠ 0 )
Predicate Definitions



English Proofs

• High-level language let us work more quickly
– should not be necessary to spill out every detail
– reader checks that the writer is not skipping too much
– examples so far

skipping Intro ∧ and Elim ∧
not stating existence claims (immediately apply Elim $ to name the object)
not stating that the implication has been proven (“Suppose X... Thus, Y.” says it already)

– (list will grow over time)

• English proof is correct if the reader believes they 
could translate it into a formal proof
– the reader is the “compiler” for English proofs



Proof Strategies



Proof Strategies: Counterexamples

To prove ¬"x P(x), prove  ∃¬P(x) :
• Equivalent by De Morgan’s Law
• All we need to do that is find an 𝒙 where 𝑷(𝒙) is false
• This example is called a counterexample to "𝒙	𝑷(𝒙).

e.g. Prove “Not every prime number is odd”

Proof: 2 is a prime that is not odd — a counterexample 
to the claim that every prime number is odd.

An English proof does not need to cite De Morgan’s law.



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

                         1.1. ¬𝒒         Assumption
                          ...
                         1.3. ¬𝒑
          1. ¬𝒒	®	¬𝒑      Direct Proof
          2.	 𝒑	®	𝒒   Contrapositive: 1                       



Proof Strategies: Proof by Contrapositive

If we assume ¬q and derive ¬p, then we have proven  
¬q ® ¬p, which is equivalent to proving p ® q.

1.1. ¬𝒒         Assumption
      ...
      1.3. ¬𝒑
1. ¬𝒒	®	¬𝒑     Direct Proof
2.	 𝒑	®	𝒒   Contrapositive: 1

We will prove the contrapositive.

Suppose ¬𝒒.
...
Thus, ¬𝒑.



Proof by Contradiction:  One way to prove ¬p

If we assume p and derive F (a contradiction), then 
we have proven ¬p.

                         1.1.  𝒑      Assumption
                          ...
                         1.3.  𝗙
          1.   𝒑	®	𝗙          Direct Proof
          2.   ¬𝒑	Ú	𝗙        Law of Implication: 1
          3.   ¬𝒑               Identity: 2
                          



Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we 
have proven ¬p.

1.1.  𝒑      Assumption
      ...
      1.3.  𝗙
1.   𝒑	®	𝗙         Direct Proof
2.   ¬𝒑	Ú	𝗙       Law of Implication: 1
3.   ¬𝒑              Identity: 2

We will argue by contradiction.

Suppose 𝒑.
...
This is a contradiction.

Often, we will infer ¬R, where R is a prior fact.
Putting these together, we have R Ù ¬R º F



Even and Odd

Prove: “No integer is both even and odd.”
       Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
       Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. 

This is a contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
       Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. 
Then, x=2a for some integer a, and x=2b+1 for some 
integer b. 

This is a contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
       Formally, prove  ¬ $x (Even(x)ÙOdd(x)) 

Proof: We will argue by contradiction.
Suppose that x is an integer that is both even and odd. 
Then, x=2a for some integer a, and x=2b+1 for some 
integer b. This means 2a=x=2b+1 and hence 2a-2b=1 
and so a-b=½. But a-b is an integer while ½ is not, so 
they cannot be equal. This is a contradiction.

Even(x) º ∃𝑦 𝑥 = 2𝑦
Odd(x) º ∃𝑦	(𝑥 = 2𝑦 + 1)

Predicate Definitions

Rationals
Domain of Discourse

Formally, we’ve shown Integer(½) Ù ¬Integer(½) º F.



Strategies

• Simple proof strategies already do a lot
– counter examples
– proof by contrapositive
– proof by contradiction

• Later we will cover a specific strategy that applies 
to loops and recursion (mathematical induction)


