
CSE 311: Foundations of Computing
Topic 2: Equivalence



Tautologies!
Terminology:  A compound proposition is a…
–  Tautology if it is always true
–  Contradiction if it is always false
–  Contingency if it can be either true or false

p Ú ¬p

p Å p

(p ® r) Ù p



Tautologies!
Terminology:  A compound proposition is a…
–  Tautology if it is always true
–  Contradiction if it is always false
–  Contingency if it can be either true or false

p Ú ¬p

p Å p

(p ® r) Ù p

This is a tautology.  It’s called the “law of the excluded middle”.
If p is true, then p Ú ¬p is true. If p is false, then p Ú ¬p is true. 

This is a contradiction.  It’s always false no matter what truth 
value p takes on.

This is a contingency.  When p=T, r=T, (T ® T)ÙT is true.
       When p=T, r=F, (T ® F)ÙT is false.



Mapping Truth Tables to Logic Gates

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Draw as gates
4. Map to available gates

A B C    F
0 0 0    0
0 0 1    0
0 1 0    1
0 1 1    1
1 0 0    0
1 0 1    1
1 1 0    0
1 1 1    1

This will give us some circuit.
But is it the best circuit?



Logical Equivalence

A = B means A and B are the same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p



Logical Equivalence

A = B means A and B are same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p
These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of 
characters.  They “mean” the same thing though.

in more detail, “=” means same parse tree (see week 8),
so we can ignore differences in whitespace etc.



Logical Equivalence

A = B means A and B are same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p

A º B means A and B have identical truth values:
– p Ù r º p Ù r

– p Ù r º r Ù p

– p Ù r ≢ r Ú p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of 
characters.  They “mean” the same thing though.



Logical Equivalence

A = B means A and B are same thing written twice:
– p Ù r = p Ù r

– p Ù r ≠ r Ù p

A º B means A and B have identical truth values:
– p Ù r º p Ù r

– p Ù r º r Ù p

– p Ù r ≢ r Ú p

These are equal, because they are character-for-character identical.

These are NOT equal, because they are different sequences of 
characters.  They “mean” the same thing though.

Two formulas that are equal also are equivalent.

These two formulas have the same truth table!

When p=T and r=F,  p ∧	r is false, but p ∨	r is true!



A « B  vs.  A º B

A « B is a proposition that may be true or false 
depending on the truth values of A and B.

A º B is an assertion over all possible truth values 
that A and B always have the same truth values.  

A º B and (A « B) º T have the same meaning
  as does “A « B is a tautology”



Logical Equivalence A º B

A º B is an assertion that two propositions A and B 
always have the same truth values.
   

A º B and (A « B) º T have the same meaning.

p Ù r º r Ù p
p r p Ù r r Ù p (p Ù r) « (r Ù p)
T T T T T

T F F F T

F T F F T

F F F F T



Examples from Last Lecture

We previously saw 3 different ways of writing XOR

a b a’ b’ a’b ab’ a’b + b’a
1 1 0 0 0 0 0

1 0 0 1 0 1 1

0 1 1 0 1 0 1

0 0 1 1 0 0 0

sum of
products

a b a + b a’ b’ a’ + b’ (a+b)(a’+b’)
1 1 1 0 0 0 0

1 0 1 0 1 1 1

0 1 1 1 0 1 1

0 0 0 1 1 1 0

product
of sums



Exercise: XOR

We previously saw 3 different ways of writing XOR

a b a + b ab (ab)’ (a+b)(ab)’
1 1

1 0

0 1

0 0

original
definition

a b a’ b’ a’b ab’ a’b + b’a
1 1 0 0 0 0 0

1 0 0 1 0 1 1

0 1 1 0 1 0 1

0 0 1 1 0 0 0

sum of
products



Exercise: XOR

We previously saw 3 different ways of writing XOR

a b a + b ab (ab)’ (a+b)(ab)’
1 1 1 1 0 0

1 0 1 0 1 1

0 1 1 0 1 1

0 0 0 0 1 0

original
definition

a b a’ b’ a’b ab’ a’b + b’a
1 1 0 0 0 0 0

1 0 0 1 0 1 1

0 1 1 0 1 0 1

0 0 1 1 0 0 0

sum of
products



De Morgan’s Laws

¬(p Ù r) º ¬p Ú ¬r
¬(p Ú r) º ¬p Ù ¬r

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement,
 ask “when is the original statement false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.



De Morgan’s Laws

p r ¬p ¬r ¬p Ú ¬r p Ù r ¬(p Ù r)
T T F F F T F

T F F T T F T

F T T F T F T

F F T T T F T

Example:  ¬(p Ù r) º ¬p Ú ¬r



De Morgan’s Laws

¬(p Ù r) º ¬p Ú ¬r
¬(p Ú r) º ¬p Ù ¬r

if (!(front != null && value > front.data)) {
 front = new ListNode(value, front);
} else {
 ListNode current = front;
 while (current.next != null && current.next.data < value))
  current = current.next;
 current.next = new ListNode(value, current.next);
}



De Morgan’s Laws

¬(p Ù r) º ¬p Ú ¬r
¬(p Ú r) º ¬p Ù ¬r

!(front != null && value > front.data)

front == null || value <= front.data

º



Law of Implication

p r p ® r ¬	p ¬	p Ú r
T T

T F

F T

F F

p ® r º ¬p Ú r



Law of Implication

p r p ® r ¬	p ¬	p Ú r
T T T F T

T F F F F

F T T T T

F F T T T

p ® r º ¬p Ú r



Biconditional:  𝑝 ↔ 𝑟

• p if and only if r  (p iff r)
• p implies r and r implies p
• p is necessary and sufficient for r

p r p	«r p	→r r	→p (p	→r)	Ù (r	→p)
T T T T T
T F F F T

F T F T F

F F T T T



Biconditional:  𝑝 ↔ 𝑟

• p if and only if r  (p iff r)
• p implies r and r implies p
• p is necessary and sufficient for r

p r p	«r p	→r r	→p (p	→r)	Ù (r	→p)
T T T T T T
T F F F T F

F T F T F F

F F T T T T



Some Familiar Properties of Arithmetic

• 𝑥 + 𝑦 = 𝑦 + 𝑥        (Commutativity)
– 𝑝 ∨ 𝑞 ≡ 𝑞 ∨ 𝑝
– 𝑝 ∧ 𝑞 ≡ 𝑞 ∧ 𝑝

• 𝑥 ⋅ 𝑦 + 𝑧 = 𝑥 ⋅ 𝑦 + 𝑥 ⋅ 𝑧      (Distributivity)
– 𝑝 ∧ 𝑞 ∨ 𝑟 ≡ 𝑝 ∧ 𝑞 ∨ (𝑝 ∧ 𝑟)
– 𝑝 ∨ 𝑞 ∧ 𝑟 ≡ 𝑝 ∨ 𝑞 ∧ (𝑝 ∨ 𝑟)

• 𝑥 + 𝑦 + 𝑧 = 𝑥 + (𝑦 + 𝑧)   (Associativity)
– 𝑝 ∨ 𝑞 ∨ 𝑟 ≡ 𝑝 ∨ 𝑞 ∨ 𝑟
– 𝑝 ∧ 𝑞 ∧ 𝑟 ≡ 𝑝 ∧ (𝑞 ∧ 𝑟)



Important Equivalences



Some Familiar Properties of Arithmetic

• 𝑥 ⋅ 1 = 𝑥         (Identity)
• 𝑥 + 0 = 𝑥

• 𝑥 ⋅ 0 = 0           (Domination)



Important Equivalences



Some Familiar Properties of Arithmetic

• Usual properties hold under relabeling:
– 0, 1 becomes F, T
– “+” becomes “Ú”
– “	⋅	” becomes “Ù”

• But there are some new facts:
– Distributivity works for both “Ù” and “Ú”
– Domination works with T

• There are some other facts specific to logic…



Important Equivalences



Important Equivalences



Using Equivalences

• Note that p, q, and r can be any propositions
(not just atomic propositions)

• Ex:  (r ® s) Ù (¬t) º (¬t) Ù (r ® s)

– apply commutativity: p Ù q º q Ù p
with p := r ® s
and q := ¬t



One more easy equivalence

p ¬ p ¬ ¬ p

T F T

F T F

Double Negation

𝑝	 ≡ 	¬	¬	𝑝



Understanding logic and circuits

When do two logic formulas mean the same thing?

When do two circuits compute the same function?

What logical properties can we infer from other ones? 



Basic rules of reasoning and logic

• Working with logical formulas
– Simplification
– Testing for equivalence

• Applications
– Query optimization
– Search optimization and caching
– Artificial Intelligence
– Program verification



Computing Equivalence

Given two propositions, can we write an algorithm to 
determine if they are equivalent?

What is the runtime of our algorithm?



Computing Equivalence

Given two propositions, can we write an algorithm to 
determine if they are equivalent?

Yes!  Generate the truth tables for both propositions and check 
if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F).  If there are 
𝒏 atomic propositions, there are 𝟐𝒏 rows in the truth table.



Another approach: Logical Proofs

To show A is equivalent to B
– Apply a series of logical equivalences to           

sub-expressions to convert A to B

To show A is a tautology
– Apply a series of logical equivalences to         

sub-expressions to convert A to T



Another approach: Logical Proofs

To show A is equivalent to B
– Apply a series of logical equivalences to           

sub-expressions to convert A to B

Example:
 Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
 Our general equivalence proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡	(                       )
	 	 	 	 ≡ 𝑝



Another approach: Logical Equivalences

Example:
 Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
 Our general equivalence proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡	(                       )
	 	 	 	 ≡ 𝑝



Logical Equivalences

Example:
 Let A be “𝑝 ∨ (𝑝 ∧ 𝑝)”, and B be “𝑝”.
 Our general equivalence proof looks like:

𝑝 ∨ 𝑝 ∧ 𝑝 ≡	(                       )
	 	 	 	 ≡ 𝑝

𝑝 ∨ 𝑝 Idempotent
Idempotent



Logical Equivalences

To show A is a tautology
– Apply a series of logical equivalences to         

sub-expressions to convert A to T

Example:
 Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
 Our general equivalence proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡	(                       )
        ≡	(                       )
	 	 	 					≡ T



Logical Equivalences

Example:
 Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
 Our general equivalence proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡	(                       )
        ≡	(                       )
	 	 	 					≡ T



Logical Equivalences

Example:
 Let A be “¬𝑝 ∨ (𝑝 ∨ 𝑝)”.
 Our general equivalence proof looks like:

¬𝑝 ∨ 𝑝 ∨ 𝑝 ≡	(                       )
	 	 	 					≡ (                       )
	 	 	 					≡ T

¬𝑝 ∨ 𝑝 Idempotent

Negation
𝑝 ∨ ¬𝑝 Commutative



Prove these propositions are equivalent: Option 1

𝒑 𝒓 𝒑 → 𝒓 𝒑 ∧ (𝒑 → 𝒓) 𝒑 ∧ 𝒓 𝒑 ∧ (𝒑 → 𝒓) ⟷ 𝒑 ∧ 𝒓
T T T T T T

T F F F F T

F T T F F T

F F T F F T

Make a Truth Table and show:

𝑝 ∧ (𝑝 → 𝑟) ⟷ 𝑝 ∧ 𝑟 ≡	T

Prove: p Ù (p ® r) º p Ù r



Prove these propositions are equivalent: Option 2

Prove: p Ù (p ® r) º p Ù r

𝑝 ∧ 𝑝 → 𝑟 ≡
       ≡
       ≡
       ≡
       ≡ 𝑝 ∧ 𝑟



Prove these propositions are equivalent: Option 2

Prove: p Ù (p ® r) º p Ù r

𝑝 ∧ 𝑝 → 𝑟 ≡ 𝑝 ∧ (¬𝑝 ∨ 𝑟)
       ≡ 𝑝 ∧ ¬𝑝 ∨ (𝑝 ∧ 𝑟)
       ≡	F ∨ (𝑝 ∧ 𝑟)
       ≡ 𝑝 ∧ 𝑟 ∨	F
       ≡ 𝑝 ∧ 𝑟

Law of Implication
Distributive
Negation
Commutative
Identity



Prove this is a Tautology: Option 1

(p Ù r) ® (r Ú p)

𝒑 𝒓 𝒑 ∧ 𝒓 𝒓 ∨ 𝒑 𝒑 ∧ 𝒓 → 𝒓 ∨ 𝒑
T T

T F

F T

F F

Make a Truth Table and show:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡	T



Prove this is a Tautology: Option 1

(p Ù r) ® (r Ú p)

𝒑 𝒓 𝒑 ∧ 𝒓 𝒓 ∨ 𝒑 𝒑 ∧ 𝒓 → 𝒓 ∨ 𝒑
T T T T T

T F F T T

F T F T T

F F F F T

Make a Truth Table and show:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 ≡	T



Prove this is a Tautology: Option 2

(p Ù r) ® (r Ú p)
Use a series of equivalences like so:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 	≡	
      ≡	
         ≡	
           ≡	
           ≡
           ≡	
           ≡	
           ≡	
       ≡   T



Prove this is a Tautology: Option 2

(p Ù r) ® (r Ú p)
Use a series of equivalences like so:

𝑝 ∧ 𝑟 → 𝑟 ∨ 𝑝 	≡ ¬ 𝑝 ∧ 𝑟 ∨ (𝑟 ∨ 𝑝)
      ≡ ¬𝑝 ∨ ¬𝑟 ∨ (𝑟 ∨ 𝑝)
         ≡ ¬𝑝 ∨ (¬𝑟 ∨ 𝑟 ∨ 𝑝 )
           ≡ ¬𝑝 ∨ ( ¬𝑟 ∨ 𝑟 ∨ 𝑝)
           ≡ ¬𝑝 ∨ (𝑝 ∨ ¬𝑟 ∨ 𝑟 )
           ≡ (¬𝑝 ∨ 𝑝) ∨ ¬𝑟 ∨ 𝑟
           ≡ (𝑝 ∨ ¬𝑝) ∨ 𝑟 ∨ ¬𝑟
           ≡ 	 T ∨ T
       ≡   T

Law of Implication
De Morgan 

Associative
Associative
Commutative
Associative
Commutative (twice)

Negation (twice)
Domination/Identity



Logical Proofs of Equivalence/Tautology

• Not smaller than truth tables when there are only 
a few propositional variables...

• ...but usually much shorter than truth table proofs 
when there are many propositional variables

• A big advantage will be that we can extend them 
to a more in-depth understanding of logic for 
which truth tables don’t apply.  



• ¬, Ù, Ú can implement any Boolean function
we didn’t need any others to do this

• Actually… just ¬, Ù (or ¬, Ú) are enough
follows by De Morgan’s laws

• Actually… just NAND (or NOR)

Recall: Corollaries of Circuit Construction



Boolean Algebra

• Usual notation used in circuit design

• Boolean algebra  
– a set of elements B containing {0, 1}
– binary operations { + , • }
– and a unary operation { ’ }
– such that the following axioms hold:

For any a, b, c in B:
1. closure: a + b  is in B a • b  is in B
2. commutativity: a + b = b + a a • b = b • a
3. associativity: a + (b + c) = (a + b) + c a • (b • c) = (a • b) • c
4. distributivity: a + (b • c) = (a + b) • (a + c) a • (b + c) = (a • b) + (a • c)
5. identity: a + 0 = a a • 1 = a
6. complementarity: a + a’ = 1 a • a’ = 0
7. null:             a + 1 = 1 a • 0  = 0
8. idempotency: a + a = a a • a = a
9. involution:    (a’)’ = a
 



uniting:
 10.   a • b + a • b’ = a 10D.   (a + b) • (a + b’) = a
absorption:
 11. a + a • b = a 11D.  a • (a + b) = a
 12. (a + b’) • b = a • b 12D. (a • b’) + b = a + b
factoring:
 13. (a + b) • (a’ + c) = 13D. a • b + a’ • c = 
                               a • c + a’ • b                     (a + c) • (a’ + b)
consensus:
 14. (a • b) + (b • c) + (a’ • c) = 14D. (a + b) • (b + c) • (a’ + c) =
              a • b + a’ • c                (a + b) • (a’ + c)
de Morgan’s:
 15. (a + b + ...)’ = a’ • b’ • ... 15D. (a • b • ...)’ = a’ + b’ + ...

Simplification using Boolean Algebra



Using the laws of Boolean Algebra:

XOR variants:                (A + B)(AB)’  =  (A + B)(A’ + B’)

Proving Theorems

De Morgan

original product of sums



Using the laws of Boolean Algebra:

XOR variants:                 (A + B)(A’ + B’) = AB’ + A’B 

Proving Theorems

sum of productsproduct of sums

(A + B)(A’ + B’) = (A + B)A’ + (A + B)B’
                       = A’(A + B) + B’(A + B)
                       = A’A + A’B + B’A + B’B
                       = 0 + A’B + B’A + 0
                       = A’B + AB’
                       = AB’ + A’B

distributivity 
commutativity
distributivity 
complementarity 
identity
commuativity 



Using the laws of Boolean Algebra:

XOR variants:                 (A + B)(A’ + B’) = AB’ + A’B 

Proving Theorems

sum of productsproduct of sums

(A + B)(A’ + B’) = (A + B)A’ + (A + B)B’
                       = A’(A + B) + B’(A + B)
                       = A’A + A’B + B’A + B’B
                       = 0 + A’B + B’A + 0
                       = A’B + AB’
                       = AB’ + A’B

distributivity 
commutativity
distributivity 
complementarity 
identity
commuativity 



Sum-of-Products Canonical Form

Product term (or minterm)
– ANDed product of literals – input combination for which output is true
– each variable appears exactly once, true or inverted (but not both)

A B C minterms
0 0 0 A’B’C’
0 0 1 A’B’C
0 1 0 A’BC’
 0 1 1 A’BC
1 0 0 AB’C’
1 0 1 AB’C
1 1 0 ABC’
1 1 1 ABC

F in canonical form:
 F(A, B, C) = A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form ¹ minimal form
 F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’ 

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C

  = AB + C



Product-of-Sums Canonical Form

Sum term (or maxterm)
– ORed sum of literals – input combination for which output is false
– each variable appears exactly once, true or inverted (but not both)

A B C maxterms
0 0 0 A+B+C
0 0 1 A+B+C’
0 1 0 A+B’+C
0 1 1 A+B’+C’
1 0 0 A’+B+C
1 0 1 A’+B+C’
1 1 0 A’+B’+C
1 1 1 A’+B’+C’

F in canonical form:
 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form ¹ minimal form
 F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
   (A + B + C) (A’ + B + C)
= (A + C) (B + C)



Recall: Truth Table to Logic

c3 = d2’•d1’•d0’•L + d2’•d1’•d0•L

c2 = d2’•d1•d0’•L + d2’•d1•d0•L

c1 = d2’•d1’•d0’•L’ + d2’•d1’•d0•L’ + d2’•d1•d0’•L’ + d2’•d1•d0•L’ + d2•d1’•d0’ + d2•d1’•d0•L

c0 = d2•d1’•d0•L’ + d2•d1•d0’ + d2•d1•d0

d2

d1

d0

L

NOT

NOT

NOT

OR

AND

AND

Here’s c3 as a circuit:



c3 = d2’•d1’•d0’•L  +  d2’•d1’•d0•L
= d2’•d1’•(d0’ +  d0)•L
= d2’•d1’•1•L
= d2’•d1’•L

Simplifying using Boolean Algebra

AND

d2

d1

L

NOT

NOT



1-bit Binary Adder
A

+ B
   S
     (COUT)

0 + 0 = 0 (with COUT = 0)
0 + 1 = 1 (with COUT = 0)
1 + 0 = 1 (with COUT = 0)
1 + 1 = 0 (with COUT = 1)



1-bit Binary Adder
A

+ B
   S
     (COUT)

0 + 0 = 0 (with COUT = 0)
0 + 1 = 1 (with COUT = 0)
1 + 0 = 1 (with COUT = 0)
1 + 1 = 0 (with COUT = 1)

Idea: chain these together to add larger numbers

2 4 8
+ 3 7 5
   

Recall from 
elementary school:



1-bit Binary Adder
A

+ B
   S
     (COUT)

0 + 0 = 0 (with COUT = 0)
0 + 1 = 1 (with COUT = 0)
1 + 0 = 1 (with COUT = 0)
1 + 1 = 0 (with COUT = 1)

Idea: These are chained together with a carry-in

A A A A A
B B B B B
S S S S S

CINCOUT(CIN)
   A
+ B
   S
     (COUT)

0 1 1 1 0
0 1 1 0 1
1 1 0 1 1

CINCOUT
1 1 0 0



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out

A
B

CIN
COUT

S

A A A A A
B B B B B
S S S S S

CINCOUT

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out A A A A A

B B B B B
S S S S S

CINCOUT

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A’•B’•CIN

A’•B•CIN’

A•B’•CIN’

A•B•CIN

S = A’•B’•CIN + A’•B•CIN’
+     
       A•B’•CIN’ + A•B•CIN

Derive an expression for S



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out A A A A A

B B B B B
S S S S S

CINCOUT

A•B’•CIN

A•B•CIN’

A’•B•CIN

A•B•CIN

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN

COUT = A’•B•CIN + A•B’•CIN +
A•B•CIN’ + A•B•CIN

Derive an expression for COUT



1-bit Binary Adder

• Inputs: A, B, Carry-in
• Outputs: Sum, Carry-out A A A A A

B B B B B
S S S S S

CINCOUT

COUT = A’•B•CIN + A•B’•CIN + A•B•CIN’ + A•B•CIN

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN



Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions
– e.g., full adder’s carry-out function 

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
  =  A’ B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin  +  A B Cin
  =  A’ B Cin  +  A B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
  =  (A’ + A) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
  =  (1) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A B’ Cin  + A B Cin’  +  A B Cin  +  A B Cin
  =  B Cin  +  A B’ Cin  +  A B Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A (B’ + B) Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A (1) Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A Cin  +  A B (Cin’ +  Cin)
  =  B Cin  +  A Cin  +  A B (1)
  =  B Cin  +  A Cin  +  A B 



Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions
– e.g., full adder’s carry-out function 

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
  =  A’ B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin  +  A B Cin
  =  A’ B Cin  +  A B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
  =  (A’ + A) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
  =  (1) B Cin  +  A B’ Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A B’ Cin  + A B Cin’  +  A B Cin  +  A B Cin
  =  B Cin  +  A B’ Cin  +  A B Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A (B’ + B) Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A (1) Cin  +  A B Cin’  +  A B Cin
  =  B Cin  +  A Cin  +  A B (Cin’ +  Cin)
  =  B Cin  +  A Cin  +  A B (1)
  =  B Cin  +  A Cin  +  A B adding extra terms 

creates new factoring 
opportunities



A 2-bit Ripple-Carry Adder

A

Sum

CoutCin

B

1-Bit Adder

A
B

Cin Sum

A
B

A
Cin

B
Cin

Cout

A0 B0

CoutCin

Sum0

0

A1 B1

Sum1

CoutCin

A2 B2

Sum2

CoutCin

Uses the fact that                                                         
Sum = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN

is equivalent to Sum = (A ⊕ B) ⊕ CIN



Mapping Truth Tables to Logic Gates (Revised)

Given a truth table:
1. Write the output in a table
2. Write the Boolean expression
3. Minimize the Boolean expression
4. Draw as gates
5. Map to available gates

A B C    F
0 0 0    0
0 0 1    0
0 1 0    1
0 1 1    1
1 0 0    0
1 0 1    1
1 1 0    0
1 1 1    1F = A’BC’+A’BC+AB’C+ABC

   = A’B(C’+C)+AC(B’+B)
   = A’B+AC

notA
B

A
C

F F

notA
B

A
C

2

3

4

5


