CSE 311: Foundations of Computing

Topic 3: Predicate Logic

Predicate Logic

- Propositional Logic
- Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives
- Predicate Logic
- Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about
"All positive integers x, y, and z satisfy $x^{3}+y^{3} \neq z^{3}$."

Predicate Logic

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicates

Predicate

- A function that returns a truth value, e.g.,
$\operatorname{Cat}(x)::=$ " x is a cat"
Prime (x) ::= " x is prime"
HasTaken (x, y) ::= "student x has taken course $y "$
LessThan $(x, y)::=" x<y$ "
Sum(x, y, z)::= "x+y=z"
GreaterThan5(x) ::= "x > 5"
HasNChars(s, n) ::= "string s has length n"
Predicates can have varying numbers of arguments and input types.

Domain of Discourse

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) " x is a cat", " x barks", " x ruined my couch"
"mammals" or "sentient beings" or "cats and dogs" or ...
(2) " x is prime", " $x=0$ ", " $x>0$ ", " x is a power of two"
"numbers" or "integers" or "non-negative integers" or ...
(3) "student x has taken course y " " x is a pre-req for z "
"students and courses" or "university entities" or ...

Quantifiers

We use quantifiers to talk about collections of objects.
$\forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "
$\exists \mathrm{x}$ P(x)
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Quantifiers

We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): $\quad \forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "

Examples: Are these true?

- $\forall x \operatorname{Odd}(x)$
- $\forall x$ LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.
Universal Quantifier ("for all"): $\quad \forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "

Examples: Are these true? It depends on the domain. For example:

- $\forall x \operatorname{Odd}(x)$
- $\forall x$ LessThan4(x)

$\{\mathbf{1}, \mathbf{3},-\mathbf{1},-\mathbf{2 7 \}}$	Integers	Odd Integers
True	False	True
True	False	False

Quantifiers

We use quantifiers to talk about collections of objects.
Existential Quantifier ("exists"): $\exists x P(x)$ There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Examples: Are these true?

- $\exists x \operatorname{Odd}(x)$
- $\exists x$ LessThan4(x)

Quantifiers

We use quantifiers to talk about collections of objects.
Existential Quantifier ("exists"): $\exists x \mathrm{P}(\mathrm{x})$
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Examples: Are these true? It depends on the domain. For example:

- $\exists x \operatorname{Odd}(x)$
- $\exists x$ LessThan4(x)

$\{\mathbf{1}, \mathbf{3}, \mathbf{- 1},-27\}$	Integers	Positive Multiples of 5
True	True	True
True	True	False

Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Determine the truth values of each of these statements:
$\exists x \operatorname{Even}(x)$
$\forall x \operatorname{Odd}(x)$
$\forall x(E v e n(x) \vee \operatorname{Odd}(x)) \quad T \quad$ every integer is either even or odd
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x)) \quad F \quad$ no integer is both even and odd
$\forall x$ Greater $(x+1, x) \quad T \quad$ adding 1 makes a bigger number
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$ T Even(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer x, there is a positive integer y, such that $y>x$.
$\exists y \forall x$ Greater (y, x)
There is a positive integer y such that, for every pos. int. x , we have $\mathrm{y}>\mathrm{x}$. $\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime $(\mathrm{y}))$

For every positive integer x , there is a pos. int. y such that $\mathrm{y}>\mathrm{x}$ and y is prime.
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
For each positive integer x, if x is prime, then $x=2$ or x is odd.
$\exists x \exists y(\operatorname{Prime}(x) \wedge \operatorname{Prime}(y) \wedge \operatorname{Sum}(x, 2, y))$
There exist positive integers x and y such that x and y are prime and $x+2=y$.

Statements with Quantifiers (Literal Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x \exists y \operatorname{Greater}(y, x)$
For every positive integer x, there is a positive integer y, such that $y>x$.
$\exists y \forall x$ Greater (y, x)
There is a positive integer y such that, for every pos. int. x , we have $\mathrm{y}>\mathrm{x}$. $\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime (y))

For every positive integer x , there is a pos. int. y such that $\mathrm{y}>\mathrm{x}$ and y is prime.

Statements with Quantifiers (Natural Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer, there is some larger positive integer.
$\exists y \forall x$ Greater (y, x)
There is a positive integer that is larger than every other positive integer.
$\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime (y))
For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Statements with Quantifiers (Literal Translations)

```
Domain of Discourse
    Positive Integers
```

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
For each positive integer x, if x is prime, then $x=2$ or x is odd.
$\exists x \exists y(\operatorname{Prime}(x) \wedge \operatorname{Prime}(y) \wedge \operatorname{Sum}(x, 2, y))$
There exist positive integers x and y such that x and y are prime and $x+2=y$.

Statements with Quantifiers (Literal Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=$ " $x+y=z "$

Translate the following statements to English
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
Every prime number is either 2 or odd.
$\exists x \exists y(\operatorname{Prime}(x) \wedge \operatorname{Prime}(y) \wedge \operatorname{Sum}(x, 2, y))$
There exist primes x and y such that $\mathrm{x}+2=\mathrm{y}$.
There exist prime numbers that are 2 apart.

Spot the domain restriction patterns

English to Predicate Logic

Domain of Discourse
Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu(x) ::= " x likes tofu"

"All red cats like tofu"

$$
\forall x((\operatorname{Red}(\mathrm{x}) \wedge \operatorname{Cat}(\mathrm{x})) \rightarrow \text { LikesTofu(x)) }
$$

"Some red cats don't like tofu"
$\exists y((\operatorname{Red}(\mathrm{y}) \wedge \operatorname{Cat}(\mathrm{y})) \wedge \neg \operatorname{LikesTofu}(\mathrm{y}))$

English to Predicate Logic

Domain of Discourse

Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu(x) ::= "x likes tofu"

When putting two predicates together like this, we use an "and".
"All Red cats like tofu"
When restricting to a smaller
domain in a "for all" we use implication.

When restricting to a smaller
"Some red cats don't like tofu" domain in an "exists" we use and.
"Some" means "there exists".

English to Predicate Logic

Domain of Discourse
Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu($x)::=$ " x likes tofu"

"All Red cats like tofu"
"Red cats like tofu"

4
When there's no leading quantification, it usually means "for all".
"Some red cats don't like tofu"
"A red cat doesn't like tofu"
π
"A" means "there exists".

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice "domain restriction" patterns
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
Every prime number is either 2 or odd.
2. Avoid introducing unnecessary variable names
$\forall x \exists y$ Greater (y, x)
For every positive integer, there is some larger positive integer.
3. Can sometimes drop "all" or "there is"
$\neg \exists \mathrm{x}(\operatorname{Even}(\mathrm{x}) \wedge \operatorname{Prime}(\mathrm{x}) \wedge \operatorname{Greater}(\mathrm{x}, 2))$
No even prime is greater than 2.

More English Ambiguity

Implicit quantifiers in English are often ambiguous

Three people that are all friends can form a raiding party
\forall

Three people that I know are all friends with Mark Zuckerberg \exists

Formal logic removes this ambiguity

- quantifiers can always be specified
- unquantified variables that are not known constants (e.g, п) are implicitly \forall-quantified

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Try your intuition! Which one seems right?

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Domain of Discourse

\{plum, apple\}
(*) PurpleFruit(plum) \wedge PurpleFruit(apple)
(a) PurpleFruit(plum) \vee PurpleFruit(apple)
(b) \neg PurpleFruit(plum) $\vee \neg$ PurpleFruit(apple)
(c) \neg PurpleFruit(plum) $\wedge \neg$ PurpleFruit(apple)

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
\neg \forall \mathrm{P}(\mathrm{x}) & \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\neg \exists \mathrm{P}(\mathrm{x}) & \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

De Morgan’s Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"There is no integer larger than every other integer"

$$
\begin{aligned}
& \neg \exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \neg \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \exists \mathrm{y} \neg(\mathrm{x} \geq \mathrm{y}) \\
\equiv & \forall \mathrm{x} \exists \mathrm{y}(\mathrm{y}>\mathrm{x})
\end{aligned}
$$

"For every integer, there is a larger integer"

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
\neg \forall \mathrm{x} P(\mathrm{x}) & \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\neg \exists \mathrm{xP}(\mathrm{x}) & \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

These are equivalent but not equal

They have different English translations, e.g.:
There is no unicorn
$\neg \exists \mathrm{x}$ Unicorn(x)

Every animal is not a unicorn
$\forall x \neg$ Unicorn (x)

De Morgan’s Laws for Quantifiers

$$
\begin{aligned}
\neg \forall \mathrm{x} P(\mathrm{x}) & \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\neg \exists \mathrm{xP}(\mathrm{x}) & \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"No even prime is greater than 2"

$$
\begin{aligned}
& \neg \exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x) \wedge \text { Greater }(x, 2)) \\
& \equiv \forall x \neg(\operatorname{Even}(x) \wedge \operatorname{Prime}(x) \wedge \operatorname{Greater}(x, 2)) \\
& \equiv \forall x(\neg(\operatorname{Even}(x) \wedge \operatorname{Prime}(x)) \vee \neg \operatorname{Greater}(x, 2)) \\
& \equiv \forall x(\neg(\operatorname{Even}(x) \wedge \operatorname{Prime}(x)) \vee \operatorname{LessEq}(x, 2)) \\
& \equiv \forall x((\operatorname{Even}(x) \wedge \operatorname{Prime}(x)) \rightarrow \operatorname{LessEq}(x, 2))
\end{aligned}
$$

"Every even prime is less than or equal to 2."

De Morgan's Laws for Quantifiers

We just saw that

$$
\neg \exists x(P(x) \wedge R(x)) \equiv \forall x(P(x) \rightarrow \neg R(x))
$$

Can similarly show that

$$
\neg \forall x(P(x) \rightarrow R(x)) \equiv \exists x(P(x) \wedge \neg R(x))
$$

De Morgan's Laws respect domain restrictions! (It leaves them in place and only negates the other parts.)

Quantifiers in Java

- For finite domains of discourse, we could implement quantifiers in Java:

```
boolean forAll(Map<String, Boolean> P) {
    for (String x : P.keySet()) {
        if (!P.get(x)) return false;
    }
    return true;
}
boolean exists(Map<String, Boolean> P) {
    for (String x : P.keySet()) {
        if (P.get(x)) return true;
            \forallx P(x)
        \existsx P(x)
    }
    return false;
}
```


Scope of Quantifiers

$$
\exists x(P(x) \wedge Q(x)) \quad \text { vs. } \quad(\exists x P(x)) \wedge(\exists x Q(x))
$$

This one asserts P and Q of the same x .

Variables with the same name do not necessarily refer to the same object.

Scope of Quantifiers

Example: $\quad \operatorname{NotLargest(x)~::=~} \exists \mathrm{y}$ Greater (y, x)
$\equiv \exists \mathrm{z}$ Greater (z, x)
truth value: doesn't depend on y or Z "bound variables" does depend on x "free variable"

Scope of Quantifiers

Example: $\quad \operatorname{NotLargest(x)~::=~} \exists \mathrm{y}$ Greater (y, x)
$\equiv \exists \mathrm{z}$ Greater (z, x)
truth value: doesn't depend on y or z "bound variables" does depend on x "free variable"
quantifiers only act on free variables of the formula

$$
\forall x \exists y(\mathrm{P}(\mathrm{x}, \mathrm{y}) \rightarrow \forall \mathrm{x} \mathrm{Q}(\mathrm{y}, \mathrm{x})))
$$

Quantifier "Style"

This isn't "wrong", it's just horrible style.
Don't confuse your reader by using the same variable multiple times...there are a lot of letters...

Nested Quantifiers

- Bound variable names don't matter

$$
\forall x \exists y \mathrm{P}(\mathrm{x}, \mathrm{y}) \equiv \forall \mathrm{a} \exists \mathrm{~b} \mathrm{P}(\mathrm{a}, \mathrm{~b})
$$

- Positions of quantifiers can sometimes change

$$
\forall x(Q(x) \wedge \exists y P(x, y)) \equiv \forall x \exists y(Q(x) \wedge P(x, y))
$$

- But: order is important...

Quantifier Order Can Matter

Domain of Discourse
$\{1,2,3,4\}$

Predicate Definitions
GreaterEq $(x, y)::=" x \geq y "$

	1	2	3	4
	T	F	F	F
2	T	T	F	F
$\times 3$	T	T	T	F
4	T	T	T	T

Quantifier Order Can Matter

Domain of Discourse
$\{1,2,3,4\}$

Predicate Definitions
GreaterEq $(x, y)::=" x \geq y "$

$\forall y \exists x$ GreaterEq(x, y)

Quantifier Order Can Matter

Domain of Discourse
$\{1,2,3,4\}$

Predicate Definitions
GreaterEq $(x, y)::=" x \geq y^{\prime \prime}$

y
"There is a number greater than or equal to all numbers."

$$
\exists x \forall y \text { GreaterEq(x, y) }
$$

"Every number has a number greater than or equal to it."

$$
\forall y \exists x \text { GreaterEq(x, y) }
$$

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true.

Important: both include the case $x=y$
Different names does not imply different objects!

Quantification with Two Variables

expression	when true	when false
$\forall \mathrm{x} \forall \mathrm{y} \mathrm{P}(\mathrm{x}, \mathrm{y})$	Every pair is true.	At least one pair is false.
$\exists \mathrm{x} \exists \mathrm{y} P(\mathrm{x}, \mathrm{y})$	At least one pair is true.	All pairs are false.
$\forall \mathrm{x} \exists \mathrm{y} P(\mathrm{x}, \mathrm{y})$	We can find a specific y for each x. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$	Some x doesn't have a corresponding y.
$\exists \mathrm{y} \forall \mathrm{x} \mathrm{P}(\mathrm{x}, \mathrm{y})$	We can find ONE y that works no matter what x is. $\left(\mathrm{x}_{1}, \mathrm{y}\right),\left(\mathrm{x}_{2}, \mathrm{y}\right),\left(\mathrm{x}_{3}, \mathrm{y}\right)$	For any candidate y, there is an x that it doesn't work for.

