CSE 311: Foundations of Computing

Topic 4: Proofs

- So far, we've considered:
 - how to understand and express things using propositional and predicate logic
 - how to compute using Boolean (propositional) logic
 - how to show that different ways of expressing or computing them are *equivalent* to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - equivalence is a small part of this

р	q	A(<i>p</i> ,q)	B(<i>p,q</i>)
Т	Т	Т	
Т	F	Т	
F	Т	F	
F	F	F	

р	q	A(<i>p</i> ,q)	B(<i>p,q</i>)
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	
F	F	F	

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

р	q	A(<i>p</i> ,q)	B(<i>p,q</i>)
Т	Т	Т	Т
Т	F	Т	Т
F	Т	F	?
F	F	F	?

When we zoom out, what have we proven?

р	q	A(p,q)	B(<i>p,q</i>)	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathbf{T}$$

Equivalences

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference

 $A \Rightarrow B$ and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where **A** is true

– that is, we <u>assume</u> that A is true

Applications of Logical Inference

• Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $A : A \to B$ $\therefore B$
- Given:
 - If it is Wednesday, then you have a 311 class today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.	_	
5.		

Modus Ponens $A : A \rightarrow B$ $\therefore B$ Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	$q \rightarrow r$	Given
4.	\boldsymbol{q}	MP: 1, 2
5.	r	MP: 3, 4

Modus Ponens
$$A : A \to B$$

 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

Modus Ponens
$$A : A \to B$$

 $\therefore B$

Inference Rules

Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

Example (Excluded Middle):

$\therefore A \lor \neg A$

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Show that **r** follows from **p**, **p** \rightarrow **q** and (**p** \wedge **q**) \rightarrow **r**

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \to B}{\therefore B}$$

 $\frac{A \land B}{\therefore A, B}$

 $\frac{A;B}{\therefore A \land B}$

Show that **r** follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

1.
$$p$$
Given2. $p \rightarrow q$ Given3. q MP: 1, 24. $p \land q$ Intro \land : 1, 35. $p \land q \rightarrow r$ Given6. r MP: 4, 5

$$\begin{array}{cccc} p & ; & p \rightarrow q \\ p & ; & q \\ \hline p \wedge q & ; & p \wedge q \rightarrow r \\ \hline p \wedge q & ; & p \wedge q \rightarrow r \\ \hline r \end{array} MP$$

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	$q ightarrow \neg r$	Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

Idea: Work backwards!

20. $\neg r$

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

Prove that $\neg r$ follows from $p \land s, q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

¬¬*s* doesn't show up in the givens but *s* does and we can use equivalences

- 19. *q* V Elim: 3, 18
- 20. ¬*r* MP: 2, 19

r Given
Given

17 . <i>s</i>

- **18.**¬¬*s***Double Negation:17**
- 19. *q* V Elim: 3, 18
- 20. ¬*r* MP: 2, 19

1.	p ∧ s	Given	No holes left! We just	
2.	q ightarrow eg r	Given	need to clean up a bit.	
3.	$\neg s \lor q$	Given		
17.	<i>S</i>	∧ Elim: 1		
18.	$\neg \neg S$	Double Negation: 17		
19.	q	∨ Elim: 3, 18		
20.	¬ <i>r</i>	MP: 2, 19		

1.	$p \wedge s$	Given
2.	$oldsymbol{q} ightarrow eg r$	Given
3.	$\neg s \lor q$	Given
4.	S	∧ Elim: 1
5.	<i>S</i>	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	¬ <i>r</i>	MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

• Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \Rightarrow r$ intro \lor from 1.
Does not follow! e.g. p=F, q=T, r=F

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathbf{T}$$

Recall: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

 $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Assuming A, we can prove B."
- The direct proof rule:

If you have such a proof, then you can conclude that $A \rightarrow B$ is true

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.	<i>q</i>	Given
2.	$(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{r}$	Given
	3.1. <i>p</i>	Assumption
	3.2. <i>p</i> ∧ <i>q</i>	Intro \: 1, 3.1
	3.3. <i>r</i>	MP: 2, 3.2
3.	p ightarrow r	Direct Proof

Example

Where do we start? We have no givens...

Example

Prove: $(p \land q) \rightarrow (p \lor q)$

1.9.
$$p \lor q$$
??1. $(p \land q) \rightarrow (p \lor q)$ Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1. $p \land q$ 1.2. p1.3. $p \lor q$ 1. $(p \land q) \rightarrow (p \lor q)$ Assumption Elim A: 1.1 Intro A: 1.2 Direct Proof

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \land (\boldsymbol{q} \rightarrow \boldsymbol{r})$	Assumption
1.2.	$oldsymbol{p} ightarrow oldsymbol{q}$	∧ Elim: 1.1
1.3.	q ightarrow r	∧ Elim: 1.1

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1.	$(\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge (\boldsymbol{q} \rightarrow \boldsymbol{q})$	r) Assumption
1.2.	$oldsymbol{p} ightarrow oldsymbol{q}$	∧ Elim: 1.1
1.3.	$m{q} ightarrow m{r}$	∧ Elim: 1.1
	1.4.1. <i>p</i>	Assumption

1.4.? r1.4. $p \rightarrow r$ Direct Proof 1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Pro	ove:	$((p \rightarrow q))$) ∧ (q -	\rightarrow r)) \rightarrow (p	\rightarrow r)
	1.1.	$(p \rightarrow q)$	$(q - q) \wedge (q - q)$	→ r) Assun	nption
	1.2.	p ightarrow q		∧ Elim	n: 1.1
	1.3.	q ightarrow r		∧ Elim	n: 1.1
		1.4.1.	p	Assumptio	on
		1.4.2.	q	MP: 1.2, 1	.4.1
		1.4.3.	r	MP: 1.3, 1	.4.2
	1.4.	$m{p} ightarrow m{r}$		Direct	Proof
1.	((p -	$\rightarrow \boldsymbol{q}) \wedge (\boldsymbol{q})$	$(\mathbf{l} \rightarrow \mathbf{r})$	$\rightarrow (p \rightarrow r)$	Direct Proof

Minimal Rules for Propositional Logic

Can get away with just these:

More Rules for Propositional Logic

More rules makes proofs easier

but gives you *every* tautology

More Rules for Propositional Logic

More rules makes proofs easier

useful for proving things without the Tautology rule

remember that Tautology takes 2ⁿ time! (for CS reasons, Tautology is different)

More Rules for Propositional Logic

More rules makes proofs easier

Alternative Rules

Tautology
$$A \equiv T$$
Equivalent $A \equiv B ; B$ $\therefore A$ $\therefore A$

Equivalent seems more general (take B = T)

How do we use Equivalent to do the work of Tautology?

1. A Equivalent
$$(A \equiv T)$$
?

Alternative Rules

Tautology
$$A \equiv T$$
Equivalent $A \equiv B ; B$ $\therefore A$ $\therefore A$

Equivalent seems more general (take B = T)

How do we use Equivalent to do the work of Tautology?

1.	т	Ad Litteram Verum	
2.	Α	Equivalent (A ≡ T) 1	

Alternative Rules

Tautology
$$A \equiv T$$
Equivalent $A \equiv B ; B$ $\therefore A$ $\therefore A$

Actually, Equivalent is <u>not</u> more general!

How do we use Tautology to do the work of Equivalent?

 $A \equiv B$ holds iff $(A \leftrightarrow B) \equiv T$ holds

Other Rules for Propositional Logic

Some rules can be written in different ways

– e.g., two different elimination rules for " \vee "

will see in **HW3** that these rules are equally capable

Rules for Propositional Logic w/o Tautology

Rules for Propositional Logic

- These <u>exact</u> rules also show up in CS! See HW3 EC!
 - as typing rules for a functional programming language
 - "Curry-Howard" isomorphism says Proofs = Programs

Inference Rules for Quantifiers: First look

$$\begin{array}{c|c} Elim \exists & \exists x P(x) \\ \therefore P(c) \text{ for some special** c} \end{array} & Intro \forall \end{array}$$

** By special, we mean that c is a name for a value where P(c) is true.We can't use anything else about that value, so c must be a NEW name!

My First Predicate Logic Proof

Prove $\forall x P(x) \rightarrow \exists x P(x)$

5. $\forall x P(x) \rightarrow \exists x P(x)$

The main connective is implication so Direct Proof seems good

?

Domain of Discourse Integers

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5. $\exists x P(x)$ Intro $\exists : \bigcirc$ That requires P(c) for some c. **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$

1.4. *P*(5)
1.5. ∃*x P*(*x*)
1.
$$\forall x P(x) \rightarrow \exists x P(x)$$

? Intro ∃: 1.4

Direct Proof

1.1. $\forall x P(x)$ Assumption

1.4. P(5)**1.5.** $\exists x P(x)$ **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Elim ∀: 1.1 Intro ∃: 1.4

Direct Proof

Assumption Elim ∀: 1.1 Intro ∃: 1.2

Direct Proof

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's) even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences even on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:

 Given the basic properties of arithmetic on integers, define:

Predicate Definitions Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	2 = 2 · 1	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Definition of Even: 2
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Domain of Discourse Integers Predicate Definitions $Even(x) := \exists y (x = 2 \cdot y)$ $Odd(x) := \exists y (x = 2 \cdot y + 1)$ Prime(x) := "x > 1 and $x \neq a \cdot b$ for
all integers a, b with 1<a<x"</td>

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Domain of Discourse Integers Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "x > 1 and x≠a \cdot b for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Def of Even: 3
4.	Prime(2)*	Property of integers
5.	Even(2) ^ Prime(2)	Intro ∧: 2, 4
6.	∃x (Even(x) ∧ Prime(x))	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

1. Let a be an arbitrary integer

3. $\forall x (Even(x) \rightarrow Even(x^2))$

?
Intro ∀: 1,2

Even and Odd

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

L. Lot a bo an arbitrary meo,	8	1. Let a be an arbitrary inte	der	
2.1 Even(a)	Assumption	2.1 Even(a)	Assumption	
2.6 Even(a^2) 2. Even(a)→Even(a^2) 3. $\forall x$ (Even(x)→Even(x^2))	Direct proof rule Intro ∀: 1,2	2.6 Even(a²) 2. Even(a)→Even(a²) 3. ∀x (Even(x)→Even(x²))	Direct proof rule Intro ∀: 1,2	

Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer2.1 Even(a)Assumption

 \bigcirc Direct proof
Intro \forall : 1,2

Even and Odd	Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers			
Intro ∀ "Let a be arbitrary*"…P(a) ∴ ∀x P(x)	$ \begin{array}{c c} \hline Elim \exists & \exists x P(x) \\ \therefore P(c) \text{ for some special } * * c \end{array} \end{array} $			
Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$				
1. Let a be an arbitrar 2.1 Even(a) 2.2 $\exists y (a = 2y)$ 2.3 $a = 2b$ 2.4 $a^2 = 4b^2 = 2$ 2.5 $\exists y (a^2 = 2y)$ 2.6 Even(a ²) 2. Even(a) \rightarrow Even(a ²) 3. $\forall x$ (Even(x) \rightarrow Even(Assumption Definition of Even Elim ∃: b 2(2b ²) Algebra Intro ∃ Used a ² = 2c for c=2b ² Definition of Even Direct Proof			

Inference Rules for Quantifiers: Full version

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they can be tedious and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead's formal proof that 1+1 = 2 is several hundred pages long we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Historically, rarely used for "real mathematics"...

- Formal proofs follow <u>simple</u> well-defined rules
 - "assembly language" (like byte code) for proofs
 - easy for a machine to check
- English proofs are easier for humans to read
 - "high level language" (like Java) for proofs
 - also easy to check with practice

(almost all actual math and theory CS is done this way)

 English proof is correct if the <u>reader</u> believes they could translate it into a formal proof

(the reader is the "compiler" for English proofs)

- Current math practice is changing
 - computer tools for writing formal proofs are improving
 - more mathematicians are writing them (e.g., Terry Tao)
- English proofs require an understanding of rules
 - English proof follows the *structure* of a formal proof
 - we will learn English proofs by translating from formal eventually, we will write English directly

Even(x) $\equiv \exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ **Domain: Integers**

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

- 2.1 Even(a)
- 2.3 a = 2b
- **2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra
- **2.5** $\exists y (a^2 = 2y)$
- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$ Intro \forall

Assumption

- **2.2** $\exists y (a = 2y)$ Definition of Even
 - Elim 3
 - Intro 🗄
- **2.6** Even(a²) Definition of Even
 - Direct Proof

Assumption

Prove "The square of every even integer is even."

Let a be an arbitrary integer. 1. Let a be an arbitrary integer

Suppose a is even.

Then, by definition, **a** = 2**b** for some integer **b**.

2.2 $\exists y (a = 2y)$ Definition**2.3** a = 2bElim \exists

2.1 Even(a)

Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$.

So a² is, by definition, even.

Since a was arbitrary, we have shown that the square of every even number is even. **2.4 a**² = 4**b**² = 2(2**b**²) Algebra

2.5 $\exists y (a^2 = 2y)$ Intro \exists **2.6** Even(a^2)Definition

2. Even(a)→Even(a²)Direct Proof**3.** $\forall x (Even(x) \rightarrow Even(x²))$ Intro \forall

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary integer.

Suppose **a** is even. Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary **even** integer.

Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

 $\forall x (Even(x) \rightarrow Even(x^2))$

Predicate Definitions Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

1. Let **x** be an arbitrary integer

2. Let **y** be an arbitrary integer

Since x and y were arbitrary, the sum of any odd integers is even.

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$
- **4.** $\forall x \forall y ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(x+y))$ Intro \forall

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

- **1**. Let **x** be an arbitrary integer
- 2. Let y be an arbitrary integer
 - **3.1** $Odd(x) \land Odd(y)$ Assumption

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

3.9 Even(x+y)

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR
- **4.** $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

- Let x be an arbitrary integer
 Let y be an arbitrary integer
 - **3.1** $Odd(\mathbf{x}) \land Odd(\mathbf{y})$ Assumption**3.2** $Odd(\mathbf{x})$ Elim \land : 2.1**3.3** $Odd(\mathbf{y})$ Elim \land : 2.1

3.9 Even(x+y)

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR
- **4.** $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.	ary integers. 1 . Let x be an arbitrary integer 2 . Let y be an arbitrary integer		
Suppose that both are odd.	 3.1 Odd(x) ∧ Odd(y) 3.2 Odd(x) 3.3 Odd(y) 	Assumption Elim ∧: 2.1 Elim ∧: 2.1	
Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.	3.4 $\exists z (x = 2z+1)$ 3.5 $x = 2a+1$	Def of Odd: 2.2 Elim ∃: 2.4	
	3.6 ∃z (y = 2z+1) 3.7 y = 2b+1	Def of Odd: 2.3 Elim ∃: 2.5	
so x+y is, by definition, even.	3.9 ∃z (x+y = 2z) 3.10 Even(x+y)	Intro ∃: 2.4 Def of Even	
Since x and y were arbitrary, the sum of any odd integers is even.	3. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow E_{\mathbf{x}}$ 4. $\forall \mathbf{x} \forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{x})))$		

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.	rs. 1. Let x be an arbitrary integer 2. Let y be an arbitrary integer		
Suppose that both are odd.	 3.1 Odd(x) ∧ Odd(y) 3.2 Odd(x) 3.3 Odd(y) 	Assumption Elim ∧: 2.1 Elim ∧: 2.1	
Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.	3.4 ∃z (x = 2z+1) 3.5 x = 2a+1	Def of Odd: 2.2 Elim ∃: 2.4	
	3.6 ∃z (y = 2z+1) 3.7 y = 2b+1	Def of Odd: 2.3 Elim ∃: 2.5	
Their sum is x+y = = 2(a+b+1)	3.8 x+y = 2(a+b+1)	Algebra	
so x+y is, by definition, even.	3.9 ∃z (x+y = 2z) 3.10 Even(x+y)	Intro∃: 2.4 Def of Even	
Since x and y were arbitrary, the sum of any odd integers is even.	3. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow E$ 4. $\forall \mathbf{x} \forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{x})))$		

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary **odd** integers.

Then, x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even.

 $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

 A real number x is *rational* iff there exist integers a and b with b≠0 such that x=a/b.

Rational(x) := $\exists a \exists b (((Integer(a) \land Integer(b)) \land (x=a/b)) \land b \neq 0)$

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Formally, prove $\forall x \forall y$ ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational."

Proof: Let x and y be arbitrary rationals.

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational. Since x and y were arbitrary, we have shown that the product of any two rationals is rational. ■

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "The product of two rationals is rational." OR "If x and y are rational, then xy is rational."

Recall that unquantified variables (not constants) are implicitly for-all quantified.

 $\forall x \forall y ((Rational(x) \land Rational(y)) \rightarrow Rational(xy))$

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Proof: Let x and y be arbitrary rationals. Suppose x and y are rational.

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (a/b)(c/d) = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational.

Since x and y were arbitrary, we have shown that the product of any two rationals is rational.

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose x and y are rational.

1.1 Rational(x) \land Rational(y) **Assumption**

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$.

...

1.4 $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.2 1.5** $(x = a/b) \land \operatorname{Integer}(a) \land \operatorname{Integer}(b) \land (b \neq 0)$ **Elim** \exists : **1.4 1.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.3 1.7** $(y = c/d) \land \operatorname{Integer}(c) \land \operatorname{Integer}(d) \land (d \neq 0)$ **Elim** \exists : **1.4**

Domain of Discourse Real Numbers

Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose x and y are rational.

1.1 Rational(x) \land Rational(y) **Assumption**

??

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$.

...

1.4 $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.2 1.5** $(x = a/b) \land \operatorname{Integer}(a) \land \operatorname{Integer}(b) \land (b \neq 0)$ **Elim** \exists : **1.4 1.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$ **Def Rational: 1.3 1.7** $(y = c/d) \land \operatorname{Integer}(c) \land \operatorname{Integer}(d) \land (d \neq 0)$ **Elim** \exists : **1.4**

Domain of Discourse Real Numbers

Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Suppose x and y are rational.

Then, x = a/b for some integers a, b, where $b \neq 0$ and y = c/d for some integers c,d, where $d \neq 0$.

...

1.1 Rational(x) \land Rational(y) Assumption**1.2** Rational(x)Elim \land : **1.11.3** Rational(y)Elim \land : **1.11.4** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$
Def Rational: **1.21.5** $(x = a/b) \land$ Integer(a) \land Integer(b) $\land (b \neq 0)$
Elim \exists : **1.41.6** $\exists p \exists q ((x = p/q) \land \operatorname{Integer}(p) \land \operatorname{Integer}(q) \land (q \neq 0))$
Def Rational: **1.31.7** $(y = c/d) \land$ Integer(c) \land Integer(d) $\land (d \neq 0)$
Elim \exists : **1.4**

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$... **1.7** $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$

Multiplying, we get xy = (ac)/(bd).

1.10
$$xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$$

Algebra

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$... **1.7** $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$

??

Multiplying, we get xy = (ac)/(bd).

1.10
$$xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$$

Algebra

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ **1.7** $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$ **1.8** x = a/b **1.9** y = c/d **1.10** xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)Algebra

Multiplying, we get xy = (ac)/(bd).

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

 $1.5 (x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ $1.7 (y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$ $1.11 \ b \neq 0 \qquad \qquad \text{Elim } \land: 1.5^*$ $1.12 \ d \neq 0 \qquad \qquad \text{Elim } \land: 1.7$ Since b and d are non-zero, so is bd. $1.13 \ bd \neq 0 \qquad \qquad \text{Prop of Integer Mult}$

* Oops, I skipped steps here...

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land (\text{Integer}(a) \land (\text{Integer}(b) \land (b \neq 0)))$ **1.7** $(y = c/d) \land (\text{Integer}(c) \land (\text{Integer}(d) \land (d \neq 0)))$ **1.11** $\text{Integer}(a) \land (\text{Integer}(b) \land (b \neq 0))$ **1.12** $\text{Integer}(b) \land (b \neq 0)$ **1.13** $b \neq 0$ **Elim** \land : **1.11 Elim** \land : **1.12**

We left out the parentheses...

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

 $1.5 (x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$ $1.7 (y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$ $1.13 \ b \neq 0$ Elim $\land: 1.5$ $1.16 \ d \neq 0$ Elim $\land: 1.7$ Since b and d are non-zero, so is bd. $1.17 \ bd \neq 0$ Prop of Integer Mult

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.5 $(x = a/b) \land \text{Integer}(a) \land \text{Integer}(b) \land (b \neq 0)$...1.7 $(y = c/d) \land \text{Integer}(c) \land \text{Integer}(d) \land (d \neq 0)$...1.19 Integer(a)Elim \land : 1.5*...1.22 Integer(b)Elim \land : 1.5*...1.24 Integer(c)Elim \land : 1.7*1.27 Integer(d)Elim \land : 1.7*1.28 Integer(ac)Prop of Integer Mult1.29 Integer(bd)

Furthermore, ac and bd are integers.

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

1.10 xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)**1.17** $bd \neq 0$ **Prop of Integer Mult 1.28** Integer(*ac*) **Prop of Integer Mult 1.29** Integer(*bd*) **Prop of Integer Mult 1.30** Integer(*bd*) \land (*bd* \neq 0) Intro \land : **1.29**, **1.17 1.31** Integer(*ac*) \land Integer(*bd*) \land (*bd* \neq 0) Intro A: 1.28, 1.30 **1.32** $(xy = (a/b)/(c/d)) \land \operatorname{Integer}(ac) \land$ Integer(bd) \land ($bd \neq 0$) Intro \land : **1.10**, **1.31 1.33** $\exists p \exists q ((xy = p/q) \land \text{Integer}(p) \land \text{Integer}(q) \land (q \neq 0))$ Intro ∃: 1.32 **1.34** Rational(xy)Def of Rational: 1.3

By definition, then, xy is rational.

Rationality

Predicate DefinitionsRational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$				
Prove: "If x and y are rational, then xy is rational."				
Suppose x and y are rational.	1.1 Rational(x) \land Rational(y) Assumption			
	1.10 $xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$			
	1.17 $bd \neq 0$	Prop of Integer Mult		
Furthermore, ac and bd are integers.	1.28 Integer(<i>ac</i>) 1.29 Integer(<i>bd</i>)	Prop of Integer Mult Prop of Integer Mult		
By definition, then, xy is rational.	1.34 Rational(<i>xy</i>)	Def of Rational: 1.32		

And finally...

Rationality

Predicate DefinitionsRational(x) := $\exists a \exists b$ (Integer(a) \land Integer(b) \land ($x = a/b$) \land ($b \neq 0$))				
Prove: "If x and y are rational, then xy is rational."				
Suppose x and y are rational.	1.1 Rational(x) \land Rational(y) Assumption			
	1.10 $xy = (a/b)(c/d) = (ac/bd) = (ac)/(bd)$			
	1.17 $bd \neq 0$	Prop of Integer Mult		
Furthermore, ac and bd are integers.	1.28 Integer(<i>ac</i>) 1.29 Integer(<i>bd</i>)	Prop of Integer Mult Prop of Integer Mult		
By definition, then, xy is rational.	1.34 Rational(xy)	Def of Rational: 1.32		

1. Rational(x) \land Rational(y) \rightarrow Rational(xy) **Direct Proof**

Rationality

Predicate Definitions

Rational(x) := $\exists a \exists b (Integer(a) \land Integer(b) \land (x = a/b) \land (b \neq 0))$

Prove: "If x and y are rational, then xy is rational."

Proof: Suppose x and y are rational.

Then, x = a/b for some integers a, b, where $b\neq 0$, and y = c/d for some integers c,d, where $d\neq 0$.

Multiplying, we get that xy = (ac)/(bd). Since b and d are both non-zero, so is bd. Furthermore, ac and bd are integers. By definition, then, xy is rational. ■

- High-level language let us work more quickly
 - should not be necessary to spill out every detail
 - <u>reader</u> checks that the writer is not skipping too much
 - examples so far

skipping Intro \land and Elim \land not stating existence claims (immediately apply Elim \exists to name the object) not stating that the implication has been proven ("Suppose X... Thus, Y." says it already)

- (list will grow over time)

 English proof is correct if the <u>reader</u> believes they could translate it into a formal proof

- the reader is the "compiler" for English proofs

Proof Strategies

To prove $\neg \forall x P(x)$, prove $\exists \neg P(x)$:

- Equivalent by De Morgan's Law
- All we need to do that is find an x where P(x) is false
- This example is called a **counterexample** to $\forall x P(x)$.

e.g. Prove "Not every prime number is odd"

Proof: 2 is a prime that is not odd — a counterexample to the claim that every prime number is odd. ■

An English proof does not need to cite De Morgan's law.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

Proof Strategies: Proof by Contrapositive

If we assume $\neg q$ and derive $\neg p$, then we have proven $\neg q \rightarrow \neg p$, which is equivalent to proving $p \rightarrow q$.

We will prove the contrapositive.

Suppose $\neg q$.	1.1. ¬ <i>q</i>	Assumption
····		
Thus, ¬ p .	1.3. ¬ <i>p</i>	
	1. $\neg q \rightarrow \neg p$	Direct Proof
	2. $p \rightarrow q$	Contrapositive: 1

Proof by Contradiction: One way to prove ¬p

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

	1.1. <i>p</i>	Assumption
	1.3. F	
1.	$p ightarrow {\sf F}$	Direct Proof
2.	$ eg \mathbf{p} ee \mathbf{F}$	Law of Implication: 1
3.	eg p	Identity: 2

Proof Strategies: Proof by Contradiction

If we assume p and derive F (a contradiction), then we have proven $\neg p$.

We will argue by contradiction.

Suppose <i>p</i> .	1.1. <i>p</i>	Assumption
 This is a contradiction.	1.3. F 1. $p \rightarrow F$ 2. $\neg p \lor F$ 3. $\neg p$	Direct Proof Law of Implication: 1 Identity: 2

Often, we will infer $\neg R$, where R is a prior fact. Putting these together, we have $R \land \neg R \equiv F$ **Even and Odd**

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Domain of Discourse Rationals

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Even and Odd

Predicate Definitions Even(x) $\equiv \exists y \ (x = 2y)$ Odd(x) $\equiv \exists y \ (x = 2y + 1)$

Domain of Discourse Rationals

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd.

This is a contradiction.

Even and Odd

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Domain of Discourse Rationals

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd. Then, x=2a for some integer a, and x=2b+1 for some integer b.

This is a contradiction. ■

Predicate DefinitionsEven(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Prove: "No integer is both even and odd." Formally, prove $\neg \exists x (Even(x) \land Odd(x))$

Proof: We will argue by contradiction.

Suppose that x is an integer that is both even and odd. Then, x=2a for some integer a, and x=2b+1 for some integer b. This means 2a=x=2b+1 and hence 2a-2b=1 and so a-b=½. But a-b is an integer while ½ is not, so they cannot be equal. This is a contradiction. ■

Formally, we've shown $Integer(\frac{1}{2}) \land \neg Integer(\frac{1}{2}) \equiv F$.

- Simple proof strategies already do a lot
 - counter examples
 - proof by contrapositive
 - proof by contradiction
- Later we will cover a specific strategy that applies to loops and recursion (mathematical induction)