
CSE 311: Foundations of Computing

Topic 3:  Predicate Logic



Predicate Logic

• Propositional Logic 
– Allows us to analyze complex propositions in 

terms of their simpler constituent parts (a.k.a. 
atomic propositions) joined by connectives

• Predicate Logic 
– Lets us analyze them at a deeper level by 

expressing how those propositions depend on 
the objects they are talking about

“All positive integers 𝑥, 𝑦, and 𝑧 satisfy 𝑥! + 𝑦! ≠ 𝑧!.”



Predicate Logic

Adds two key notions to propositional logic
– Predicates

– Quantifiers



Predicate
– A function that returns a truth value, e.g.,

  

Cat(x) ::= “x is a cat”
Prime(x) ::= “x is prime”
HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x < y”
Sum(x, y, z) ::= “x + y = z”
GreaterThan5(x) ::= “x > 5”
HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments 
and input types.   

Predicates



Domain of Discourse

For ease of use, we define one “type”/“domain” that we 
work over.  This non-empty set of objects is called the 
“domain of discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x > 0”, “x is a power of two”

(3) “student x has taken course y”  “x is a pre-req for z”

“mammals” or “sentient beings” or “cats and dogs” or …

“numbers” or “integers” or “non-negative integers” or …

“students and courses” or “university entities” or …



Quantifiers

We use quantifiers to talk about collections of objects.

"x P(x) 
P(x) is true for every x in the domain
   read as “for all x, P of x”

$x P(x) 
     There is an x in the domain for which P(x) is true

    read as “there exists x, P of x”



Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”):     "x P(x) 
P(x) is true for every x in the domain
   read as “for all x, P of x”

Examples:

• "x Odd(x)

• "x LessThan4(x)

Are these true? 



Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”):     "x P(x) 
P(x) is true for every x in the domain
   read as “for all x, P of x”

Examples:

• "x Odd(x)

• "x LessThan4(x)

Are these true?  It depends on the domain. For example:

{1, 3, -1, -27} Integers Odd Integers

True False True

True False False



Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”):     $x P(x) 
 There is an x in the domain for which P(x) is true

read as “there exists x, P of x”

Examples:

• $x Odd(x)

• $x LessThan4(x)



Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”):     $x P(x) 
 There is an x in the domain for which P(x) is true

read as “there exists x, P of x”

Examples:

• $x Odd(x)

• $x LessThan4(x)

Are these true?  It depends on the domain. For example:

{1, 3, -1, -27} Integers Positive 
Multiples of 5

True True True

True True False



Statements with Quantifiers

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

$x Even(x)

"x Odd(x)

"x (Even(x) Ú Odd(x))

$x (Even(x) Ù Odd(x))

"x Greater(x+1, x)

$x (Even(x) Ù Prime(x))

Determine the truth values of each of these statements:

T      e.g. 2, 4, 6, ...

F      e.g. 2, 4, 6, ...

T      every integer is either even or odd

F      no integer is both even and odd

T      adding 1 makes a bigger number

T      Even(2) is true and Prime(2) is true



Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Greater(y, x) Ù Prime(y))

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y)) 

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

There is a positive integer y such that, for every pos. int. x, we have y > x.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x and y are prime and x + 2 = y.



Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Greater(y, x) Ù Prime(y))

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

There is a positive integer y such that, for every pos. int. x, we have y > x.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.



Statements with Quantifiers (Natural Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x $y Greater(y, x)

$y "x Greater(y, x)

"x $y (Greater(y, x) Ù Prime(y))

Translate the following statements to English

For every positive integer, there is some larger positive integer.

There is a positive integer that is larger than every other positive integer.

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names



Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y)) 

Translate the following statements to English

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x and y are prime and x + 2 = y.



Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

"x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

$x $y (Prime(x) Ù Prime(y) Ù Sum(x, 2, y)) 

Translate the following statements to English

Spot the domain restriction patterns

Every prime number is either 2 or odd.

There exist prime numbers that are 2 apart.

There exist primes x and y such that x + 2 = y.



English to Predicate Logic

“All red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

"x ((Red(x) Ù Cat(x)) ® LikesTofu(x))

$y ((Red(y) Ù Cat(y)) Ù ¬LikesTofu(y))



“All Red cats like tofu” 

“Some red cats don’t like tofu” 

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

“Some” means “there exists”.

When putting two predicates together like this, we 
use an “and”.

When restricting to a smaller 
domain in a “for all” we use 
implication.

When restricting to a smaller 
domain in an “exists” we use 
and.



“All Red cats like tofu” 

“Some red cats don’t like tofu” 

“Red cats like tofu” 

“A red cat doesn’t like tofu” 

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

When there’s no leading quantification, 
it usually means “for all”.

“A” means “there exists”.



Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice “domain restriction” patterns

  "x (Prime(x) ® (Equal(x, 2) Ú Odd(x)))

 Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

 "x $y Greater(y, x)

 For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”

  ¬ $x (Even(x) Ù Prime(x) Ù Greater(x, 2))

 No even prime is greater than 2.



More English Ambiguity

Implicit quantifiers in English are often ambiguous

 Three people that are all friends can form a raiding party

 Three people that I know are all friends with Mark Zuckerberg

Formal logic removes this ambiguity
– quantifiers can always be specified
– unquantified variables that are not known constants (e.g, π)

are implicitly "–quantified

"

$



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition!  Which one seems right?



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) "x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

{plum, apple}
Domain of Discourse

(*)  PurpleFruit(plum) Ù PurpleFruit(apple)
(a) PurpleFruit(plum) Ú PurpleFruit(apple)
(b) ¬ PurpleFruit(plum) Ú ¬ PurpleFruit(apple)
(c) ¬ PurpleFruit(plum) Ù ¬ PurpleFruit(apple)



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x) 



De Morgan’s Laws for Quantifiers

¬ $ x " y  ( x ≥ y)
º  " x ¬ "y  ( x ≥ y)
º  " x  $ y ¬ ( x ≥ y)
º  " x  $ y  (y > x)

“There is no integer larger than every other integer”

“For every integer, there is a larger integer”

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x) 



De Morgan’s Laws for Quantifiers

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x) 

These are equivalent but not equal

They have different English translations, e.g.:

 There is no unicorn

 Every animal is not a unicorn

¬ $x Unicorn(x)

"x ¬ Unicorn(x)



De Morgan’s Laws for Quantifiers

¬ $x (Even(x) Ù Prime(x) Ù Greater(x, 2)) 
º  "x ¬(Even(x) Ù Prime(x) Ù Greater(x, 2))
º  "x (¬(Even(x) Ù Prime(x)) Ú ¬Greater(x, 2))
º  "x (¬(Even(x) Ù Prime(x)) Ú LessEq(x, 2))
º  "x ((Even(x) Ù Prime(x)) ® LessEq(x, 2))

“No even prime is greater than 2”

“Every even prime is less than or equal to 2.”

¬"x P(x) º $x ¬ P(x)
 ¬ $x P(x) º "x ¬ P(x) 



De Morgan’s Laws for Quantifiers

¬ $x (P(x) Ù R(x)) º "x (P(x) ® ¬ R(x)) 

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

¬"x (P(x) ® R(x)) º  $x (P(x) Ù ¬ R(x))

We just saw that

Can similarly show that



Quantifiers in Java

• For finite domains of discourse, we could implement 
quantifiers in Java:

    boolean forAll(Map<String, Boolean> P) {
      for (String x : P.keySet()) {
        if (!P.get(x)) return false;
      }

      return true;
    }

    boolean exists(Map<String, Boolean> P) {
      for (String x : P.keySet()) {
        if (P.get(x)) return true;
      }
      return false;
    }

"x P(x)

$x P(x)



Scope of Quantifiers

$x  (P(x) Ù Q(x))       vs.  ($x P(x)) Ù ($x Q(x))

This one asserts P 
and Q of the same x.

This one asserts P and Q 
of potentially different x’s.

Variables with the same name do not 
necessarily refer to the same object.



Scope of Quantifiers

Example:    NotLargest(x) ::= $ y Greater (y, x)
                                                º  $ z Greater (z, x)

       truth value:
        doesn’t depend on y or z  “bound variables”
           does depend on x  “free variable”

 

{1, 2, 3, 4}
Domain of Discourse



Scope of Quantifiers

Example:    NotLargest(x) ::= $ y Greater (y, x)
                                                º  $ z Greater (z, x)

       truth value:
        doesn’t depend on y or z  “bound variables”
           does depend on x  “free variable”

  quantifiers only act on free variables of the formula

      $ y (P(x,y) ® " x Q(y, x)))

{1, 2, 3, 4}
Domain of Discourse

" x



" x ($y (P(x,y) ® " x Q(y, x)))

Quantifier “Style”

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same 
variable multiple times…there are a lot of letters…



Nested Quantifiers

• Bound variable names don’t matter

     "x $y P(x, y) º "a $b P(a, b)

• Positions of quantifiers can sometimes change
 "x (Q(x) Ù $y P(x, y)) º "x $y (Q(x) Ù P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

x

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)

{1, 2, 3, 4}
Domain of Discourse



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

$x "y GreaterEq(x, y)

"y $x GreaterEq(x, y)

{1, 2, 3, 4}
Domain of Discourse

x



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”
Predicate Definitions

“Every number has a number greater than or equal to it.”

y
1   2   3   4

1
2
3
4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

$x "y GreaterEq(x, y)

"y $x GreaterEq(x, y)

Important: both include the case x = y

Different names does not imply different objects!

{1, 2, 3, 4}
Domain of Discourse

x



Quantification with Two Variables

expression when true when false

"x " y P(x, y) Every pair is true. At least one pair is false.

$ x $ y P(x, y) At least one pair is true. All pairs are false.

" x $ y P(x, y) We can find a specific y for 
each x.
(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 
corresponding y.

$ y " x P(x, y) We can find ONE y that 
works no matter what x is.
(x1, y), (x2, y), (x3, y)

For any candidate y, there is 
an x that it doesn’t work for.


