# **CSE 311:** Foundations of Computing

#### **Topic 3: Predicate Logic**



## **Predicate Logic**

# Propositional Logic

 Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives

# Predicate Logic

 Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

"All positive integers x, y, and z satisfy  $x^3 + y^3 \neq z^3$ ."

# Adds two key notions to propositional logic

- Predicates
- Quantifiers

#### **Predicates**

# **Predicate**

#### - A function that returns a truth value, e.g.,

Cat(x) ::= "x is a cat" Prime(x) ::= "x is prime" HasTaken(x, y) ::= "student x has taken course y" LessThan(x, y) ::= "x < y" Sum(x, y, z) ::= "x + y = z" GreaterThan5(x) ::= "x > 5" HasNChars(s, n) ::= "string s has length n"

# Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be? (1) "x is a cat", "x barks", "x ruined my couch"

"mammals" or "sentient beings" or "cats and dogs" or ...

(2) "x is prime", "x = 0", "x > 0", "x is a power of two"

"numbers" or "integers" or "non-negative integers" or ...

(3) "student x has taken course y" "x is a pre-req for z"

"students and courses" or "university entities" or ...

We use *quantifiers* to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain read as "for all x, P of x"



∃x P(x)

There is an x in the domain for which P(x) is true read as "there exists x, P of x" We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): ∀x P(x)
P(x) is true for every x in the domain
read as "for all x, P of x"

**Examples:** Are these true?

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan4}(x)$

We use *quantifiers* to talk about collections of objects. Universal Quantifier ("for all"): ∀x P(x) P(x) is true for every x in the domain read as "for all x, P of x"

**Examples:** Are these true? It depends on the domain. For example:

- $\forall x \text{ Odd}(x)$
- $\forall x \text{ LessThan4}(x)$

| {1, 3, -1, -27} | Integers | Odd Integers |
|-----------------|----------|--------------|
| True            | False    | True         |
| True            | False    | False        |

We use *quantifiers* to talk about collections of objects. Existential Quantifier ("exists"):  $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Examples: Are these true?

- $\exists x \text{ Odd}(x)$
- $\exists x \text{ LessThan4}(x)$

We use *quantifiers* to talk about collections of objects. **Existential Quantifier** ("exists"):  $\exists x P(x)$ There is an x in the domain for which P(x) is true read as "there exists x, P of x"

**Examples:** Are these true? It depends on the domain. For example:

- $\exists x \text{ Odd}(x)$
- ∃x LessThan4(x)

| {1, 3, -1, -27} | Integers | Positive<br>Multiples of 5 |
|-----------------|----------|----------------------------|
| True            | True     | True                       |
| True            | True     | False                      |

# **Statements with Quantifiers**

Domain of Discourse Positive Integers

| Predicate Definitions     |                              |
|---------------------------|------------------------------|
| Even(x) ::= "x is even"   | Greater(x, y) ::= "x > y"    |
| Odd(x) ::= "x is odd"     | Equal(x, y) ::= " $x = y$ "  |
| Prime(x) ::= "x is prime" | Sum(x, y, z) ::= "x + y = z" |

Determine the truth values of each of these statements:

- ∃x Even(x) **T** e.g. 2, 4, 6, ...
- ∀x Odd(x) **F** e.g. 2, 4, 6, ...

Т

- $\forall x (Even(x) \lor Odd(x))$
- $\exists x (Even(x) \land Odd(x))$
- ∀x Greater(x+1, x)

 $\exists x (Even(x) \land Prime(x))$  **T** 

- Cig. 2, **T**, 0, ...
- **T** every integer is either even or odd
  - **F** no integer is both even and odd
    - adding 1 makes a bigger number
      - Even(2) is true and Prime(2) is true

#### **Statements with Quantifiers (Literal Translations)**

Domain of Discourse Positive Integers

| Predicate Definitions     |                              |
|---------------------------|------------------------------|
| Even(x) ::= "x is even"   | Greater(x, y) ::= "x > y"    |
| Odd(x) ::= "x is odd"     | Equal(x, y) ::= " $x = y$ "  |
| Prime(x) ::= "x is prime" | Sum(x, y, z) ::= "x + y = z" |

**Translate the following statements to English** 

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

 $\exists y \ \forall x \ Greater(y, x)$ 

There is a positive integer y such that, for every pos. int. x, we have y > x.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$ 

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$ 

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Prime(x) \land Prime(y) \land Sum(x, 2, y))$ 

There exist positive integers x and y such that x and y are prime and x + 2 = y.

#### **Statements with Quantifiers (Literal Translations)**

Domain of Discourse Positive Integers

| Predicate Definitions     |                              |
|---------------------------|------------------------------|
| Even(x) ::= "x is even"   | Greater(x, y) ::= "x > y"    |
| Odd(x) ::= "x is odd"     | Equal(x, y) ::= " $x = y$ "  |
| Prime(x) ::= "x is prime" | Sum(x, y, z) ::= "x + y = z" |

**Translate the following statements to English** 

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

 $\exists y \ \forall x \ Greater(y, x)$ 

There is a positive integer y such that, for every pos. int. x, we have y > x.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$ 

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

#### **Statements with Quantifiers (Natural Translations)**

Domain of Discourse Positive Integers

| Predicate Definitions     |                              |
|---------------------------|------------------------------|
| Even(x) ::= "x is even"   | Greater(x, y) ::= "x > y"    |
| Odd(x) ::= "x is odd"     | Equal(x, y) ::= " $x = y$ "  |
| Prime(x) ::= "x is prime" | Sum(x, y, z) ::= "x + y = z" |

**Translate the following statements to English** 

∀x ∃y Greater(y, x)

For every positive integer, there is some larger positive integer.

∃y ∀x Greater(y, x)

There is a positive integer that is larger than every other positive integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$ 

For every positive integer, there is a prime that is larger.

#### Sound more natural without introducing variable names

#### **Statements with Quantifiers (Literal Translations)**

Domain of Discourse Positive Integers

| Predicate Definitions     |                              |
|---------------------------|------------------------------|
| Even(x) ::= "x is even"   | Greater(x, y) ::= "x > y"    |
| Odd(x) ::= "x is odd"     | Equal(x, y) ::= " $x = y$ "  |
| Prime(x) ::= "x is prime" | Sum(x, y, z) ::= "x + y = z" |

**Translate the following statements to English** 

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$ 

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Prime(x) \land Prime(y) \land Sum(x, 2, y))$ 

There exist positive integers x and y such that x and y are prime and x + 2 = y.

#### **Statements with Quantifiers (Literal Translations)**

Domain of Discourse Positive Integers

| Predicate Definitions     |                              |
|---------------------------|------------------------------|
| Even(x) ::= "x is even"   | Greater(x, y) ::= "x > y"    |
| Odd(x) ::= "x is odd"     | Equal(x, y) ::= " $x = y$ "  |
| Prime(x) ::= "x is prime" | Sum(x, y, z) ::= "x + y = z" |

**Translate the following statements to English** 

 $\forall x \text{ (Prime(x)} \rightarrow \text{(Equal(x, 2)} \lor \text{Odd(x)))}$ 

Every prime number is either 2 or odd.

 $\exists x \exists y (Prime(x) \land Prime(y) \land Sum(x, 2, y))$ 

There exist primes x and y such that x + 2 = y.

There exist prime numbers that are 2 apart.

#### Spot the domain restriction patterns

## **English to Predicate Logic**



**Predicate Definitions** 

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"All red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$ 

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$ 

# **English to Predicate Logic**



# **English to Predicate Logic**



Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"



"Some red cats don't like tofu"



#### **Statements with Quantifiers (Natural Translations)**

Translations often (not always) sound more <u>natural</u> if we

#### **1.** Notice "domain restriction" patterns

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$ 

Every prime number is either 2 or odd.

#### 2. Avoid introducing *unnecessary* variable names

 $\forall x \exists y Greater(y, x)$ 

For every positive integer, there is some larger positive integer.

#### 3. Can sometimes drop "all" or "there is"

 $\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$ 

No even prime is greater than 2.

Implicit quantifiers in English are often ambiguous

**<u>Three people</u>** that are all friends can form a raiding party  $\forall$ 

**Three people** that I know are all friends with Mark Zuckerberg ∃

#### Formal logic removes this ambiguity

- quantifiers can always be specified
- unquantified variables that are not known constants (e.g,  $\pi$ ) are **implicitly**  $\forall$ -quantified

# **Negations of Quantifiers**

**Predicate Definitions** 

PurpleFruit(x) ::= "x is a purple fruit"

(\*)  $\forall x PurpleFruit(x)$  ("All fruits are purple")

What is the negation of (\*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

#### Try your intuition! Which one seems right?

# **Negations of Quantifiers**

**Predicate Definitions** 

PurpleFruit(x) ::= "x is a purple fruit"

- (\*)  $\forall x PurpleFruit(x)$  ("All fruits are purple")
  - What is the negation of (\*)?
    - (a) "there exists a purple fruit"
    - (b) "there exists a non-purple fruit"
    - (c) "all fruits are not purple"



- (\*) PurpleFruit(plum) ^ PurpleFruit(apple)
  - (a) PurpleFruit(plum) ∨ PurpleFruit(apple)
  - (b) ¬ PurpleFruit(plum) ∨ ¬ PurpleFruit(apple)
  - (c) ¬ PurpleFruit(plum) ∧ ¬ PurpleFruit(apple)

#### **De Morgan's Laws for Quantifiers**

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no integer larger than every other integer"

$$\neg \exists x \forall y (x \ge y)$$
  
$$\equiv \forall x \neg \forall y (x \ge y)$$
  
$$\equiv \forall x \exists y \neg (x \ge y)$$
  
$$\equiv \forall x \exists y \neg (x \ge y)$$

"For every integer, there is a larger integer"

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

#### These are **equivalent** but not **equal**

They have different English translations, e.g.:

**There is no unicorn**  $\neg \exists x Unicorn(x)$ 

**Every animal is not a unicorn**  $\forall x \neg$  Unicorn(x)

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

#### "No even prime is greater than 2"

$$\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$$

$$\equiv \forall x \neg (Even(x) \land Prime(x) \land Greater(x, 2))$$

$$\equiv \forall x (\neg(Even(x) \land Prime(x)) \lor \neg Greater(x, 2))$$

$$= \forall x (\neg(Even(x) \land Prime(x)) \lor LessEq(x, 2))$$

 $\equiv \forall x ((Even(x) \land Prime(x)) \rightarrow LessEq(x, 2))$ 

#### "Every even prime is less than or equal to 2."

We just saw that

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$

**Can similarly show that** 

$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

De Morgan's Laws respect domain restrictions! (It leaves them in place and only negates the other parts.) • For finite domains of discourse, we could implement quantifiers in Java:

```
boolean forAll(Map<String, Boolean> P) {
  for (String x : P.keySet()) {
                                               \forall x P(x)
    if (!P.get(x)) return false;
  }
  return true;
}
boolean exists (Map<String, Boolean> P) {
  for (String x : P.keySet()) {
                                               \exists x P(x)
    if (P.get(x)) return true;
  }
  return false;
}
```

 $\exists x \ (P(x) \land Q(x)) \qquad \forall S. \quad (\exists x \ P(x)) \land (\exists x \ Q(x))$ 

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

Variables with the same name do not necessarily refer to the same object.

**Example:** NotLargest(x) ::= 
$$\exists$$
 y Greater (y, x)  
 $\equiv \exists$  z Greater (z, x)

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

**Example:** NotLargest(x) ::= 
$$\exists$$
 y Greater (y, x)  
 $\equiv \exists$  z Greater (z, x)

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula

$$\forall \mathbf{x} \exists \mathbf{y} (\mathsf{P}(\mathbf{x},\mathbf{y}) \rightarrow \forall \mathbf{x} \mathsf{Q}(\mathbf{y},\mathbf{x})))$$

# **Quantifier "Style"**



This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters... Bound variable names don't matter

 $\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$ 

- Positions of quantifiers can <u>sometimes</u> change  $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

# **Quantifier Order Can Matter**



# **Quantifier Order Can Matter**



# **Quantifier Order Can Matter**



The purple statement requires **an entire row** to be true. The red statement requires one entry in **each column** to be true.

**Important**: both include the case x = y

Different names does not imply different objects!

# **Quantification with Two Variables**

| expression                    | when true                                                                              | when false                                                      |
|-------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| $\forall x \forall y P(x, y)$ | Every pair is true.                                                                    | At least one pair is false.                                     |
| ∃ x ∃ y P(x, y)               | At least one pair is true.                                                             | All pairs are false.                                            |
| ∀ x ∃ y P(x, y)               | We can find a specific y for<br>each x.<br>$(x_1, y_1), (x_2, y_2), (x_3, y_3)$        | Some x doesn't have a corresponding y.                          |
| ∃ y ∀ x P(x, y)               | We can find ONE y that<br>works no matter what x is.<br>$(x_1, y), (x_2, y), (x_3, y)$ | For any candidate y, there is<br>an x that it doesn't work for. |